
R

ISE In-Depth
Tutorial

UG695 (v 11.2) June 24, 2009

ISE 11 In-Depth Tutorial www.xilinx.com

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

R

ISE 11 In-Depth Tutorial www.xilinx.com 3
UG695 (v 11.2)

R

Preface

About This Tutorial

About the In-Depth Tutorial
This tutorial gives a description of the features and additions to Xilinx® ISE™ 11. The
primary focus of this tutorial is to show the relationship among the design entry tools,
Xilinx and third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE
software or those wanting to refresh their skills and knowledge.

You may choose to follow one of the three tutorial flows available in this document. For
information about the tutorial flows, see “Tutorial Flows.”

Tutorial Contents
This guide covers the following topics.

• Chapter 1, “Overview of ISE,” introduces you to the ISE primary user interface,
Project Navigator, and the synthesis tools available for your design.

• Chapter 2, “HDL-Based Design,” guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch. This chapter also shows how to use
ISE accessories such as CORE Generator™, and ISE Text Editor.

• Chapter 3, “Schematic-Based Design,” explains many different facets of a schematic-
based ISE design flow using a design of a runner’s stopwatch. This chapter also
shows how to use ISE accessories such as CORE Generator™, and ISE Text Editor.

• Chapter 4, “Behavioral Simulation,” explains how to simulate a design before design
implementation to verify that the logic that you have created is correct.

• Chapter 5, “Design Implementation,” describes how to Translate, Map, Place, Route,
and generate a Bit file for designs.

• Chapter 6, “Timing Simulation,” explains how to perform a timing simulation using
the block and routing delay information from the routed design to give an accurate
assessment of the behavior of the circuit under worst-case conditions.

• Chapter 7, “iMPACT Tutorial” explains how to program a device with a newly
created design using the IMPACT configuration tool.

4 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Preface: About This Tutorial
R

Tutorial Flows
This document contains three tutorial flows. In this section, the three tutorial flows are
outlined and briefly described, in order to help you determine which sequence of chapters
applies to your needs. The tutorial flows include:

• HDL Design Flow

• Schematic Design Flow

• Implementation-only Flow

HDL Design Flow
The HDL Design flow is as follows:

• Chapter 2, “HDL-Based Design”

• Chapter 4, “Behavioral Simulation”
Note that although behavioral simulation is optional, it is strongly recommended in
this tutorial flow.

• Chapter 5, “Design Implementation”

• Chapter 6, “Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended in this
tutorial flow.

• Chapter 7, “iMPACT Tutorial”

Schematic Design Flow
The Schematic Design flow is as follows:

• Chapter 3, “Schematic-Based Design”

• Chapter 4, “Behavioral Simulation”
Note that although behavioral simulation is optional, it is strongly recommended in
this tutorial flow.

• Chapter 5, “Design Implementation”

• Chapter 6,“Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended.

• Chapter 7, “iMPACT Tutorial”

Implementation-only Flow
The Implementation-only flow is as follows:

• Chapter 5, “Design Implementation”

• Chapter 6, “Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended in this
tutorial flow.

• Chapter 7, “iMPACT Tutorial”

ISE 11 In-Depth Tutorial www.xilinx.com 5
UG695 (v 11.2)

Additional Resources
R

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

6 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Preface: About This Tutorial
R

ISE 11 In-Depth Tutorial www.xilinx.com 7
UG695 (v 11.2)

Preface: About This Tutorial
About the In-Depth Tutorial . 3
Tutorial Contents . 3
Tutorial Flows . 4

HDL Design Flow . 4
Schematic Design Flow . 4
Implementation-only Flow . 4

Additional Resources . 5

Chapter 1: Overview of ISE
Overview of ISE . 13

Project Navigator Interface . 13
Design Panel . 14

Sources View. 14
Processes View . 15

Files Panel . 15
Libraries Panel . 16
Console Panel . 16
Errors Panel . 16
Warnings Panel . 16

Error Navigation to Source . 16
Error Navigation to Answer Record . 16

Workspace . 16
Design Summary & Report Viewer . 16

Using Project Revision Management Features . 17
ISE Project File . 17
Making a Copy of a Project . 17
Using the Project Browser . 18
Using Project Archives . 18

Creating an Archive . 18
Restoring an Archive . 18

Chapter 2: HDL-Based Design
Overview of HDL-Based Design. 19
Getting Started. 19

Required Software . 19
Optional Software Requirements . 20
VHDL or Verilog? . 20
Installing the Tutorial Project Files . 20
Starting the ISE Software . 21
Creating a New Project . 21

Creating a New Project: Using the New Project Wizard. 21
Stopping the Tutorial . 23

Design Description . 23

Table of Contents

8 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

R

Inputs . 24
Outputs . 24
Functional Blocks . 24

Design Entry . 25
Adding Source Files . 25
Checking the Syntax . 26
Correcting HDL Errors . 26
Creating an HDL-Based Module . 26

Using the New Source Wizard and ISE Text Editor . 26
Using the Language Templates. 29
Adding a Language Template to Your File. 30

Creating a CORE Generator Module . 31
Creating a CORE Generator Module . 31
Instantiating the CORE Generator Module in the HDL Code. 34

Creating a DCM Module. 35
Using the Clocking Wizard. 35
Instantiating the dcm1 Macro - VHDL Design . 37
Instantiating the dcm1 Macro - Verilog . 38

Synthesizing the Design . 39
Synthesizing the Design using XST . 40

Entering Synthesis Options. 41
Synthesizing the Design . 41
The RTL / Technology Viewer . 41

Synthesizing the Design using Synplify/Synplify Pro . 43
Examining Synthesis Results . 43

Synthesizing the Design Using Precision Synthesis . 44
Entering Synthesis Options through ISE. 45
The RTL/Technology Viewer . 45

Chapter 3: Schematic-Based Design
Overview of Schematic-Based Design . 47
Getting Started. 47

Required Software . 47
Installing the Tutorial Project Files . 48
Starting the ISE Software . 48
Creating a New Project . 48

Creating a New Project: Using New Project Wizard. 48
Stopping the Tutorial . 50

Design Description . 50
Inputs . 51
Outputs . 52
Functional Blocks . 52

Design Entry . 53
Opening the Schematic File in the Xilinx Schematic Editor. 53
Manipulating the Window View . 54
Creating a Schematic-Based Macro . 54
Defining the time_cnt Schematic . 55

Adding I/O Markers . 56
Adding Schematic Components . 56
Correcting Mistakes . 59
Drawing Wires . 59
Adding Buses . 59

ISE 11 In-Depth Tutorial www.xilinx.com 9
UG695 (v 11.2)

R

Adding Bus Taps . 60
Adding Net Names. 61
Checking the Schematic . 62
Saving the Schematic . 63

Creating and Placing the time_cnt Symbol . 63
Creating the time_cnt symbol . 63
Placing the time_cnt Symbol. 63

Creating a CORE Generator Module . 64
Creating a CORE Generator Module . 64

Creating a DCM Module. 66
Using the Clocking Wizard. 66

Creating the dcm1 Symbol . 67
Creating an HDL-Based Module . 68

Using the New Source Wizard and ISE Text Editor . 68
Using the Language Templates. 70
Adding a Language Template to Your File. 71

Creating Schematic Symbols for HDL modules . 72
Placing the statmach, timer_preset, dcm1 and debounce Symbols 72
Changing Instance Names . 73
Hierarchy Push/Pop . 74
Specifying Device Inputs/Outputs . 74

Adding Input Pins . 74
Adding I/O Markers and Net Names. 75

Assigning Pin Locations . 76
Completing the Schematic . 76

Chapter 4: Behavioral Simulation
Overview of Behavioral Simulation Flow . 79
ModelSim Setup . 79

ModelSim PE and SE . 80
ModelSim Xilinx Edition . 80

ISim Setup . 80
Getting Started. 80

Required Files . 80
Design Files (VHDL, Verilog, or Schematic) . 80
Test Bench File . 80
Xilinx Simulation Libraries . 80

Xilinx Simulation Libraries . 81
Updating the Xilinx Simulation Libraries . 81
Mapping Simulation Libraries in the Modelsim.ini File . 81

Adding an HDL Test Bench . 82
Adding Tutorial Test Bench File . 82

VHDL Simulation . 82
Verilog Simulation . 84

Behavioral Simulation Using ModelSim . 84
Locating the Simulation Processes . 84
Specifying Simulation Properties . 85
Performing Simulation . 86
Adding Signals . 86

Adding Dividers . 88
Rerunning Simulation. 88
Analyzing the Signals . 89

10 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

R

Saving the Simulation . 90
Behavioral Simulation Using ISim . 90

Locating the Simulation Processes . 90
Specifying Simulation Properties . 91
Performing Simulation . 92
Adding Signals . 92
Rerunning Simulation . 93

Analyzing the Signals . 93

Chapter 5: Design Implementation
Overview of Design Implementation . 95
Getting Started. 96

Continuing from Design Entry . 96
Starting from Design Implementation . 96

Specifying Options . 97
Creating Timing Constraints . 98
Translating the Design . 99
Using the Constraints Editor . 100
Assigning I/O Locations Using PlanAhead. 104
Mapping the Design . 107
Using Timing Analysis to Evaluate Block Delays After Mapping. 109

Estimating Timing Goals with the 50/50 Rule . 109
Report Paths in Timing Constraints Option . 110

Placing and Routing the Design . 111
Using FPGA Editor to Verify the Place and Route . 112
Evaluating Post-Layout Timing . 114

Viewing the Post-Place & Route Static Timing Report . 114
Analyzing the Design using PlanAhead . 115

Creating Configuration Data . 116
Creating a PROM File with iMPACT . 117

Command Line Implementation . 119

Chapter 6: Timing Simulation
Overview of Timing Simulation Flow . 121
Getting Started. 121

Required Software . 121
Required Files . 122
Specifying a Simulator . 122

Timing Simulation Using ModelSim . 122
Specifying Simulation Process Properties . 123
Performing Simulation . 125

Adding Signals . 125
Adding Dividers . 127
Rerunning Simulation. 128
Analyzing the Signals . 128
Saving the Simulation . 129

Timing Simulation Using Xilinx ISim . 130
Specifying Simulation Process Properties . 130

ISE 11 In-Depth Tutorial www.xilinx.com 11
UG695 (v 11.2)

R

Performing Simulation . 131
Adding Signals . 131
Viewing Full Signal Names. 132
Rerunning Simulation. 132
Analyzing the Signals . 133

Chapter 7: iMPACT Tutorial
Device Support . 135
Download Cable Support . 136

Parallel Cable IV . 136
Platform Cable USB . 136
MultiPRO Cable . 136

Configuration Mode Support. 136
Getting Started. 136

Generating the Configuration Files . 136
Connecting the Cable . 137
Starting the Software . 137

Opening iMPACT from Project Navigator . 137
Opening iMPACT stand-alone . 137

Creating a iMPACT New Project File . 138
Using Boundary Scan Configuration Mode . 138

Specifying Boundary Scan Configuration Mode . 138
Assigning Configuration Files . 140
Saving the Project File . 141
Editing Preferences . 141
Performing Boundary Scan Operations . 141

Troubleshooting Boundary Scan Configuration. 144
Verifying Cable Connection . 144
Verifying Chain Setup . 145

Creating an SVF File . 146
Setting up Boundary Scan Chain . 146

JTAG chain setup for SVF generation . 146
Manual JTAG chain setup for SVF generation . 146

Writing to the SVF File . 147
Stop Writing to the SVF. 148
Playing back the SVF or XSVF file . 148

Other Configuration Modes . 148
Slave Serial Configuration Mode . 148
SelectMAP Configuration Mode . 149

12 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

R

ISE 11 In-Depth Tutorial www.xilinx.com 13
UG695 (v 11.2)

R

Chapter 1

Overview of ISE

This chapter includes the following sections:

• “Overview of ISE”

• “Using Project Revision Management Features”

Overview of ISE
ISE controls all aspects of the design flow. Through the Project Navigator interface, you can
access all of the design entry and design implementation tools. You can also access the files
and documents associated with your project.

Project Navigator Interface
The Project Navigator Interface, by default, is divided into four panel subwindows, as seen
in Figure 1-1. On the top left is the Design, Files and Libraries panels which include display
and access to the source files in the project, as well as access to running processes for the
currently selected source. At the bottom of the Project Navigator is the Console, Errors and
Warnings panels which display status messages, errors, and warnings. To the right is a
multi-document interface (MDI) window referred to as the Workspace. It enables you to
view design reports, text files, schematics, and simulation waveforms. Each window may
be resized, undocked from Project Navigator, moved to a new location within the main
Project Navigator window, tiled, layered, or closed. Panels may be opened or closed by
using the View -> Panels -> * menu selections. The default layout can always be
restored by selecting View > Restore Default Layout. These windows are discussed in
more detail in the following sections.

14 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Preface:
R

Design Panel

Sources View

The Sources view displays the project name, the target device, and user documents and
design source files associated with the selected Design View. The Design View (“Sources
for”) drop-down list at the top of the Sources tab allows you to view only those source files
associated with the selected Design View, such as Synthesis/Implementation or
Simulation.

Each file in a Design View has an associated icon. The icon indicates the file type (HDL file,
schematic, core, or text file, for example). For a complete list of possible source types and

Figure 1-1: Project Navigator

ISE 11 In-Depth Tutorial www.xilinx.com 15
UG695 (v 11.2)

Overview of ISE
R

their associated icons, see the ISE™ Help. Select Help > ISE Help Contents, select the
Index tab and search for “Source file types.”

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. You can
expand the hierarchy by clicking the +. You can open a file for editing by double-clicking
on the filename.

Processes View

The Processes view is context sensitive and it changes based upon the source type selected
in the Sources tab and the Top-Level Source in your project. From the Processes tab, you
can run the functions necessary to define, run and analyze your design. The Processes tab
provides access to the following functions:

• Design Summary/Reports

Provides access to design reports, messages, and summary of results data. Message
filtering can also be performed.

• Design Utilities

Provides access to symbol generation, instantiation templates, viewing command line
history, and simulation library compilation.

• User Constraints

Provides access to editing location and timing constraints.

• Synthesis

Provides access to Check Syntax, Synthesis, View RTL or Technology Schematic, and
synthesis reports. Available processes vary depending on the synthesis tools you use.

• Implement Design

Provides access to implementation tools, and post-implementation analysis tools.

• Generate Programming File

Provides access to bitstream generation.

• Configure Target Device

Provides access to configuration tools for creating programming files and
programming the device.

The Processes tab incorporates dependency management technology. The tools keep track
of which processes have been run and which processes need to be run. Graphical status
indicators display the state of the flow at any given time. When you select a process in the
flow, the software automatically runs the processes necessary to get to the desired step. For
example, when you run the Implement Design process, Project Navigator also runs the
Synthesis process because implementation is dependent on up-to-date synthesis results.

To view a running log of command line arguments used on the current project, expand
Design Utilities and select View Command Line Log File. See the Command Line
Implementation section of Chapter 5, “Design Implementation” for further details.

Files Panel
The Files panel provides a flat sortable list of all the source files in the project. Files can be
sorted by any of the columns in the view. Properties for each file can be viewed and
modified by right-clicking on the file and selecting Source Properties.

16 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Preface:
R

Libraries Panel
The Libraries tab allows you to manage HDL libraries and their associated HDL source
files. You can create, view, and edit libraries and their associated sources.

Console Panel
The Console provides all standard output from processes run from Project Navigator. It
displays errors, warnings, and information messages. Errors are signified by a red (X) next
to the message, while warnings have a yellow exclamation mark (!).

Errors Panel
Displays only error messages. Other console messages are filtered out.

Warnings Panel
Displays only warning messages. Other console messages are filtered out.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Console, Errors or
Warnings panel to the location of the error in a source HDL file. To do so, select the error or
warning message, right-click the mouse, and select Go to Source from the right-click
menu.The HDL source file opens and the cursor moves to the line with the error.

Error Navigation to Answer Record

You can navigate from an error or warning message in the Console, Errors or Warnings
panel to relevant Answer Records on the http://www.xilinx.com/support website. To
navigate to the Answer Record(s), select the error or warning message, right-click the
mouse, and select Go to Answer Record from the right-click menu. The default web
browser opens and displays all Answer Records applicable to this message.

Workspace
The Workspace is where design editors, viewers, and analysis tools will open. These
include ISE Text Editor, Schematic Editor, Timing Constraint Editor, Design Summary &
Report Viewer, RTL and Technology Viewers, and Timing Analyzer.

Other tools such as PlanAhead for I/O planning and floorplanning, ISE Simulator (ISim),
3rd party Text Editors, XPower Analyzer, and iMPACT open in separate windows outside
the main Project Navigator environment when invoked.

Design Summary & Report Viewer
The Design Summary provides a summary of key design data, as well as access to all of the
messages and detailed reports from the synthesis and implementation tools. The summary
lists high-level information about your project, including overview information, a device
utilization summary, performance data gathered from the Place & Route (PAR) report,
constraints information, and summary information from all reports with links to the

http://www.xilinx.com/support

ISE 11 In-Depth Tutorial www.xilinx.com 17
UG695 (v 11.2)

Using Project Revision Management Features
R

individual reports. Messaging features such as message filtering, tagging, and incremental
messaging are also available from this view.

Using Project Revision Management Features

ISE Project File
The ISE® project file (.xise extension) is an XML file that contains all source-relevant data
for the project as follows:

♦ ISE software version information

♦ List of source files contained in the project

♦ Source settings, including design and process properties

The ISE project file does not contain the following:

♦ Process status information

♦ Command history

♦ Constraints data

Note: A .gise and .ise file also exist, which contain generated data, such as process status. You
should not need to directly interact with these file.

The ISE project file includes the following characteristics, which are compatible with
source control environments:

♦ Contains all of the necessary source settings and input data for the project.

♦ Can be opened in Project Navigator in a read-only state.

♦ Only updated or modified if a source-level change is made to the project.

♦ Can be kept in a directory separate from the generated output directory (working
directory).

Note: A source–level change is a change to a property or the addition or removal of a source file.
Changes to the contents of a source file or changes to the state of an implementation run are not
considered source-level changes and do not result in an update to the project file.

Making a Copy of a Project
You can create a copy of a project, Project > Copy Project, to experiment with different
source options and implementations. Depending on your needs, the design source files for
the copied project and their location can vary as follows:

♦ Design source files can be left in their existing location, and the copied project
then points to these files.

♦ Design source files, including generated files, can be copied and placed in a
specified directory.

♦ Design source files, excluding generated files, can be copied and placed in a
specified directory.

18 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Preface:
R

Using the Project Browser
The Project Browser, accessible by selecting Project > Project Browser, provides a
convenient way to compare, view, and open projects as follows:

♦ Compare key characteristics between multiple projects.

♦ View Design Summary and Reports for a selected project before opening the full
project.

♦ Open a selected project in the current Project Navigator session.

♦ Open a selected project in a new Project Navigator session.

Using Project Archives
You can also archive the entire project into a single compressed file. This allows for easier
transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:

1. Select Project > Archive.

2. In the Create Zip Archive dialog box, enter the archive name and location.

Note: The archive contains all of the files in the project directory along with project settings. Remote
sources are included in the archive under a folder named remote_sources. For more information, see
the ISE Help.

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can
be extracted with any ZIP utility and you can then open the extracted file in Project
Navigator.

ISE 11 In-Depth Tutorial www.xilinx.com 19
UG695 (v 11.2)

R

Chapter 2

HDL-Based Design

This chapter includes the following sections:

• “Overview of HDL-Based Design”

• “Getting Started”

• “Design Description”

• “Design Entry”

• “Synthesizing the Design”

Overview of HDL-Based Design
This chapter guides you through a typical HDL-based design procedure using a design of
a runner’s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design.
This design targets a Spartan™-3A device; however, all of the principles and flows taught
are applicable to any Xilinx® device family, unless otherwise noted.

The design is composed of HDL elements and two cores. You can synthesize the design
using Xilinx Synthesis Technology (XST), Synplify/Synplify Pro, or Precision.

This chapter is the first chapter in the “HDL Design Flow.” After the design is successfully
defined, you will perform behavioral simulation (Chapter 4, “Behavioral Simulation”), run
implementation with the Xilinx Implementation Tools (Chapter 5, “Design
Implementation”), perform timing simulation (Chapter 6, “Timing Simulation”), and
configure and download to the Spartan-3A demo board (Chapter 7, “iMPACT Tutorial”).

Getting Started
The following sections describe the basic requirements for running the tutorial.

Required Software
To perform this tutorial, you must have the following software and software components
installed:

• Xilinx Series ISE™ 11.x

• Spartan-3A libraries and device files

Note: For detailed software installation instructions, refer to the ISE Design Suite: Installation,
Licensing and Release Notes.

20 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

This tutorial assumes that the software is installed in the default location
c:\xilinx\11.1\ISE. If you have installed the software in a different location, substitute your
installation path for c:\xilinx\11.1\ISE in the procedures that follow.

Optional Software Requirements
The following third-party synthesis tools are incorporated into this tutorial, and may be
used in place of the Xilinx Synthesis Tool (XST):

• Synplicity Synplify/Synplify C-2009.3 (or above)

• Mentor Precision Synthesis 2009a.76 (or above)

The following third-party simulation tool is optional for this tutorial, and may be used in
place of the ISE Simulator:

• ModelSim XE/SE/PE 6.4b or newer

VHDL or Verilog?
This tutorial supports both VHDL and Verilog designs, and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial, and download the appropriate
files for that language. XST can synthesize a mixed-language design. However, this tutorial
does not go over the mixed language feature.

Installing the Tutorial Project Files
The Stopwatch tutorial projects can be downloaded from
http://www.xilinx.com/support/techsup/tutorials/tutorials11.htm. Download either
the VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the web, unzip the tutorial
projects into the c:\xilinx\11.1\ISE\ISEexamples directory, replacing any existing
files in that directory.

When you unzip the tutorial project files into c:\xilinx\11.1\ISE\ISEexamples, the
directory wtut_vhd (for a VHDL design flow) or wtut_ver (for a Verilog design flow) is
created within c:\xilinx\11.1\ISE\ISEexamples, and the tutorial files are copied
into the newly-created directory.

The following table lists the locations of tutorial source files.

Note: Do not overwrite any files in the solution directories.

Table 2-1: Tutorial Directories

Directory Description

wtut_vhd Incomplete VHDL Source Files

wtut_ver Incomplete Verilog Source Files

wtut_vhd\wtut_vhd_comple
ted

Completed VHDL Source Files

wtut_ver\wtut_ver_comple
ted

Completed Verilog Source Files

http://www.xilinx.com/support/techsup/tutorials/tutorials10.htm

ISE 11 In-Depth Tutorial www.xilinx.com 21
UG695 (v 11.2)

Getting Started
R

The completed directories contain the finished HDL source files.

This tutorial assumes that the files are unzipped under
c:\xilinx\11.1\ISE\ISEexamples, but you can unzip the source files into any
directory with read-write permissions. If you unzip the files into a different location,
substitute your project path for in the procedures that follow.

Starting the ISE Software
To start ISE:

Double-click the ISE Project Navigator icon on your desktop or select Start > All
Programs > Xilinx ISE Design Suite 11 > ISE > Project Navigator.

Creating a New Project

Creating a New Project: Using the New Project Wizard

1. From Project Navigator, select File > New Project.

The New Project Wizard appears.

2. In the Project Location field, browse to c:\xilinx\11.1\ISE\ISEexamples or to
the directory in which you installed the project.

3. Type wtut_vhd or wtut_ver in the Project Name field.

4. Verify that HDL is selected as the Top-Level Source Type and click Next.

Figure 2-1: Project Navigator Desktop Icon

Figure 2-2: New Project Wizard - Create New Project

22 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

The New Project Wizard - Device Properties window appears.

5. Select the following values in the New Project Wizard - Device Properties window:

♦ Product Category: All

♦ Family: Spartan3A and Spartan3AN

♦ Device: XC3S700A

♦ Package: FG484

♦ Speed: -4

♦ Synthesis Tool: XST (VHDL/Verilog)

♦ Simulator: ISim (VHDL/Verilog)

♦ Preferred Language: VHDL or Verilog depending on preference. This will
determine the default language for all processes that generate HDL files.

Other properties can be left at their default values.

6. Click Next, then Next, and then click Add Source in the New Project Wizard - Add
Existing Sources window.

7. Browse to c:\xilinx\11.1\ISE\ISEexamples\wtut_vhd or
c:\xilinx\11.1\ISE\ISEexamples\wtut_ver.

8. Select the following files (.vhd files for VHDL design entry or .v files for Verilog
design entry) and click Open.

♦ clk_div_262k

♦ lcd_control

♦ statmach

♦ stopwatch

Figure 2-3: New Project Wizard - Device Properties

ISE 11 In-Depth Tutorial www.xilinx.com 23
UG695 (v 11.2)

Design Description
R

Figure 2-4: New Project Wizard - Adding Source Files Dialog

9. Click Next, then Finish to complete the New Project Wizard.

10. In the Adding Source Files dialog box, verify that all added HDL files are associated
with All, and that they are associated with the work library, then click OK.

Figure 2-5: Adding Source Files... View Association Selection

Stopping the Tutorial
You may stop the tutorial at any time and save your work by selecting File > Save All.

Design Description
The design used in this tutorial is a hierarchical, HDL-based design, which means that the
top-level design file is an HDL file that references several other lower-level macros. The
lower-level macros are either HDL modules or IP modules.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by generating some of the modules from scratch and by completing others from
existing files. When the design is complete, you will simulate it to verify the design’s
functionality.

24 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

In the runner’s stopwatch design, there are five external inputs and four external output
buses. The system clock is an externally generated signal. The following list summarizes
the input and output signals of the design.

Inputs
The following are input signals for the tutorial stopwatch design.

• strtstop

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

• reset

Puts the stopwatch in clocking mode and resets the time to 0:00:00.

• clk

Externally generated system clock.

• mode

Toggles between clocking and timer modes. This input is only functional while the
clock or timer is not counting.

• lap_load

This is a dual function signal. In clocking mode it displays the current clock value in
the ‘Lap’ display area. In timer mode it loads the pre assigned values from the ROM to
the timer display when the timer is not counting.

Outputs
The following are outputs signals for the design.

• lcd_e, lcd_rs, lcd_rw

These outputs are the control signals for the LCD display of the Spartan-3A demo
board used to display the stopwatch times.

• sf_d[7:0]

Provides the data values for the LCD display.

Functional Blocks
The completed design consists of the following functional blocks.

• clk_div_262k

Macro which divides a clock frequency by 262,144. Converts 26.2144 MHz clock into
100 Hz 50% duty cycle clock.

• dcm1

Clocking Wizard macro with internal feedback, frequency controlled output, and
duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the
Spartan-3A demo board to 26.2144 MHz.

• debounce

Schematic module implementing a simplistic debounce circuit for the strtstop, mode,
and lap_load input signals.

ISE 11 In-Depth Tutorial www.xilinx.com 25
UG695 (v 11.2)

Design Entry
R

• lcd_control

Module controlling the initialization of and output to the LCD display.

• statmach

State machine HDL module which controls the state of the stopwatch.

• timer_preset

CORE Generator™ 64x20 ROM. This macro contains 64 preset times from 0:00:00 to
9:59:99 which can be loaded into the timer.

• time_cnt

Up/down counter module which counts between 0:00:00 to 9:59:99 decimal. This
macro has five 4-bit outputs, which represent the digits of the stopwatch time.

Design Entry
For this hierarchical design, you will examine HDL files, correct syntax errors, create an
HDL macro, and add a CORE Generator and a Clocking module. You will create and use
each type of design macro. All procedures used in the tutorial can be used later for your
own designs.

With the wtut_vhd.ise or wtut_ver.ise project open in Project Navigator, the
Hierarchy view in the Design tab displays all of the source files currently added to the
project, with the associated entity or module names (see Figure 2-6).

Instantiated components with no entity or module declaration are displayed with a red
question mark.

Adding Source Files
HDL files must be added to the project before they can be synthesized. Three HDL files
have already been added to this project. An additional file must be added.

1. Select Project > Add Source.

2. Select time_cnt.vhd or time_cnt.v from the project directory and click Open.

3. In the Adding Source Files dialog box, verify that time_cnt is associated with All
and that the associated library is work,and click OK.

Figure 2-6: Sources Tab Showing Completed Design

26 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

The red question-mark (?) for time_cnt should change to show the VHD file icon.

Each source Design unit is represented under the sources tab using the following syntax:
<instance name> - <entity name> - <architecture name>* - (<file name>).

*VHDL only

Checking the Syntax
To check the syntax of source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources tab.

When you select the HDL file, the Processes tab displays all processes available for this
file.

2. In the Processes tab, click the + next to Synthesize to expand the process hierarchy.

3. Double-click Check Syntax in the Synthesize hierarchy.

Note: Check Syntax is not available when Synplify is selected as the synthesis tool.

Correcting HDL Errors
The time_cnt module contains a syntax error that must be corrected. The red “x” beside
the Check Syntax process indicates an error was found during the analysis. In the Console
tab, Project Navigator reports errors with a red (X) and warnings with a yellow (!).

To display the error in the source file:

1. Click the file name in the error message in the Console or Errors tab. The source code
comes up in the main display tab, with an yellow arrow icon next to the line with the
error.

2. Correct any errors in the HDL source file. The comments above the error explain this
simple fix.

3. Select File > Save to save the file.

4. Re-analyze the file by selecting the HDL file and right-clicking on the Check Syntax
process and selecting Rerun

Creating an HDL-Based Module
Next you will create a module from HDL code. With ISE, you can easily create modules
from HDL code using the ISE Text Editor. The HDL code is then connected to your top-
level HDL design through instantiation and is compiled with the rest of the design.

You will author a new HDL module. This macro will be used to debounce the strtstop,
mode and lap_load inputs.

Using the New Source Wizard and ISE Text Editor

In this section, you create a file using the New Source wizard, specifying the name and
ports of the component. The resulting HDL file is then modified in the ISE Text Editor.

Figure 2-7: time_cnt.vhd File in Sources Tab

ISE 11 In-Depth Tutorial www.xilinx.com 27
UG695 (v 11.2)

Design Entry
R

To create the source file:

1. Select Project > New Source.

The dialog box New Source Wizard opens in which you specify the type of source you
want to create.

2. Select VHDL Module or Verilog Module.

3. In the File Name field, type debounce.

4. Click Next.

Figure 2-8: New Source Wizard

5. Enter two input ports named sig_in and clk and an output port named sig_out for the
debounce component in this way:

a. In the first three Port Name fields type sig_in, clk and sig_out.

b. Set the Direction field to in for sig_in and clk and to out for sig_out.

c. Leave the Bus designation boxes unchecked.

28 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

6. Click Next to complete the Wizard session.

A description of the module displays.

7. Click Finish to open the empty HDL file in the ISE Text Editor.

The VHDL file and Verilog file are displayed below.

Figure 2-9: New Source Wizard for Verilog

Figure 2-10: VHDL File in ISE Text Editor

ISE 11 In-Depth Tutorial www.xilinx.com 29
UG695 (v 11.2)

Design Entry
R

In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic
file structure is already in place. Keywords are displayed in blue, comments in green, and
values are black. The file is color-coded to enhance readability and help you recognize
typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will use the Debounce Circuit template for this exercise.

Note: You can add your own templates to the Language Templates for components or constructs
that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select Edit > Language Templates.

Each HDL language in the Language Templates is divided into five sections: Common
Constructs, Device Macro Instantiation, Device Primitive Instantiation, Simulation
Constructs, Synthesis Constructs and User Templates. To expand the view of any of
these sections, click the + next to the section. Click any of the listed templates to view
the template contents in the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs
hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and
select the template called Debounce Circuit (VHDL) or One Shot, Debounce Circuit
(Verilog). Use the appropriate template for the language you are using.

Upon selection, the HDL code for a debounce circuit is displayed in the right pane.

Figure 2-11: Verilog File in ISE Text Editor

30 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

Adding a Language Template to Your File

You will now use “Use in File” method for adding templates to your HDL file. Refer to
“Working with Language Templates” in the ISE Help for additional usability options,
including drag and drop options.

To add the template to your HDL file:

1. Open or bring forward the debounce.v or debounce.vhd source file. Position the
cursor under the architecture begin statement in the VHDL file, or under the module
and pin declarations in the Verilog file.

2. Return to the Language Templates window, right-click on the Debounce Circuit
template in the template index, and select Use In File.

Figure 2-13: Selecting Language Template to Use in File

3. Close the Language Templates window.

Figure 2-12: Language Templates

ISE 11 In-Depth Tutorial www.xilinx.com 31
UG695 (v 11.2)

Design Entry
R

4. Open the debounce.v or debounce.vhd source file to verify that the Language
Template was properly inserted.

5. (Verilog only) Complete the Verilog module by doing the following:

a. Remove the reset logic (not used in this design) by deleting the three lines
beginning with if and ending with else.

b. Change <reg_name> to q in all six locations.

Note: You can select Edit -> Find & Replace to facilitate this. The Find fields appear at the bottom
of the Text Editor.

c. Change <clock> to clk; <input> to sig_in; and <output> to sig_out.

6. (VHDL only) Complete the VHDL module by doing the following:

a. Move the line beginning with the word signal so that it is between the
architecture and begin keywords.

b. Remove the reset logic (not used in this design) by deleting the five lines beginning
with if (<reset>... and ending with else, and delete one of the end if;
lines.

c. Use Edit > Find & Replace to change <clock> to clk; D_IN to sig_in; and
Q_OUT to sig_out.

You now have complete and functional HDL code.

7. Save the file by selecting File > Save.

8. Select one of the debounce instances in the Sources tab.

9. In the Processes tab, double-click Check Syntax. Verify that the syntax check passes
successfully. Correct any errors as necessary.

10. Close the ISE Text Editor.

Creating a CORE Generator Module
CORE Generator is a graphical interactive design tool that enables you to create high-level
modules such as memory elements, math functions and communications and IO interface
cores. You can customize and pre-optimize the modules to take advantage of the inherent
architectural features of the Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s,
and distributed and block RAM.

In this section, you will create a CORE Generator module called timer_preset. The
module will be used to store a set of 64 values to load into the timer.

Creating a CORE Generator Module

To create a CORE Generator module:

1. In Project Navigator, select Project > New Source.

2. Select IP (CORE Generator & Architecture Wizard).

3. Type timer_preset in the File name field.

4. Click Next.

5. Expand the IP tree selector to locate Memories & Storage Elements > RAMs &
ROMs.

6. Select Distributed Memory Generator, then click Next and click Finish to open the
Distributed Memory Generator customization GUI. This customization GUI enables
you to customize the memory to the design specifications.

32 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

Figure 2-14: New Source Wizard - New IP Module

7. Fill in the Distributed Memory Generator customization GUI with the following
settings:

♦ Component Name: timer_preset - Defines the name of the module.

♦ Depth: 64 - Defines the number of values to be stored

♦ Data Width: 20 - Defines the width of the output bus.

♦ Memory Type: ROM

8. Click Next.

9. Leave Input and output options as Non Registered; Click Next.

Figure 2-15: CORE Generator - Distributed Memory Generator Customization GUI

ISE 11 In-Depth Tutorial www.xilinx.com 33
UG695 (v 11.2)

Design Entry
R

Figure 2-16: CORE Generator - Distributed Memory Generator Customization GUI

10. Specify the Coefficients File: Click the Browse button and select
definition1_times.coe located in the project directory.

11. Check that only the following pins are used (used pins are highlighted on the symbol
on the left side of the customization GUI):

♦ a[5:0]

♦ spo[19:0]

12. Click Generate.

Figure 2-17: CORE Generator - Distributed Memory Generator Customization GUI

The module is created and automatically added to the project library.

Note: A number of files are added to the ipcore_dir sub-directory of the project directory. Some of
these files are:

♦ timer_preset.vho or timer_preset.veo

These are the instantiation templates used to incorporate the CORE Generator
module into your source HDL.

♦ timer_preset.vhd or timer_preset.v

These are HDL wrapper files for the core and are used only for simulation.

♦ timer_preset.ngc

34 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

This file is the netlist that is used during the Translate phase of implementation.

♦ timer_preset.xco

This file stores the configuration information for the timer_preset module and is
used as the project source in the ISE project.

♦ timer_preset.mif

This file provides the initialization values of the ROM for simulation.

Instantiating the CORE Generator Module in the HDL Code

Next, instantiate the CORE Generator module in the HDL code using either a VHDL flow
or a Verilog flow.

VHDL Flow

To instantiate the CORE Generator module using a VHDL flow:

1. In Project Navigator, double-click stopwatch.vhd to open the file in ISE Text Editor.

2. Place your cursor after the line that states:

-- Insert CORE Generator ROM component declaration here

3. Select Edit > Insert File, then select ipcore_dir/timer_preset.vho and click
Open.

The VHDL template file for the CORE Generator instantiation is inserted.

4. Highlight the inserted code from

-- Begin Cut here for INSTANTIATION Template ----

to

--INST_TAG_END ------ END INSTANTIATION Template -----

5. Select Edit > Cut.

6. Place the cursor after the line that states:

--Insert CORE Generator ROM Instantiation here

7. Select Edit > Paste to place the core instantiation.

8. Change the instance name from your_instance_name to t_preset.

Figure 2-18: VHDL Component Declaration for CORE Generator Module

ISE 11 In-Depth Tutorial www.xilinx.com 35
UG695 (v 11.2)

Design Entry
R

9. Edit this instantiated code to connect the signals in the Stopwatch design to the ports
of the CORE Generator module as shown below.

10. The inserted code of timer_preset.vho contains several lines of commented text
for instruction and legal documentation. Delete these commented lines if desired.

11. Save the design using File > Save, and close the ISE Text Editor.

Verilog Flow

To instantiate the CORE Generator module using a Verilog flow:

1. In Project Navigator, double-click stopwatch.v to open the file in the ISE Text Editor.

2. Place your cursor after the line that states:

//Place the Coregen module instantiation for timer_preset here

3. Select Edit > Insert File, and select ipcore_dir/timer_preset.veo.

4. The inserted code of timer_preset.veo contains several lines of commented text
for instruction and legal documentation. Delete these commented lines if desired.

5. Change the instance name from YourInstanceName to t_preset.

6. Edit this code to connect the signals in the Stopwatch design to the ports of the CORE
Generator module as shown below.

7. Save the design using File > Save and close stopwatch.v in the ISE Text Editor.

The core module should now appear beneath the Stopwatch module in the hierarchy.

Creating a DCM Module
The Clocking Wizard, a part of the Xilinx Architecture Wizard, enables you to graphically
select Digital Clock Manager (DCM) features that you wish to use. In this section you will
create a basic DCM module with CLK0 feedback and duty-cycle correction.

Using the Clocking Wizard

To create the dcm1 module:

Figure 2-19: VHDL Component Instantiation of CORE Generator Module

Figure 2-20: Verilog Component Instantiation of the CORE Generator Module

36 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

1. In Project Navigator, select Project > New Source.

2. In the New Source dialog box, select IP (CoreGen & Architecture Wizard) source and
type dcm1 for the file name.

3. Click Next.

4. In the Select IP dialog box, select FPGA Features and Design > Clocking > Spartan-
3E, Spartan-3A > Single DCM SP.

Figure 2-21: Selecting Single DCM IP Type

5. Click Next, then Finish. The Clocking Wizard is launched.

6. Verify that RST, CLK0 and LOCKED ports are selected.

7. Select CLKFX port.

8. Type 50 and select MHz for the Input Clock Frequency.

9. Verify the following settings:

♦ Phase Shift: NONE

♦ CLKIN Source: External, Single

♦ Feedback Source: Internal

♦ Feedback Value: 1X

♦ Use Duty Cycle Correction: Selected

10. Click the Advanced button.

11. Select Wait for DCM lock before DONE Signal goes high.

12. Click OK.

13. Click Next, and then click Next again.

ISE 11 In-Depth Tutorial www.xilinx.com 37
UG695 (v 11.2)

Design Entry
R

14. Select Use output frequency and type 26.2144 in the box and select MHz.

15. Click Next, and then click Finish.

The dcm1.xaw file is added to the list of project source files in the Sources tab.

Instantiating the dcm1 Macro - VHDL Design

Next, you will instantiate the dcm1 macro for your VHDL or Verilog design. To instantiate
the dcm1 macro for the VHDL design:

1. In Project Navigator, in the Sources tab, select dcm1.xaw.

2. In the Processes tab, right-click View HDL Instantiation Template and select Process
Properties.

3. Choose VHDL for the HDL Instantiation Template Target Language value and click
OK.

4. In the Processes tab, double-click View HDL Instantiation Template.

5. Highlight the component declaration template in the newly opened HDL Instantiation
Template (dcm1.vhi), shown below.

6. Select Edit > Copy.

7. Place the cursor in the stopwatch.vhd file in a section labeled

-- Insert dcm1 component declaration here.

8. Select Edit > Paste to paste the component declaration.

26.2144Mhz() 2
18⁄ 100Hz=

Figure 2-22: VHDL DCM Component Declaration

38 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

9. Highlight the instantiation template in the newly opened HDL Instantiation Template,
shown below.

10. Select Edit > Copy.

11. Place the cursor in the stopwatch.vhd file below the line labeled

-- Insert dcm1 instantiation here.

12. Select Edit > Paste to paste the instantiation template.

13. Make the necessary changes as shown in the figure below.

14. Select File > Save to save the stopwatch.vhd file.

The dcm1 module should now appear beneath the stopwatch module in the design
hierarchy.

Instantiating the dcm1 Macro - Verilog

To instantiate the dcm1 macro for your Verilog design:

1. In Project Navigator, in the Sources tab, select dcm1.xaw.

2. In the Processes tab, double-click View HDL Instantiation Template.

Figure 2-23: VHDL DCM Component Instantiation

Figure 2-24: VHDL Instantiation for dcm1

ISE 11 In-Depth Tutorial www.xilinx.com 39
UG695 (v 11.2)

Synthesizing the Design
R

3. From the newly opened HDL Instantiation Template (dcm1.tfi), copy the
instantiation template, shown below.

4. Paste the instantiation template into the section in stopwatch.v labeled
//Insert dcm1 instantiation here.

5. Make the necessary changes as shown in the figure below.

Figure 2-26: Verilog Instantiation for dcm1

6. Select File > Save to save the stopwatch.v file.

The dcm1 module should now appear beneath the stopwatch module in the design
hierarchy.

Synthesizing the Design
So far you have been using XST (the Xilinx synthesis tool) for syntax checking. Next, you
will synthesize the design using either XST, Synplify/Synplify Pro or Precision. The
synthesis tool uses the design’s HDL code and generates a supported netlist type (EDIF or
NGC) for the Xilinx implementation tools. The synthesis tool performs three general steps
(although all synthesis tools further break down these general steps) to create the netlist:

• Analyze / Check Syntax

Checks the syntax of the source code.

• Compile

Translates and optimizes the HDL code into a set of components that the synthesis tool
can recognize.

• Map

Translates the components from the compile stage into the target technology’s
primitive components.

Figure 2-25: dcm1 Macro and Instantiation Templates

40 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

The synthesis tool can be changed at any time during the design flow. To change the
synthesis tool:

1. Select the targeted part in the Sources tab.

2. Right-click and select Design Properties.

3. In the Design Properties dialog box, click on the Synthesis Tool value and use the pull-
down arrow to select the desired synthesis tool from the list.

Note: If you do not see your synthesis tool among the options in the list, you may not have the
software installed or may not have it configured in ISE. The Synthesis tools are configured in the
Preferences dialog box (Edit > Preferences, expand ISE General, then click Integrated Tools).

Note: Changing the design flow results in the deletion of implementation data. You have not yet
created any implementation data in this tutorial. For projects that contain implementation data, Xilinx
recommends that you make a copy of the project using File > Copy Project if you would like to make
a backup of the project before continuing.

Synthesizing the Design using XST
Now that you have created and analyzed the design, the next step is to synthesize the
design. During synthesis, the HDL files are translated into gates and optimized for the
target architecture.

Processes available for synthesis using XST are as follows:

• View RTL Schematic

Generates a schematic view of your RTL netlist.

• View Technology Schematic

Generates a schematic view of your Technology netlist.

• Check Syntax

Verifies that the HDL code is entered properly.

• Generate Post-Synthesis Simulation Model

Creates HDL simulation models based on the synthesis netlist.

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used option is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a flip-flop output or setting the desired frequency of
the design.

To enter synthesis options:

1. Select stopwatch.vhd (or stopwatch.v) in the Sources view.

2. In the Processes view, right-click the Synthesize process and select Process
Properties.

3. Ensure that the Property display level option is set to Advanced. This will allow you
to view to the full set of process properties available.

4. Under the Synthesis Options tab, set the Netlist Hierarchy property to a value of
Rebuilt.

5. Click OK.

ISE 11 In-Depth Tutorial www.xilinx.com 41
UG695 (v 11.2)

Synthesizing the Design
R

Synthesizing the Design

Now you are ready to synthesize your design. To take the HDL code and generate a
compatible netlist:

1. Select stopwatch.vhd (or stopwatch.v).

2. Double-click the Synthesize process in the Processes view.

The RTL / Technology Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code helps you analyze your design by displaying a graphical
connection between the various components that XST has inferred. There are two forms of
the schematic representation:

• RTL View - Pre-optimization of the HDL code.

• Technology View - Post-synthesis view of the HDL design mapped to the target
technology.

To view a schematic representation of your HDL code:

1. In the Processes tab, click the + next to Synthesize to expand the process hierarchy.

2. Double-click View RTL Schematic or View Technology Schematic.

3. If the Set RTL/Tech Viewer Startup Mode dialog appears, select Start with the
Explorer Wizard.

4. In the Create RTL Schematic start page, select the clk_divider and debounce
components from the Available Elements list, then click the Add -> button to move the
selected items to the Selected Elements list.

5. Click Create Schematic.

Figure 2-27: Create RTL Schematic start page

The RTL Viewer allows you to select the portions of the design to display as schematic.
When the schematic is displayed, double-click on the symbol to push into the schematic
and view the various design elements and connectivity. Right-click the schematic to view
the various operations that can be performed in the schematic viewer.

42 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

Figure 2-28: RTL Schematic

You have completed XST synthesis. An NGC file now exists for the Stopwatch design.

To continue with the HDL flow:

• Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

OR

• Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Note: For more information about XST constraints, options, reports, or running XST from the
command line, see the XST User Guide. This guide is available in the collection of software manuals
and is accessible from ISE by selecting Help > Software Manuals, or from the web at
http://www.xilinx.com/support/software_manuals.htm.

Synthesizing the Design using Synplify/Synplify Pro
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify
outside of ISE.

To synthesize the design, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).

2. In the Processes tab, right-click the Synthesize process and select Process
Properties.

3. Check the Write Vendor Constraint File box.

4. Click OK to accept these values.

5. Double-click the Synthesize process to run synthesis.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes tab, and selecting Process > Run.

Processes available in Synplify and Synplify Pro synthesis include:

• View Synthesis Report

http://www.xilinx.com/support/software_manuals.htm

ISE 11 In-Depth Tutorial www.xilinx.com 43
UG695 (v 11.2)

Synthesizing the Design
R

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

• View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code

• View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code mapped to the primitives associated with
the target technology.

Examining Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the
Synthesize process. The report consists of the following four sections:

• “Compiler Report”

• “Mapper Report”

• “Timing Report”

• “Resource Utilization”

Compiler Report

The compiler report lists each HDL file that was compiled, names which file is the top
level, and displays the syntax checking result for each file that was compiled. The report
also lists FSM extractions, inferred memory, warnings on latches, unused ports, and
removal of redundant logic.

Note: Black boxes (modules not read into a design environment) are always noted as unbound in
the Synplify reports. As long as the underlying netlist (.ngo, .ngc or .edn) for a black box exists in the
project directory, the implementation tools merge the netlist into the design during the Translate
phase.

Mapper Report

The mapper report lists the constraint files used, the target technology, and attributes set in
the design. The report lists the mapping results of flattened instances, extracted counters,
optimized flip-flops, clock and buffered nets that were created, and how FSMs were coded.

Timing Report

The timing report section provides detailed information on the constraints that you
entered and on delays on parts of the design that had no constraints. The delay values are
based on wireload models and are considered preliminary. Consult the post-place and

44 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

route timing reports discussed in Chapter 5, “Design Implementation,” for the most
accurate delay information.

Resource Utilization

This section of the report lists all of the resources that Synplify uses for the given target
technology.

You have now completed Synplify synthesis. At this point, a netlist EDN file exists for the
Stopwatch design.

To continue with the HDL flow:

• Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

OR

• Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Synthesizing the Design Using Precision Synthesis
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available for Precision Synthesis include:

• Check Syntax

Checks the syntax of the HDL code.

• View Log File

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

• View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code

• View Technology Schematic

Figure 2-29: Synplify’s Estimated Timing Data

ISE 11 In-Depth Tutorial www.xilinx.com 45
UG695 (v 11.2)

Synthesizing the Design
R

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code mapped to the primitives associated with the
target technology.

• View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of the critical path of your HDL code mapped to the primitives
associated with the target technology.

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize
according to the needs of the design. For the tutorial, the default property settings will be
used.

1. Select stopwatch.vhd (or stopwatch.v) in the Sources tab.

2. Double-click the Synthesize process in the Processes tab.

The RTL/Technology Viewer

Precision Synthesis can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code helps you analyze your design by seeing a graphical
connection between the various components that Precision has inferred. To launch the
design in the RTL viewer, double-click the View RTL Schematic process. The following
figure displays the design in an RTL view.

You have now completed the design synthesis. At this point, an EDN netlist file exists for
the Stopwatch design.

To continue with the HDL flow:

• Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

OR

• Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Figure 2-30: Stopwatch Design in Precision Synthesis RTL Viewer

46 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 2: HDL-Based Design
R

ISE 11 In-Depth Tutorial www.xilinx.com 47
UG695 (v 11.2)

R

Chapter 3

Schematic-Based Design

This chapter includes the following sections:

• “Overview of Schematic-Based Design”

• “Getting Started”

• “Design Description”

• “Design Entry”

Overview of Schematic-Based Design
This chapter guides you through a typical FPGA schematic-based design procedure using
the design of a runner’s stopwatch. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices that you can apply to
your own designs. The stopwatch design targets a Spartan™-3A device; however, all of the
principles and flows taught are applicable to any Xilinx® device family, unless otherwise
noted.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you
will use the ISE™ design entry tools to complete the design. The design is composed of
schematic elements, CORE Generator™ component, and HDL macros. After the design is
successfully entered in the Schematic Editor, you will perform behavioral simulation
(Chapter 4, “Behavioral Simulation”), run implementation with the Xilinx Implementation
Tools (Chapter 5, “Design Implementation”), perform timing simulation (Chapter 6,
“Timing Simulation”), and configure and download to the Spartan-3A (XC3S700A) demo
board (see Chapter 7, “iMPACT Tutorial.”).

Getting Started
The following sections describe the basic requirements for running the tutorial.

Required Software
You must have Xilinx ISE11 installed to follow this tutorial. For this design you must install
the Spartan-3A libraries and device files.

A schematic design flow is supported on both Windows and Linux platforms.

48 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

This tutorial assumes that the software is installed in the default location, at
c:\xilinx\11.1\ISE. If you have installed the software in a different location,
substitute that for your installation path.

Note: For detailed instructions about installing the software, refer to the ISE 11.1 Installation Guide
and Release Notes.

Installing the Tutorial Project Files
The tutorial project files can be downloaded to your local machine from
http://www.xilinx.com/support/techsup/tutorials/tutorials11.htm.

Download the Watch Schematic Design Files (wtut_sch.zip). The download contains
two directories:

• wtut_sc\
(Contains source files for schematic tutorial. The schematic tutorial project will be
created in this directory).

• wtut_sc\wtut_sc_completed\
(Contains the completed design files for the schematic-based tutorial design,
including schematic, HDL, and State Machine files. Do not overwrite files under this
directory.)

Unzip the tutorial design files in any directory with read-write permissions. The schematic
tutorial files are copied into the directories when you unzip the files. This tutorial assumes
that the files are unarchived under c:\xilinx\11.1\ISE\ISEexamples. If you restore
the files to a different location, substitute c:\xilinx\11.1\ISE\ISEexamples with
the project path.

Starting the ISE Software
To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop, or select Start > All
Programs > Xilinx ISE Design Suite 11> ISE > Project Navigator.

Creating a New Project

Creating a New Project: Using New Project Wizard

1. From Project Navigator, select File > New Project. The New Project Wizard appears.

2. Browse to c:\xilinx\11.1\ISE\ISEexamples or enter the directory in the
Project Location field.

3. Type wtut_sc as the Project Name. Notice that wtut_sc is appended to the Project
Location value.

4. Select Schematic as the Top-Level Source Type, and then click Next.

Figure 3-1: Project Navigator Desktop Icon

http://www.xilinx.com/support/techsup/tutorials/tutorials10.htm

ISE 11 In-Depth Tutorial www.xilinx.com 49
UG695 (v 11.2)

Getting Started
R

Figure 3-2: New Project Wizard - Device Properties

5. Select the following values in the New Project Wizard - Device Properties window:

♦ Product Category: All

♦ Family: Spartan3A and Spartan3AN

♦ Device: XC3S700A

♦ Package: FG484

♦ Speed: -4

♦ Synthesis Tool: XST (VHDL/Verilog)

♦ Simulator: ISim(VHDL/Verilog)

♦ Preferred Language: VHDL or Verilog depending on preference. This will
determine the default language for all processes that generate HDL files.

Other properties can be left at their default values.

6. Click Next twice, and then click Add Source in the New Project Wizard - Add Existing
Sources window.

7. Browse to c:\xilinx\11.1\ISE\ISEexamples\wtut_sc.

8. Select the following files and click Open.

♦ cd4rled.sch

♦ ch4rled.sch

♦ clk_div_262k.vhd

♦ lcd_control.vhd

♦ stopwatch.sch

♦ statmach.vhd

9. Click Next, then Finish to complete the New Project Wizard.

50 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

10. Verify that all added source files are set to Design View Association of All, and Library
is work.

Figure 3-3: Adding Source Files

11. Click OK.

Stopping the Tutorial
If you need to stop the tutorial at any time, save your work by selecting File > Save All.

Design Description
The design used in this tutorial is a hierarchical, schematic-based design, which means that
the top-level design file is a schematic sheet that refers to several other lower-level macros.
The lower-level macros are a variety of different types of modules, including schematic-
based modules, a CORE Generator module, an Architecture Wizard module, and HDL
modules.

The runner’s stopwatch design begins as an unfinished design. Throughout the tutorial,
you will complete the design by creating some of the modules and by completing others
from existing files. A schematic of the completed stopwatch design is shown in the
following figure. Through the course of this chapter, you will create these modules,
instantiate them, and then connect them.

ISE 11 In-Depth Tutorial www.xilinx.com 51
UG695 (v 11.2)

Design Description
R

After the design is complete, you will simulate the design to verify its functionality. For
more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

There are five external inputs and four external outputs in the completed design. The
following sections summarize the inputs and outputs, and their respective functions.

Inputs
The following are input signals for the tutorial stopwatch design.

• strtstop

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

• reset

Figure 3-4: Completed Watch Schematic

52 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

Puts the stopwatch in clocking mode and resets the time to 0:00:00.

• clk

Externally generated system clock.

• mode

Toggles between clocking and timer modes. This input is only functional while the
clock or timer is not counting.

• lap_load

This is a dual function signal. In clocking mode it displays the current clock value in
the ‘Lap’ display area. In timer mode it will load the pre-assigned values from the
ROM to the timer display when the timer is not counting.

Outputs
The following are outputs signals for the design.

• lcd_e, lcd_rs, lcd_rw

These outputs are the control signals for the LCD display of the Spartan-3A demo
board used to display the stopwatch times.

• sf_d[7:0]

Provides the data values for the LCD display.

Functional Blocks
The completed design consists of the following functional blocks. Most of these blocks do
not appear on the schematic sheet in the project until after you create and add them to the
schematic during this tutorial.

The completed design consists of the following functional blocks.

• clk_div_262k

Macro which divides a clock frequency by 262,144. Converts 26.2144 MHz clock into
100 Hz 50% duty cycle clock.

• dcm1

Clocking Wizard macro with internal feedback, frequency controlled output, and
duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the
Spartan-3A demo board to 26.2144 MHz.

• debounce

Module implementing a simplistic debounce circuit for the strtstop, mode, and
lap_load input signals.

• lcd_control

Module controlling the initialization of and output to the LCD display.

• statmach

State machine module which controls the state of the stopwatch.

• timer_preset

CORE Generator™ 64X20 ROM. This macro contains 64 preset times from 0:00:00 to
9:59:99 which can be loaded into the timer.

ISE 11 In-Depth Tutorial www.xilinx.com 53
UG695 (v 11.2)

Design Entry
R

• time_cnt

Up/down counter module which counts between 0:00:00 to 9:59:99 decimal. This
macro has five 4-bit outputs, which represent the digits of the stopwatch time.

Design Entry
In this hierarchical design, you will create various types of macros, including schematic-
based macros, HDL-based macros, and CORE Generator macros. You will learn the
process for creating each of these types of macros, and you will connect the macros
together to create the completed stopwatch design. All procedures used in the tutorial can
be used later for your own designs.

Opening the Schematic File in the Xilinx Schematic Editor
The stopwatch schematic available in the wtut_sc project is incomplete. In this tutorial,
you will update the schematic in the Schematic Editor. After you have created the project in
ISE, you can now open the stopwatch.sch file for editing. To open the schematic file,
double-click stopwatch.sch in the Sources window.

54 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

The stopwatch schematic diagram opens in the Project Navigator Workspace. You will see
the unfinished design with elements in the lower right corner as shown in the figure below.

Manipulating the Window View
The View menu commands enable you to manipulate how the schematic is displayed.
Select View > Zoom > In until you can comfortably view the schematic.

The schematic window can be undocked from the Project Navigator framework by
selecting Window > Float while the schematic is selected in the workspace.

After being undocked, the schematic window can be redocked by selecting
Window > Dock.

Creating a Schematic-Based Macro
A schematic-based macro consists of a symbol and an underlying schematic. You can
create either the underlying schematic or the symbol first. The corresponding symbol or
schematic file can then be generated automatically.

Figure 3-5: Incomplete Stopwatch Schematic

ISE 11 In-Depth Tutorial www.xilinx.com 55
UG695 (v 11.2)

Design Entry
R

In the following steps, you will create a schematic-based macro by using the New Source
Wizard in Project Navigator. An empty schematic file is then created, and you can define
the appropriate logic. The created macro is then automatically added to the project’s
library.

The macro you will create is called time_cnt. This macro is a binary counter with five, 4-
bit outputs, representing the digits of the stopwatch.

To create a schematic-based macro:

1. In Project Navigator, select Project > New Source. The New Source dialog box opens:

The New Source dialog displays a list of all of the available source types.

2. Select Schematic as the source type.

3. Enter time_cnt as the file name.

4. Click Next and click Finish.

A new schematic called time_cnt.sch is created, added to the project, and opened for
editing.

5. Change the size of the schematic sheet by doing the following.

♦ Right-click on the schematic page and select Object Properties.

♦ Click on the down arrow next to the sheet size value and select D = 34 x 22.

♦ Click OK and then click Yes to acknowledge that changing the sheet size cannot
be undone with the Edit > Undo option.

Defining the time_cnt Schematic
You have now created an empty schematic for time_cnt. The next step is to add the
components that make up the time_cnt macro. You can then reference this macro symbol
by placing it on a schematic sheet.

Figure 3-6: New Source Dialog Box

56 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

Adding I/O Markers

I/O markers are used to determine the ports on a macro, or the top-level schematic. The
name of each pin on the symbol must have a corresponding connector in the underlying
schematic. Add I/O markers to the time_cnt schematic to determine the macro ports.

To add the I/O markers:

1. Select Tools > Create I/O Markers.

The Create I/O Markers dialog box opens.

2. In the Inputs box, enter q(19:0),load,up,ce,clk,clr.

3. In the Outputs box, enter
hundredths(3:0),tenths(3:0),sec_lsb(3:0),sec_msb(3:0),minutes(3
:0).

4. Click OK. The eleven I/O markers are added to the schematic sheet.

Note: The Create I/O Marker function is available only for an empty schematic sheet. However, I/O
markers may be added to nets at any time by selecting Add > I/O Marker and selecting the desired
net.

Adding Schematic Components

Components from the device and project libraries for the given project are available from
the Symbol Browser, and the component symbol can be placed on the schematic. The
available components listed in the Symbol Browser are arranged alphabetically within
each library.

1. From the menu bar, select Add > Symbol or click the Add Symbol icon from the Tools
toolbar.

Note: The Options window changes depending on which tool you have selected in the Tools
toolbar.

Figure 3-7: Creating I/O Markers

Figure 3-8: Add Symbol Icon

ISE 11 In-Depth Tutorial www.xilinx.com 57
UG695 (v 11.2)

Design Entry
R

This opens the Symbol Browser to the left of the schematic editor, displaying the
libraries and their corresponding components.

The first component you will place is a cd4rled, a 4-bit, loadable, bi-directional, BCD
counter with clock enable and synchronous clear.

2. Select the cd4rled component, using one of two ways:

♦ Highlight the project directory category from the Symbol Browser dialog box and
select the component cd4rled from the symbols list.

or

♦ Select All Symbols and type cd4rled in the Symbol Name Filter at the bottom of
the Symbol Browser window.

3. Move the mouse back into the schematic window.

You will notice that the cursor has changed to represent the cd4rled symbol.

4. Move the symbol outline near the top and center of the sheet and click the left mouse
button to place the object.

Note: You can rotate new components being added to a schematic by selecting Ctrl+R. You
can rotate existing components by selecting the component, and then selecting Ctrl+R.

Figure 3-9: Symbol Browser

58 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

5. Place three more cd4rled symbols on the schematic by moving the cursor with
attached symbol outline to the desired location, and clicking the left mouse button. See
Figure 3-10

6. Follow the procedure outlined in steps 1 through 4 above to place the following
components on the schematic sheet:

♦ AND2b1

♦ ch4rled

♦ AND5

Refer to Figure 3-10 for placement locations.

To exit the Symbols Mode, press the Esc key on the keyboard.

Figure 3-10: Partially Completed time_cnt Schematic

ISE 11 In-Depth Tutorial www.xilinx.com 59
UG695 (v 11.2)

Design Entry
R

For a detailed description of the functionality of Xilinx Library components, right-click on
the component and select Object Properties. In the Object Properties window, select
Symbol Info. Symbol information is also available in the Libraries Guides, accessible from
the collection of software manuals on the web at
http://www.xilinx.com/support/software_manuals.htm.

Correcting Mistakes

If you make a mistake when placing a component, you can easily move or delete the
component.

To move the component, click the component and drag the mouse around the window.

Delete a placed component in one of two ways:

• Click the component and press the Delete key on your keyboard.

or

• Right-click the component and select Delete.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called nets) to connect the
components placed in the schematic.

Perform the following steps to draw a net between the AND2b1 and top cd4rled
components on the time_cnt schematic.

1. Select Add > Wire or click the Add Wire icon in the Tools toolbar.

2. Click the output pin of the AND2b1 and then click the destination pin CE on the
cd4rled component. The Schematic Editor draws a net between the two pins.

3. Draw a net to connect the output of the AND5 component to the inverted input of the
AND2b1 component. Connect the other input of the AND2b1 to the ce input IO
marker.

4. Connect the load, up, clk, and clr input IO markers respectively to the L, UP, C, and R
pins of each of the five counter blocks and connect the CEO pin of the first four
counters to the CE pin of the next counter as shown in Figure 3-10.

To specify the shape of the net:

1. Move the mouse in the direction you want to draw the net.

2. Click the mouse to create a 90-degree bend in the wire.

To draw a net between an already existing net and a pin, click once on the component pin
and once on the existing net. A junction point is drawn on the existing net.

Adding Buses

In the Schematic Editor, a bus is simply a wire that has been given a multi-bit name. To add
a bus, use the methodology for adding wires and then add a multi-bit name. Once a bus

Figure 3-11: Add Wire Icon

http://www.xilinx.com/support/software_manuals.htm

60 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

has been created, you have the option of “tapping” this bus off to use each signal
individually.

The next step is to create three buses for each of the five outputs of the time_cnt
schematic. The results can be found in the completed schematic.

To add the buses hundredths(3:0), tenths(3:0), sec_lsb(3:0), sec_msb(3:0) and minutes(3:0)
to the schematic, perform the following steps:

1. Select all of the output IO markers by drawing a box around them and then drag the
group so that minutes(3:0) is below the Q3 output of the bottom counter block.

2. Select Add > Wire or click the Add Wire icon in the Tools toolbar.

3. Click in the open space just above and to the right of the top cd4rled and then click
again on the pin of the hundredths(3:0) I/O marker. The thick line should
automatically be drawn to represent a bus with the name matching that of the I/O
marker.

4. Repeat Steps 2 and 3 for the four remaining buses.

5. After adding the five buses, press Esc or right-click at the end of the bus to exit the
Add Wire mode.

Adding Bus Taps

Next, add nets to attach the appropriate pins from the cd4rled and ch4rled counters to the
buses. Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic enables greater precision when drawing the nets.

To tap off a single bit of each bus:

1. Select Add > Bus Tap or click the Add Bus Tap icon in the Tools toolbar.

The cursor changes, indicating that you are now in Draw Bus Tap mode.

2. From the Options tab to the left of the schematic, choose the --< Right orientation for
the bus tap.

Figure 3-12: Adding a Bus

Figure 3-13: Add Bus Tap Icon

ISE 11 In-Depth Tutorial www.xilinx.com 61
UG695 (v 11.2)

Design Entry
R

3. Click on the hundreths(3:0) bus with the center bar of the cursor.

The Selected Bus Name and the Net Name values of the options window are now
populated.

Note: The indexes of the Net Name may be incremented or decremented by clicking the arrow
buttons next to the Net Name box.

4. With hundredths(3) as the Net Name value, move the cursor so the tip of the attached
tap touches the Q3 pin of the top cd4rled component.

Note: Four selection squares appear around the pin when the cursor is in the correct position.

5. Click once when the cursor is in the correct position.

A tap is connected to the hundredths(3:0) bus and a wire named hundreths(3) is drawn
between the tap and the Q3 pin.

Click successively on pins Q2, Q1, and Q0 to create taps for the remaining bits of the
hundredths(3:0) bus.

6. Repeat Steps 3 to 6 to tap off four bits from each of the five buses.

Note: It is the name of the wire that makes the electrical connection between the bus and the wire
(e.g sec_msb(2) connects to the third bit of sec(3:0)). The bus tap figure is for visual purposes only.
The following section shows additional electrical connections by name association.

7. Press Esc to exit the Add Net Name mode.

8. Compare your time_cnt schematic with Figure 3-15 to ensure that all connections are
made properly.

Adding Net Names

First, add a hanging wire to each of the five inputs of the AND5 component and to the TC
pin of each of the counter blocks.

Next, add net names to the wires. To add the net names:

1. Select Add > Net Name or click the Add Net Name icon in the Tools toolbar.

2. Type tc_out0 in the Name box and select Increase the Name in the Add Net Names
Options dialog box.

The net name tc_out0 is now attached to the cursor.

3. Click the net attached to the first input of the AND5 component.

The name is then attached to the net. The net name appears above the net if the name
is placed on any point of the net other than an end point.

4. Click on the remaining input nets of the AND5 to add tc_out1, tc_out2, tc_out3 and
tc_out4.

The Schematic Editor increments the net Name as each name is placed on a net.
Alternatively, name the first net tc_out4 and select Decrease the name in the Add Net
Names Options dialog box, and nets are named from the bottom up.

5. Repeat step 2 and then click successively on the nets connected to the TC output to add
tc_out0, tc_out1, tc_out2, tc_out3, and tc_out4 to these nets.

Figure 3-14: Add Net Name Icon

62 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

Note: Each of the wires with identical names are now electrically connected. In this case, the nets
do not need to be physically connected on the schematic to make the logical connection.

Finally, connect the input pins of the counters through net name association.

1. Select Add > Wire or click the Add Wire icon and add a hanging net to the four data
pins of each of the five counters.

2. Select Add > Net Name or click the Add Net Name icon in the Tools toolbar.

3. Type q(0) in the Name box of the Add Net Name options dialog box.

4. Select Increase the name in the Add Net Name options dialog box.

The net name q(0) is now attached to the cursor.

5. Click successively on each of the nets connected to data inputs, starting from the top so
that the net named q(0) is attached to the D0 pin of the top counter and the net named
q(19) is attached to the D3 pin of the bottom counter. Refer to Figure 3-15.

Note: If the nets appear disconnected, select View > Refresh to refresh the screen.

Checking the Schematic

The time_cnt schematic is now complete.

Verify that the schematic does not contain logical errors by running a design rule check
(DRC). To do this, select Tools > Check Schematic. The Console window should report
that no errors or warnings are detected. If an error or warning is displayed, fix the reported
problem before proceeding.

Figure 3-15: Completed time_cnt Schematic

ISE 11 In-Depth Tutorial www.xilinx.com 63
UG695 (v 11.2)

Design Entry
R

Saving the Schematic

1. Save the schematic by selecting File > Save, or by clicking the Save icon in the toolbar.

2. Close the time_cnt schematic.

Creating and Placing the time_cnt Symbol
The next step is to create a “symbol” that represents the time_cnt macro. The symbol is
an instantiation of the macro. After you create a symbol for time_cnt, you will add the
symbol to a top-level schematic of the stopwatch design. In the top-level schematic, the
symbol of the time_cnt macro will be connected to other components in a later section in
this chapter.

Creating the time_cnt symbol

You can create a symbol using either a Project Navigator process or a Tools menu
command.

To create a symbol that represents the time_cnt schematic using a Project Navigator
process:

1. In the Sources window, select time_cnt.sch.

2. In the Processes window, click the + beside Design Utilities to expand the hierarchy.

3. Double-click Create Schematic Symbol.

To create a symbol that represents the time_cnt schematic using a Tools menu command:

1. With the time_cnt schematic sheet open, select Tools > Symbol Wizard.

2. In the Symbol Wizard, select Using Schematic, and then select time_cnt in the
schematic value field.

Click Next, then Next, then Next again, and then Finish to use the wizard defaults.

3. View and then close the time_cnt symbol.

Placing the time_cnt Symbol

Next, place the symbol that represents the macro on the top-level schematic
(stopwatch.sch).

1. In the Sources window, double-click stopwatch.sch to open the schematic.

2. Select the Add Symbol icon.

Figure 3-16: Save Icon

Figure 3-17: Add Symbol Icon

64 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

3. In the Symbol Browser, select the local symbols library
(c:\xilinx\11.1\ISE\ISEexamples\wtut_sc), and then select the newly
created time_cnt symbol.

4. Place the time_cnt symbol in the schematic so that the output pins line up with the five
buses driving inputs to the lcd_control component. This should be close to grid
position [1612,1728]. Grid position is shown at the bottom right corner of the Project
Navigator window, and is updated as the cursor is moved around the schematic.

Note: Do not worry about connecting nets to the input pins of the time_cnt symbol. You will do
this after adding other components to the stopwatch schematic.

5. Save the changes and close stopwatch.sch.

Creating a CORE Generator Module
CORE Generator is a graphical interactive design tool that enables you to create high-level
modules such as memory elements, math functions, communications, and IO interface
cores. You can customize and pre-optimize the modules to take advantage of the inherent
architectural features of the Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s,
and distributed and block RAM.

In this section, you will create a CORE Generator module called timer_preset. The module
is used to store a set of 64 values to load into the timer.

Creating a CORE Generator Module

To create a CORE Generator module:

1. In Project Navigator, select Project > New Source.

2. Select IP (Coregen & Architecture Wizard).

3. Type timer_preset in the File name field.

4. Click Next.

5. Double-click Memories & Storage Elements > RAMs & ROMs.

6. Select Distributed Memory Generator, then click Next and click Finish to open the
Distributed Memory Generator customization GUI. This customization GUI enables
you to customize the memory to the design specifications.

Figure 3-18: New Source Wizard - New IP Module

7. Fill in the Distributed Memory Generator customization GUI with the following
settings:

♦ Component Name: timer_preset - Defines the name of the module.

ISE 11 In-Depth Tutorial www.xilinx.com 65
UG695 (v 11.2)

Design Entry
R

♦ Depth: 64 - Defines the number of values to be stored

♦ Data Width: 20 - Defines the width of the output bus.

♦ Memory Type: ROM

8. Click Next.

9. Leave Input and Output options as Non Registered; Click Next.

10. Specify the Coefficients File: Click the Browse button and select
definition1_times.coe.

11. Check that only the following pins are used (used pins are highlighted on the symbol
on the left side of the customization GUI):

♦ a[5:0]

♦ spo[19:0]

12. Click Generate.

The module is created and automatically added to the project library.

Note: A number of files are added to the project directory. Some of these files are:

♦ timer_preset.sym

This file is a schematic symbol file.

♦ timer_preset.vhd or timer_preset.v

These are HDL wrapper files for the core and are used only for simulation.

♦ timer_preset.ngc

This file is the netlist that is used during the Translate phase of implementation.

♦ timer_preset.xco

Figure 3-19: CORE Generator - Distributed Memory Generator Customization GUI

66 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

This file stores the configuration information for the timer_preset module and is
used as a project source.

♦ timer_preset.mif

This file provides the initialization values of the ROM for simulation.

Creating a DCM Module
The Clocking Wizard, a Xilinx Architecture Wizard, enables you to graphically select
Digital Clock Manager (DCM) features that you wish to use. In this section, you will create
a basic DCM module with CLK0 feedback and duty-cycle correction.

Using the Clocking Wizard

Create the dcm1 module as follows:

1. In Project Navigator, select Project > New Source.

2. In the New Source dialog box, select the IP (Coregen & Architecture Wizard) source
type, and type dcm1 for the file name.

3. Click Next.

4. In the Select IP dialog box, select FPGA Features and Design > Clocking > Spartan-
3E, Spartan-3A > Single DCM SP.

5. Click Next, then click Finish. The Clocking Wizard is launched.

6. Verify that RST, CLK0 and LOCKED ports are selected.

7. Select CLKFX port.

8. Type 50 and select MHz for the Input Clock Frequency.

9. Verify the following settings:

♦ Phase Shift: NONE

♦ CLKIN Source: External, Single

♦ Feedback Source: Internal

Figure 3-20: Selecting Single DCM Core Type

ISE 11 In-Depth Tutorial www.xilinx.com 67
UG695 (v 11.2)

Design Entry
R

♦ Feedback Value: 1X

♦ Use Duty Cycle Correction: Selected

10. Click the Advanced button.

11. Select the Wait for DCM Lock before DONE Signal goes high option.

12. Click OK.

13. Click Next, and then Next again.

14. Select Use output frequency and type 26.2144 in the box and select MHz.

15. Click Next, and then click Finish.

The dcm1.xaw file is created and added to the list of project source files in the Sources tab.

Creating the dcm1 Symbol
Next, create a symbol representing the dcm1 macro. This symbol will be added to the top-
level schematic (stopwatch.sch) later in the tutorial.

1. In Project Navigator, in the Sources tab, select dcm1.xaw.

2. In the Processes tab, double-click Create Schematic Symbol.

Figure 3-21: Xilinx Clocking Wizard - General Setup

26.2144Mhz() 2
18⁄ 100Hz=

68 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

Creating an HDL-Based Module
With ISE, you can easily create modules from HDL code. The HDL code is connected to
your top-level schematic design through instantiation and compiled with the rest of the
design.

You will author a new HDL module. This macro will be used to debounce the strtstop,
mode and lap_load inputs.

Using the New Source Wizard and ISE Text Editor

In this section, you create a file using the New Source wizard, specifying the name and
ports of the component. The resulting HDL file is then modified in the ISE Text Editor.

To create the source file:

1. Select Project > New Source.

A dialog box opens in which you specify the type of source you want to create.

2. Select VHDL Module or Verilog Module.

3. In the File Name field, type debounce.

4. Click Next.

5. Enter two input ports named sig_in and clk and an output port named sig_out for the
debounce component as follows:

a. In the first three Port Name fields type sig_in, clk and sig_out.

b. Set the Direction field to input for sig_in and clk and to output for sig_out.

c. Leave the Bus designation boxes unchecked.

6. Click Next to complete the Wizard session.

A description of the module displays.

7. Click Finish to open the empty HDL file in the ISE Text Editor.

The VHDL file is displayed in Figure 3-23. The Verilog HDL file is displayed in Figure 3-24.

Figure 3-22: New Source Wizard for Verilog

ISE 11 In-Depth Tutorial www.xilinx.com 69
UG695 (v 11.2)

Design Entry
R

Figure 3-23: VHDL File in ISE Text Editor

Figure 3-24: Verilog File in ISE Text Editor

70 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic
file structure is already in place. Keywords are displayed in blue, comments in green, and
values are black. The file is color-coded to enhance readability and help you recognize
typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will use the Debounce Circuit template for this exercise.

Note: You can add your own templates to the Language Templates for components or constructs
that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select Edit > Language Templates.

Each HDL language in the Language Templates is divided into five sections: Common
Constructs, Device Primitive Instantiation, Simulation Constructs, Synthesis
Constructs and User Templates. To expand the view of any of these sections, click the
+ next to the section. Click any of the listed templates to view the template contents in
the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs
hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and
select the template called Debounce Circuit. Use the appropriate template for the
language you are using.

When the template is selected in the hierarchy, the contents display in the right pane.

Figure 3-25: Language Templates

ISE 11 In-Depth Tutorial www.xilinx.com 71
UG695 (v 11.2)

Design Entry
R

Adding a Language Template to Your File

You will now use “Use in File” method for adding templates to your HDL file. Refer to
“Working with Language Templates” in the ISE Help for additional usability options,
including drag and drop options.

To add the template to your HDL file:

1. Open or bring forward the debounce.v or debounce.vhd source file. Position the
cursor under the architecture begin statement in the VHDL file, or under the module
and pin declarations in the Verilog file.

2. Return to the Language Templates window, right-click on the Debounce Circuit
template in the template index, and select Use In File.

Figure 3-26: Selecting Language Template to Use in File

3. Close the Language Templates window.

4. Open the debounce.v or debounce.vhd source file to verify that the Language
Template was properly inserted.

5. (Verilog only) Complete the Verilog module by doing the following:

a. Remove the reset logic (not used in this design) by deleting the three lines
beginning with if and ending with else.

b. Change <reg_name> to q in all six locations.

c. Change <clock> to clk; <D_IN> to sig_in; and <Q_OUT> to sig_out.

6. (VHDL only) Complete the VHDL module by doing the following:

a. Move the line beginning with the word signal so that it is between the
architecture and begin keywords.

b. Remove the reset logic (not used in this design) by deleting the five lines beginning
with if (<reset>... and ending with else, and delete one of the end if;
lines.

c. Use Edit > Find & Replace to change <clock> to clk; D_IN to sig_in; and
Q_OUT to sig_out.

You now have complete and functional HDL code.

7. Save the file by selecting File > Save.

8. Select one of the debounce instances in the Sources tab.

9. In the Processes tab, double-click Check Syntax. Verify that the syntax check passes
successfully. Correct any errors as necessary.

10. Close the ISE Text Editor.

72 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

Creating Schematic Symbols for HDL modules
Next, create the schematic symbols for both the debounce and statmach HDL files.

1. In the Sources tab, select debounce.vhd or debounce.v.

2. In the Processes tab, click the + beside Design Utilities to expand the hierarchy.

3. Double-click Create Schematic Symbol.

4. Repeat this procedure for the statmach.vhd file.

You are now ready to place the symbols on the stopwatch schematic.

Placing the statmach, timer_preset, dcm1 and debounce Symbols
You can now place the statmach, timer_preset, dcm1, and debounce symbols on the
stopwatch schematic (stopwatch.sch). In Project Navigator, double-click
stopwatch.sch. The schematic file opens in the Workspace.

1. Select Add > Symbol or click the Add Symbol icon from the Tools toolbar.

This opens the Symbol Browser to the left of the Schematic Editor, which displays the
libraries and their corresponding components.

2. View the list of available library components in the Symbol Browser.

3. Locate the project-specific macros by selecting the project directory name in the
Categories window.

4. Select the appropriate symbol, and add it to the stopwatch schematic in the
approximate location, as shown in Figure 3-28.

Note: Do not worry about drawing the wires to connect the symbols. You will connect components
in the schematic later in the tutorial.

Figure 3-27: Add Symbol Icon

ISE 11 In-Depth Tutorial www.xilinx.com 73
UG695 (v 11.2)

Design Entry
R

5. Save the schematic.

Changing Instance Names
When a symbol is placed on a schematic sheet it is given a unique instance name beginning
with the prefix XLXI_. To help make the hierarchy more readable in the Project Navigator
Sources window, change the names of the added symbol instances as follows.

1. Right-click on the dcm1 symbol instance and select Object Properties from the right-
click menu

2. Change the value of the InstName field to dcm_inst and then click OK.

Repeat steps 1 and 2 to change the following symbol instance names.

• Name the statmach instance timer_state.

• Name the top debounce instance lap_load_debounce

• Name the middle debounce instance mode_debounce.

Figure 3-28: Placing Design Macros

74 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

• Name the bottom debounce instance strtstop_debounce.

• Name the timer_preset instance t_preset.

• Name the time_cnt instance timer_cnt.

Hierarchy Push/Pop
First, perform a hierarchy “push down,” which enables you to focus in on a lower-level of
the schematic hierarchy to view the underlying file. Push down into the time_cnt macro,
which is a schematic-based macro created earlier in this tutorial, and examine its
components.

To push down into time_cnt from the top-level, stopwatch, schematic:

1. Click time_cnt symbol in the schematic, and select the Hierarchy Push icon. You can
also right-click the macro and select Symbol > Push into Symbol.

In the time_cnt schematic, you see five counter blocks. Push into any of the counter
blocks by selecting the block and clicking on the Hierarchy Push icon. This process
may be repeated until the schematic page contains only Xilinx primitive components.
If a user pushes into a symbol that has an underlying HDL or IP core file, the
appropriate text editor or customization GUI will open and be ready to edit the file.

2. After examining the macro, return to the top-level schematic by selecting View > Pop
to Calling Schematic, or select the Hierarchy Pop icon when nothing in the
schematic is selected. You can also right-click in an open space of the schematic and
select Pop to Calling Schematic.

Specifying Device Inputs/Outputs
Use the I/O marker to specify device I/O on a schematic sheet. All of the Schematic Editor
schematics are netlisted to VHDL or Verilog and then synthesized by the synthesis tool of
choice. When the synthesis tool synthesizes the top-level schematic’s HDL, the I/O
markers are replaced with the appropriate pads and buffers.

Adding Input Pins

Next, add five input pins to the stopwatch schematic: reset, clk, lap_load, mode and
strtstop.

To add these components:

• Draw a hanging wire to the two inputs of dcm1 and to the sig_in pin of each debounce
symbol

Refer to “Drawing Wires” for detailed instructions.

Figure 3-29: Hierarchy Push Icon

Figure 3-30: Hierarchy Pop Icon

ISE 11 In-Depth Tutorial www.xilinx.com 75
UG695 (v 11.2)

Design Entry
R

Adding I/O Markers and Net Names

It is important to label nets and buses for several reasons:

• It aids in debugging and simulation, as you can more easily trace nets back to your
original design.

• Any nets that remain unnamed in the design will be given generated names that will
mean nothing to you later in the implementation process.

• Naming nets also enhances readability and aids in documenting your design.

Label the five input nets you just drew. Refer to the completed schematic below. To label
the reset net:

1. Select Add > Net Name.

2. Type reset into the Name box.

The net name is now attached to the cursor.

3. Place the name on the leftmost end of the net, as illustrated in Figure 3-31.

4. Repeat Steps 1 through 3 for the clk, lap_load, mode, and strtstop pins.

Once all of the nets have been labeled, add the I/O marker.

5. Select Add > I/O Marker.

6. Click and drag a box around the name of the five labeled nets, as illustrated in
Figure 3-31, to place an input port on each net.

Figure 3-31: Adding I/O Markers to Labeled Nets

76 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

Assigning Pin Locations
Xilinx recommends that you let the automatic placement and routing (PAR) program
define the pinout of your design. Pre-assigning locations to the pins can sometimes
degrade the performance of the place-and-route tools. However, it may be necessary at
some point to lock the pinout of a design so that it can be integrated into a Printed Circuit
Board (PCB).

For this tutorial, the inputs and outputs will be locked to specific pins in order to place and
download the design to the Spartan-3A demo board. Because the tutorial stopwatch
design is simple and timing is not critical, the example pin assignments will not adversely
affect the ability of PAR to place and route the design.

Assign a LOC parameter to the output nets on the stopwatch schematic, as follows:

1. Right-click on the clk net and select Object Properties from the right-click menu.

2. Click the New button under Net Attributes to add a new property.

3. Enter LOC for the Attribute Name and E12 for the Attribute Value.

4. Click OK to return to the Object Properties dialog box.

5. To make the LOC attribute visible, select the Add button adjacent to the LOC attribute
in the Attribute window.

6. In the Net Attribute Visibility window, click on a location near the center of the
displayed net and then select OK.

This will display the LOC attribute on the schematic above the clk net.

Click OK to close the Object properties window.

The above procedure constrains clk to pin E12. Notice that the LOC property has
already been added to the sf_d(7:0) bus. The remaining pin location constraints will be
added in “Using the Constraints Editor” and “Assigning I/O Locations Using PlanAhead” of
Chapter 5, “Design Implementation”.

Note: To turn off the Location constraint without deleting it, select the loc attribute, and click Edit
Traits. Select VHDL or Verilog and select Ignore this attribute.

Completing the Schematic
Complete the schematic by wiring the components you have created and placed, adding
any additional necessary logic, and labeling nets appropriately. The following steps guide
you through the process of completing the schematic. You may also want to use the
completed schematic shown below to complete the schematic. Each of the actions referred

Figure 3-32: Assigning Pin Locations

ISE 11 In-Depth Tutorial www.xilinx.com 77
UG695 (v 11.2)

Design Entry
R

to in this section has been discussed in detail in earlier sections of the tutorial. Please see
the earlier sections for detailed instructions.

To complete the schematic diagram:

1. Draw a hanging wire to the LOCKED_OUT pin of DCM1 and name the wire locked.
See “Drawing Wires” and “Adding Net Names.”

2. Draw a hanging wire to the clk input of both the time_cnt and statmach macros. (See
“Drawing Wires.”)

Figure 3-33: Completed Stopwatch Schematic

78 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 3: Schematic-Based Design
R

3. Name both wires clk_100. (See “Adding Net Names.”)

Note: Remember that nets are logically connected if their names are the same, even if the net
is not physically drawn as a connection in the schematic. This method is used to make the logical
connection of clk_100 and several other signals.

Draw a wire to connect the clk inputs of the three debounce macros and name the wire
clk_26214k.

4. Draw wires between the sig_out pins of the debounce components and the lap_load,
mode_in and strtstop pin of the statmach macro. Label the nets ll_debounced,
mode_debounced, and strtstop_debounced. See “Drawing Wires” and “Adding
Net Names.”

5. Add hanging wires to the dcm_lock pin and the reset pin of the statmach macro. Name
them locked and reset, respectively.

6. Draw a hanging wire to the clken output of the statmach component and another
hanging wire to the ce pin of the time_cnt component. Name both wires clk_en_int.

7. Draw hanging wires from the rst output pin of the statmach macro and the clr pin of
the time_cnt macro. See “Drawing Wires.” Label both wires rst_int.

8. Draw a wire from the bus output of the timer_preset to the q(19:0) input of the
time_cnt macro. See “Drawing Wires.” Notice how the wire is automatically converted
to a bus.

9. Draw a hanging bus on the input of the timer_preset macro and name the bus
address(5:0).

10. Draw wires from the lap_trigger and mode outputs of the statmach macro to the lap
and mode inputs of the lcd_control macro. See “Drawing Wires.” Name the nets lap
and mode_control respectively.

11. Draw hanging wires from the load output of the statmach macro and the load input of
the time_cnt macro. See “Drawing Wires.” Name both wires load.

12. Draw a hanging wire to the up input time_cnt macro. See “Drawing Wires.” Name the
wire mode_control.

The schematic is now complete.

Save the design by selecting File > Save.

You have now completed the schematic design.

To continue with the schematic flow, do the following:

• Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

• Proceed to Chapter 5, “Design Implementation,” to place and route the design.

ISE 11 In-Depth Tutorial www.xilinx.com 79
UG695 (v 11.2)

R

Chapter 4

Behavioral Simulation

This chapter contains the following sections.

• “Overview of Behavioral Simulation Flow”

• “ModelSim Setup”

• “ISim Setup”

• “Getting Started”

• “Adding an HDL Test Bench”

• “Behavioral Simulation Using ModelSim”

• “Behavioral Simulation Using ISim”

Overview of Behavioral Simulation Flow
Xilinx® ISE™ provides an integrated flow with the Mentor ModelSim simulator and the
Xilinx ISim simulator that allows simulations to be run from the Xilinx Project Navigator.
The examples in this tutorial demonstrate how to use the integrated flow. Whether you use
the ModelSim simulator or the ISim simulator with this tutorial, you will achieve the same
simulation results.

For additional information about simulation, and for a list of other supported simulators,
see Chapter 7 of the Synthesis and Simulation Design Guide. This Guide is accessible from
within ISE by selecting Help > Software Manuals, and from the web at
http://www.xilinx.com/support/software_manuals.htm.

This tutorial provides an introduction to the simulation flow within ISE Project Navigator,
including highlights of features within the ModelSim and ISim simulators. For more
detailed information about using these simulators, see ModelSim documentation at
http://www.model.com, or the ISim in-depth tutorial available at
http://www.xilinx.com/support/techsup/tutorials/tutorials11.htm.

ModelSim Setup
In order to use this tutorial, you must install ModelSim on your computer. The following
sections discuss requirements and setup for ModelSim PE, ModelSim SE, and
ModelSim XE.

80 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

ModelSim PE and SE
ModelSim PE and ModelSim SE are full versions of ModelSim available for purchase
directly from Mentor Graphics. In order to simulate with the ISE 11 libraries, use ModelSim
6.4b or newer. Older versions may work but are not supported. For more information
about ModelSim PE or SE, please contact Mentor Graphics.

ModelSim Xilinx Edition
ModelSim Xilinx Edition III (MXE III) is the Xilinx version of ModelSim which is based on
ModelSim PE. There are two versions of MXE III available for purchase from Xilinx: a free
“starter” version, and a full version. For more information about MXE III, including how to
purchase the software, please visit http://www.xilinx.com/ise/optional_prod/mxe.htm

ISim Setup
ISim is automatically installed and set up with the ISE 11.1 installer on supported
operating systems. Please see list of operating systems supported by ISim on the web at
http://www.xilinx.com/ise/ossupport/index.htm#simulator

Getting Started
The following sections outline the requirements for performing behavioral simulation in
this tutorial.

Required Files
The behavioral simulation flow requires design files, a test bench file, and Xilinx
simulation libraries.

Design Files (VHDL, Verilog, or Schematic)

This chapter assumes that you have completed the design entry tutorial in either
Chapter 2, “HDL-Based Design,” or Chapter 3, “Schematic-Based Design.” After you
have completed one of these chapters, your design includes the required design files
and is ready for simulation.

Test Bench File

In order to simulate the design, a test bench file is required to provide stimulus to the
design. VHDL and Verilog test bench files are available with the tutorial files. You may
also create your own test bench file.

Xilinx Simulation Libraries

Xilinx simulation libraries are required when a Xilinx primitive or IP core is
instantiated in the design. The design in this tutorial requires the use of simulation
libraries because it contains instantiations of a digital clock manager (DCM) and a
CORE Generator™ component. For information on simulation libraries and how to
compile them, see the next section, “Xilinx Simulation Libraries.”

http://www.xilinx.com/ise/optional_prod/mxe.htm

ISE 11 In-Depth Tutorial www.xilinx.com 81
UG695 (v 11.2)

Getting Started
R

Xilinx Simulation Libraries
To simulate designs that contain instantiated Xilinx primitives, CORE Generator
components, and other Xilinx IP cores you must use the Xilinx simulation libraries. These
libraries contain models for each component. These models reflect the functions of each
component, and provide the simulator with the information required to perform
simulation.

For a detailed description of each library, see Chapter 5 of the Synthesis and Simulation
Design Guide. This Guide is accessible from within ISE by selecting Help > Software
Manuals, and from the web at
http://www.xilinx.com/support/documentation/dt_ise11-1.htm.

Updating the Xilinx Simulation Libraries

The Xilinx simulation libraries contain models that are updated on a regular basis.

• The XilinxCoreLib models are updated each time an IP Update is installed.

• All other models are updated each time a service pack is installed.

When the models are updated, you must recompile the libraries. The compiled Xilinx
simulation libraries are then available during the simulation of any design.

ModelSim PE or SE

If you are using ModelSim PE or SE, you must compile the simulation libraries with the
updated models. See Chapter 6 of the Synthesis and Simulation Design Guide. This Guide is
accessible from within ISE by selecting Help > Software Manuals, or from the web at
http://www.xilinx.com/support/documentation/dt_ise11-1.htm.

ModelSim Xilinx Edition III

Updated models for ModelSim Xilinx Edition III (MXE III) are precompiled and available
on the Xilinx support website. Download the latest precompiled models from the
Download Center at http://www.xilinx.com/support/download/index.htm.

Xilinx ISim

Updated simulation libraries for the ISim are precompiled and installed with ISE
installations and software updates.

Mapping Simulation Libraries in the Modelsim.ini File

ModelSim uses the modelsim.ini file to determine the location of the compiled libraries.
For instance, if you compiled the UNISIM library to c:\lib\UNISIM, the following
mapping appears in the modelsim.ini file:

UNISIM = c:\lib\UNISIM

Note: The modelsim.ini is not applicable to the ISE Simulator.

ModelSim searches for a modelsim.ini file in the following locations until one is found:

• The modelsim.ini file pointed to by the MODELSIM environment variable.

• The modelsim.ini file in the current working directory.

• The modelsim.ini file in the directory where ModelSim is installed.

http://www.xilinx.com/support/download/index.htm

82 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

If the MODELSIM environment variable is not set, and the modelsim.ini file has not
been copied to the working directory, the modelsim.ini file in the ModelSim installation
directory is used.

ModelSim PE or SE

If you are using ModelSim PE or SE, refer to the Development System Reference Guide and use
COMPXLIB to compile the libraries. While compiling the libraries, COMPXLIB also
updates the modelsim.ini file with the correct library mapping. Open the
modelsim.ini file and make sure that the library mappings are correct.

For future projects, you can copy the modelsim.ini file to the working directory and
make changes that are specific to that project, or you can use the MODELSIM environment
variable to point to the desired modelsim.ini file.

ModelSim Xilinx Edition III

If you are using ModelSim Xilinx Edition III (MXE III), open the modelsim.ini file in the
directory where MXE III was installed. All of the Xilinx simulation libraries are already
mapped to the proper location.

ISE Simulator

The modelsim.ini file is not applicable to the ISE Simulator.

Adding an HDL Test Bench
In order to add an HDL test bench to your design project, you can either add a test bench
file provided with this tutorial, or create your own test bench file and add it to your project.

Adding Tutorial Test Bench File
This section demonstrates how to add a pre-existing test bench file to the project. A VHDL
test bench and Verilog test fixture are provided with this tutorial.

Note: To create your own test bench file in ISE, select Project > New Source, and select either
VHDL Test Bench or Verilog Text Fixture in the New Source Wizard. An empty stimulus file is
added to your project. You must define the test bench in a text editor.

VHDL Simulation

To add the tutorial VHDL test bench to the project:

1. Select Project > Add Source.

2. Select the test bench file stopwatch_tb.vhd.

3. Click Open.

4. Check that Simulation is selected for the file Association type.

ISE 11 In-Depth Tutorial www.xilinx.com 83
UG695 (v 11.2)

Adding an HDL Test Bench
R

5. Click OK.

Figure 4-1: Adding Source Files... adding VHDL Test Bench

ISE recognizes the top-level design file associated with the test bench, and adds the test
bench in the correct order.

84 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

Verilog Simulation

To add the tutorial Verilog test fixture to the project:

1. Select Project > Add Source.

2. Select the file stopwatch_tb.v.

3. Click Open.

4. Check that Simulation is selected for the file association type.

5. Click OK.

Figure 4-2: Adding Source Files... Adding Verilog Test Fixture

ISE recognizes the top-level design file associated with the test fixture, and adds the test
fixture in the correct order.

Behavioral Simulation Using ModelSim
Now that you have a test bench in your project, you can perform behavioral simulation on
the design using the ModelSim simulator. ISE has full integration with the ModelSim
Simulator. ISE enables ModelSim to create the work directory, compile the source files,
load the design, and perform simulation based on simulation properties.

To simulate with ISim, skip to “Behavioral Simulation Using ISim.” Whether you choose to
use the ModelSim simulator or the ISim simulator for this tutorial, the end result is the
same.

To select ModelSim as your project simulator:

1. In the Sources tab, right-click the device line (xc3s700A-4fg484).

2. Select Properties.

3. In the Simulator field of the Project Properties dialog box, select the Modelsim type
and HDL language combination you are using.

Locating the Simulation Processes
The simulation processes in ISE enable you to run simulation on the design using
ModelSim. To locate the ModelSim simulator processes:

1. In the Sources tab, select Behavioral Simulation in the Sources for field.

2. Select the test bench file (stopwatch_tb).

3. In the Processes tab, click the + beside ModelSim Simulator to expand the process
hierarchy.

ISE 11 In-Depth Tutorial www.xilinx.com 85
UG695 (v 11.2)

Behavioral Simulation Using ModelSim
R

If ModelSim is installed but the processes are not available, the Project Navigator
preferences may not be set correctly.

To set the ModelSim location:

1. Select Edit > Preferences.

2. Click the + next to ISE General to expand the ISE preferences

3. Click Integrated Tools in the left pane.

4. In the right pane, under Model Tech Simulator, browse to the location of the
modelsim executable. For example,

C:\modeltech_xe\win32xoem\modelsim.exe

The following simulation processes are available:

• Simulate Behavioral Model

This process starts the design simulation.

Specifying Simulation Properties
You will perform a behavioral simulation on the stopwatch design after you have set some
process properties for simulation.

ISE allows you to set several ModelSim Simulator properties in addition to the simulation
netlist properties. To see the behavioral simulation properties, and to modify the
properties for this tutorial:

1. In the Sources tab, select the test bench file (stopwatch_tb).

2. Click the + sign next to ModelSim Simulator to expand the hierarchy in the Processes
tab.

3. Right-click Simulate Behavioral Model.

4. Select Properties.

5. In the Process Properties dialog box, (Figure 4-3) set the Property display level to
Advanced. This global setting enables you to now see all available properties.

86 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

6. Change the Simulation Run Time to 2000 ns.

7. Click OK.

For a detailed description of each property available in the Process Properties dialog box,
click Help.

Performing Simulation
Once the process properties have been set, you are ready to run ModelSim. To start the
behavioral simulation, double-click Simulate Behavioral Model. ModelSim creates the
work directory, compiles the source files, loads the design, and performs simulation for the
time specified.

The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. The first outputs to transition after RESET is released are the SF_D and LCD_E
control signals at around 33 mS. This is why the counter may seem like it is not working in
a short simulation. For the purpose of this tutorial, only the DCM signals are monitored to
verify that they work correctly.

Adding Signals
To view internal signals during the simulation, you must add them to the Wave window.
ISE automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window.

• Drag and drop from the Signal/Object window.

• Highlight signals in the Signal/Object window, and select Add > Wave > Selected
Signals.

Figure 4-3: Behavioral Simulation Process Properties

ISE 11 In-Depth Tutorial www.xilinx.com 87
UG695 (v 11.2)

Behavioral Simulation Using ModelSim
R

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

If you are using ModelSim version 6.0 or higher, all the windows are docked by default. To
undock the windows, click the Undock icon.

To add additional signals in the design hierarchy:

1. In the Structure/Instance window, click the + next to uut to expand the hierarchy.

Figure 4-5 shows the Structure/Instance window for the VHDL flow. The graphics and
the layout of the Structure/Instance window for a schematic or Verilog flow may be
different.

2. Select dcm_inst in the Structure/Instance window. The signals listed in the
Signal/Object window are updated.

3. Click and drag CLKIN_IN from the Signal/Object window to the Wave window.

4. In the Signal/Object window, select the following signals. To select multiple signals,
hold down the Ctrl key.

♦ RST_IN

♦ CLKFX_OUT

♦ CLK0_OUT

♦ LOCKED_OUT

Figure 4-4: Undock icon

Figure 4-5: Structure/Instance Window - VHDL flow

88 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

5. Right-click in the Signal/Object window.

6. Select Add to Wave > Selected Signals.

Adding Dividers

In ModelSim, you can add dividers in the Wave window to make it easier to differentiate
the signals. To add a divider called DCM Signals:

1. Right click anywhere in the signal section of the Wave window. If necessary, undock
the window and maximize the window for a larger view of the waveform.

2. Select Insert Divider.

3. Enter DCM Signals in the Divider Name box.

4. Click OK.

5. Click and drag the newly created divider to above the CLKIN_IN signal.

After adding the DCM Signals divider, the waveform will look like Figure 4-6.

The waveforms have not been drawn for any of the newly added signals. This is because
ModelSim did not record the data for these signals. By default, ModelSim records data
only for the signals that have been added to the Wave window while the simulation is
running. After new signals are added to the Wave window, you must rerun the simulation
for the desired amount of time.

Rerunning Simulation

To rerun simulation in ModelSim:

1. Click the Restart Simulation icon.

Figure 4-6: Waveform After Adding DCM Signals Divider

Figure 4-7: Restart Simulation Icon

ISE 11 In-Depth Tutorial www.xilinx.com 89
UG695 (v 11.2)

Behavioral Simulation Using ModelSim
R

2. In the Restart dialog box, click Restart.

3. At the ModelSim command prompt, enter run 2000 ns.

4. Press Enter.

The simulation runs for 2000 ns. The waveforms for the DCM are now visible in the Wave
window.

Analyzing the Signals

The DCM signals can be analyzed to verify that they work as expected. The CLK0_OUT
needs to be 50 MHz and the CLKFX_OUT should be ~26 MHz. The DCM outputs are valid
only after the LOCKED_OUT signal is high; therefore, the DCM signals are analyzed only
after the LOCKED_OUT signal has gone high.

ModelSim enables you to add cursors to measure the distance between signals. To measure
the CLK0_OUT:

1. Select Add > Wave > Cursor twice to add two cursors.

2. Click and drag one cursor to the first rising edge transition on the CLK0_OUT signal
after the LOCKED_OUT signal has gone high.

3. Click and drag the second cursor just to the right of the first.

4. Click the Find Next Transition icon twice to move the cursor to the next rising edge on
the CLK0_OUT signal.

Figure 4-8: Restart Dialog Box

Figure 4-9: Entering the Run Command

Figure 4-10: Find Next Transition Icon

90 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

5. Look at the bottom of the waveform for the distance between the two cursors.

The measurement should read 20000 ps. This converts to 50 MHz, which is the input
frequency from the test bench, which in turn should be the DCM CLK0 output.

6. Measure CLKFX_OUT using the same steps as above. The measurement should read
38462 ps. This comes out to approximately 26 MHz.

Saving the Simulation
The ModelSim simulator enables you to save the signals list in the Wave window after new
signals or stimuli are added, and after simulation is rerun. The saved signals list can easily
be opened each time the simulation is started.

To save the signals list:

1. In the Wave window, select File > Save as.

2. In the Save Format dialog box, rename the file name from the default wave.do to
dcm_signal.do.

3. Click Save.

After restarting the simulation, select File > Load in the Wave window to load this file.

Your behavioral simulation is complete. To implement the design, follow the steps in
Chapter 5, “Design Implementation.”

Behavioral Simulation Using ISim
Follow this section of the tutorial if you have skipped the previous section, “Behavioral
Simulation Using ModelSim.”

Now that you have a test bench in your project, you can perform behavioral simulation on
the design using the ISE Simulator (ISim). ISE has full integration with ISim. ISE enables
ISim to create the work directory, compile the source files, load the design, and perform
simulation based on simulation properties.

To select ISim as your project simulator:

1. In the Sources view, right-click the device line (xc3s700A-4fg484).

2. Select Design Properties.

3. In the Project Properties dialog box, select ISim (VHDL/Verilog) in the Simulator field.

Locating the Simulation Processes
The simulation processes in ISE enable you to run simulation on the design using ISim. To
locate the ISim processes:

1. In the Sources view, select Behavioral Simulation in the Sources for field.

2. Select the test bench file (stopwatch_tb).

3. Click the + beside ISim Simulator in the Processes view to expand the process
hierarchy.

ISE 11 In-Depth Tutorial www.xilinx.com 91
UG695 (v 11.2)

Behavioral Simulation Using ISim
R

The following simulation processes are available:

• Check Syntax

This process checks for syntax errors in the test bench.

• Simulate Behavioral Model

This process starts the design simulation.

Specifying Simulation Properties
You will perform a behavioral simulation on the stopwatch design after you set some
process properties for simulation.

ISE allows you to set several ISim properties in addition to the simulation netlist
properties. To see the behavioral simulation properties, and to modify the properties for
this tutorial:

1. In the Sources tab, select the test bench file (stopwatch_tb).

2. Click the + sign next to ISim Simulator to expand the hierarchy in the Processes tab.

3. Right-click the Simulate Behavioral Model process.

4. Select Process Properties.

5. In the Process Properties dialog box, set the Property display level to Advanced. This
global setting enables you to now see all available properties.

6. Change the Simulation Run Time to 2000 ns.

7. Click OK.

Note: For a detailed description of each property available in the Process Property dialog box, click
Help.

Figure 4-11: Behavioral Simulation Process Properties

92 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

Performing Simulation
Once the process properties have been set, you are ready to run ISim to simulate the
design. To start the behavioral simulation, double-click Simulate Behavioral Model. ISim
creates the work directory, compiles the source files, loads the design, and performs
simulation for the time specified.

The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. The first outputs to transition after RESET is released are SF_D and LCD_E at
around 33 mS. This is why the counter may seem like it is not working in a short
simulation. For the purpose of this tutorial, only the DCM signals are monitored to verify
that they work correctly.

Adding Signals
To view signals during the simulation, you must add them to the Waveform window. ISE
automatically adds all the top-level ports to the Waveform window. Additional signals are
displayed in the Instances and Processes panel. The following procedure explains how to
add additional signals in the design hierarchy. For the purpose of this tutorial, add the
DCM signals to the waveform.

To add additional signals in the design hierarchy:

1. In the Instances and Processes panel, click the > next to stopwatch_tb to expand the
hierarchy.

2. Click the > next to UUT to expand the hierarchy.

The figure below shows the contents of the Instances and Processes panel for the VHDL
flow. The graphics and the layout of the window for a schematic or Verilog flow may be
different.

Figure 4-12: Sim Hierarchy Window - VHDL flow

ISE 11 In-Depth Tutorial www.xilinx.com 93
UG695 (v 11.2)

Behavioral Simulation Using ISim
R

3. Selec the Inst_dcm1 in the Instances and Processes panel.

4. Click and drag CLKIN_IN from the Sim Objects window to the Waveform window.

5. Select the following signals:

♦ RST_IN

♦ CLKFX_OUT

♦ CLK0_OUT

♦ LOCKED_OUT

To select multiple signals, hold down the Ctrl key.

6. Drag all the selected signals to the waveform. Alternatively, right click on a selected
signal and select Add To Wave Window.

Figure 4-13: Adding Signals to the Simulation Waveform

Notice that the waveforms have not been drawn for the newly added signals. This is
because ISim did not record the data for these signals. By default, ISim records data only
for the signals that have been added to the waveform window while the simulation is
running. Therefore, when new signals are added to the waveform window, you must rerun
the simulation for the desired amount of time.

Rerunning Simulation
To rerun the simulation in ISim:

1. Click the Restart Simulation icon.

2. At the ISE Simulator command prompt in the Console, enter run 2000 ns and press
Enter.

The simulation runs for 2000 ns. The waveforms for the DCM are now visible in the
Waveform window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that they work as expected. The
CLK0_OUT should be 50 MHz and the CLKFX_OUT should be ~26 MHz. The DCM

Figure 4-14: ISE Simulator Restart Simulation Icon

94 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 4: Behavioral Simulation
R

outputs are valid only after the LOCKED_OUT signal is high; therefore, the DCM signals
are analyzed only after the LOCKED_OUT signal has gone high.

ISim can add markers to measure the distance between signals. To measure the
CLK0_OUT:

1. If necessary, zoom in on the waveform using the zoom local toolbar icons.

2. Click on the Snap to Transition toolbar button in the waveform viewer local toolbar.

Figure 4-15: Snap to Transition toolbar button

3. Click on the first rising edge transition on the CLK0_OUT signal after the
LOCKED_OUT signal has gone high, then drag the cursor to the right to the next rising
edge transition of the CLK0_OUT signal.

4. At the bottom of the waveform window, the start point time, end point time, and delta
times are shown. The delta should read 20,000 ps (or 20 ns). This converts to 50
MHz which is the input frequency from the test bench, which in turn is the DCM CLK0
output. .

5. Measure CLKFX_OUT using the same steps as above. The measurement should read
38,500 ps (or 38.5 ns). This equals approximately 26 MHz.

Your behavioral simulation is complete. To implement the design, follow the steps in
Chapter 5, “Design Implementation.”

Figure 4-16: Waveform viewer displaying time between transitions

ISE 11 In-Depth Tutorial www.xilinx.com 95
UG695 (v 11.2)

R

Chapter 5

Design Implementation

This chapter contains the following sections.

• “Overview of Design Implementation”

• “Getting Started”

• “Specifying Options”

• “Creating Timing Constraints”

• “Translating the Design”

• “Using the Constraints Editor”

• “Assigning I/O Locations Using PlanAhead”

• “Mapping the Design”

• “Using Timing Analysis to Evaluate Block Delays After Mapping”

• “Placing and Routing the Design”

• “Using FPGA Editor to Verify the Place and Route”

• “Evaluating Post-Layout Timing”

• “Creating Configuration Data”

• “Command Line Implementation”

Overview of Design Implementation
Design Implementation is the process of translating, mapping, placing, routing, and
generating a BIT file for your design. The Design Implementation tools are embedded in
the ISE™ software for easy access and project management.

This chapter is the first in the “Implementation-only Flow” and is a subsequent chapter for
the “HDL Design Flow” and the “Schematic Design Flow”.

This chapter demonstrates the ISE Implementation flow. The front-end design has already
been compiled in an EDA interface tool. For details about compiling the design, see
Chapter 2, “HDL-Based Design” or Chapter 3, “Schematic-Based Design.” In this chapter,
you will be passing a synthesized netlist (EDN, NGC) from the front-end tool to the back-
end Design Implementation tools, and you will be incorporating placement constraints
through a User Constraints File (UCF). You will also add timing constraints as well as
additional placement constraints.

96 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

Getting Started
The tutorial design emulates a runner’s stopwatch with actual and lap times. There are five
inputs to the system: CLK, RESET, LAP_LOAD, MODE, and SRTSTP. This system
generates a traditional stopwatch with lap times and a traditional timer on a LCD display.

Continuing from Design Entry
If you have followed the tutorial using either the HDL Design flow or the Schematic
Design flow, you have created a project, completed source files, and synthesized the
design.

If you do not have a stopwatch.ucf constraint file in your project, create one as follows:

1. In the Sources tab, select the top-level source file stopwatch.

2. Select Project > New Source.

3. Select Implementation Constraints File.

4. Type stopwatch.ucf as the file name.

5. Click Next.

6. Click Finish.

With a UCF in the project, you are now ready to begin this chapter. Skip to the “Specifying
Options” section.

Starting from Design Implementation
If you are beginning the tutorial from this chapter, you will need to download the pre-
synthesized design files provided on the Xilinx® web-site, create a project in ISE and then
add the downloaded source files to the project.

1. Unzip the tutorial zip file wtut_edif.zip to an empty working directory.

2. The following files are included in the ZIP file.

Table 5-1: Tutorial Files

File Name Description

stopwatch.edf Input netlist file (EDIF)

timer_preset.ngc Timer netlist file (NGC)

stopwatch.ucf User Constraints File

ISE 11 In-Depth Tutorial www.xilinx.com 97
UG695 (v 11.2)

Specifying Options
R

3. Open ISE.

a. On a workstation, enter ise.

b. On a PC, select Start > Programs > Xilinx ISE 11 > Project Navigator.

4. Create a new project and add the EDIF netlist as follows:

a. Select File > New Project.

b. Type EDIF_Flow for the Project Name.

c. Select EDIF for the top_level SourceType.

d. Click Next.

e. Select stopwatch.edf for the Input Design file.

f. Select stopwatch.ucf for the Constraints file.

g. Click Next.

h. Select the following:

- Spartan3a for the Device Family

- xc3s700a for the Device

- -4 for the Speed Grade, fg484 for the Package

i. Keep the rest of the properties at their default values.

j. Click Next.

k. Click Finish.

l. Copy the timer_preset.ngc file into the EDIF_Flow directory.

In the Sources tab, select the top-level module, stopwatch.edf or stopwatch.edn.
This enables the design to be implemented.

Specifying Options
This section describes how to set some properties for design implementation. The
implementation properties control how the software maps, places, routes, and optimizes a
design.

To set the implementation property options for this tutorial:

1. In the Sources view in the Design tab, select the stopwatch top-level file.

Note: Be sure the Implementation view is active by selecting it from the Sources for: dropdown
menu in the Sources view.

2. In the Processes view in the Design tab, right-click the Implement Design process.

3. Select Process Properties from the right-click menu.

The Process Properties dialog box provides access to the Translate, Map, Place and
Route, and Timing Report properties. You will notice a series of categories, each
contains properties for one of these phases of design implementation.

4. Ensure that you have set the Property display level to Advanced. This global setting
enables you to see all available properties.

5. Click the Place & Route Properties category.

6. Change the Place & Route Effort Level (Overall) to High.

98 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

This option increases the overall effort level of Place and Route during
implementation.

7. Click OK to exit the Process Properties dialog box.

Creating Timing Constraints
The User Constraints File (UCF) is a text file and may be edited directly with a text editor.
To facilitate editing of this file, graphical tools are provided to create and edit constraints.
The Constraints Editor and PlanAhead are graphical tools that enable you to enter timing
and I/O and placement constraints.

To launch the Constraints Editor:

1. In the Sources tab, select the Stopwatch module.

2. In the Processes tab, expand the User Constraints hierarchy.

Figure 5-1: Place & Route Properties

ISE 11 In-Depth Tutorial www.xilinx.com 99
UG695 (v 11.2)

Translating the Design
R

3. Double-click Create Timing Constraints.

This automatically runs the Translate step, which is discussed in the following section.
Then the Constraints Editor opens.

Translating the Design
ISE manages the files created during implementation. The ISE tools use the settings that
you specified in the Process Properties dialog box. This gives you complete control over
how a design is processed. Typically, you set your options first. You then run through the
entire flow by running Implement Design. The Implement Design process includes the
three sub-processes Translate, Map and Place&Route. You can simply run the Implement
Design process to automate the running of all three sub-processes, or you may run the sub-
processes individually. In this tutorial you will run the processes individually in order to
more easily see and understand each step.

During translation, the NGDBuild program performs the following functions:

• Converts input design netlists and writes results to a single merged NGD netlist. The
merged netlist describes the logic in the design as well as any location and timing
constraints.

• Performs timing specification and logical design rule checks.

• Adds constraints from the User Constraints File (UCF) to the merged netlist.

Figure 5-2: Create Timing Constraints Process

100 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

Using the Constraints Editor
When you run the Create Timing Constraints process, Translate is automatically run and
ISE launches the Constraints Editor.

The Constraints Editor enables you to:

• Edit constraints previously defined in a UCF file.

• Add new constraints to your design.

Input files to the Constraints Editor are:

• NGD (Native Generic Database) File

The NGD file serves as input to the mapper, which then outputs the physical design
database, an NCD (Native Circuit Description) file.

• Corresponding UCF (User Constraint File)

All UCF files that are part of the ISE project are passed to Constraints Editor.

Multiple UCF files are supported in ISE projects. All constraint files in the project are read
by the Constraints Editor and constraints that are edited are updated in the constraint file
they originated in. New constraints are written to the UCF file specified in Constraints
Editor.

The Translate step (NGDBuild) uses the UCF file, along with design source netlists, to
produce a newer NGD file, which incorporates the changes made. The Map program (the
next section in the design flow) then reads the NGD. In this design, the stopwatch.ngd
and stopwatch.ucf files are automatically read into the Constraints Editor.

In the following section, a PERIOD, Global OFFSET IN, Global OFFSET OUT, and
TIMEGRP OFFSET IN constraint will be created and written in the UCF and used during
implementation. The Clock Domains branch of the Timing Constraints tab automatically
displays all the clock nets in your design, and enables you to define the associated period,
pad to setup, and clock to pad values. Note that many of the internal names will vary
depending on the design flow and synthesis tool used.

In the Constraints Editor, edit the constraints as follows:

Figure 5-3: Constraints Editor in Project Navigator - Clock Domains

ISE 11 In-Depth Tutorial www.xilinx.com 101
UG695 (v 11.2)

Using the Constraints Editor
R

1. Double-click the row containing the clk signal in the Unconstrained Clocks table. The
Clock Period dialog box opens.

2. For the Clock Signal Definition, verify that Specify Time is selected.

This enables you to define an explicit period for the clock.

3. Enter a value of 7.0 in the Time field.

4. Verify that ns is selected from the Units drop-down list.

5. For the Input Jitter section, enter a value of 60 in the Time field.

6. Verify that ps is selected from the Units drop-down list.

7. Click OK.

The period constraint is displayed in the constraint table at the top of the window. The
period cell is updated with the global clock period constraint that you just defined
(with a default 50% duty cycle).

8. Select the Inputs branch under Timing Constraints in the Constraint Type tree view.

9. Double-click on the clk signal in the Global OFFSET IN Constraint table to bring up
the Create Setup Time (OFFSET IN) wizard.

10. Keep the default values on the first page of the screen and click Next.

Figure 5-4: PERIOD Constraint Values

Figure 5-5: INPUT JITTER Constraint Value

102 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

Figure 5-6: Offset In Constraint

11. In the External setup time (offset in) field, enter 6 ns.

12. In the Data valid duration field, enter 6 ns.

This creates a Global OFFSET IN constraint for the CLK signal.

13. Click Finish.

Figure 5-7: Offset In Constraint

14. Select the Outputs branch under Timing Constraints in the Constraint Type tree view

15. Double-click the clk signal in the Global OFFSET OUT Constraint table.

16. In the External clock to pad (offset out) field, enter a value of 38 ns.

ISE 11 In-Depth Tutorial www.xilinx.com 103
UG695 (v 11.2)

Using the Constraints Editor
R

This creates a Global OFFSET OUT constraint for the CLK signal

17. Click OK.

Figure 5-8: Offset Out Constraintr

18. In the Unconstrained Output Ports table, select the sf_d<0> through sf_d<7> signals
using Shift-Click to select multiple rows.

19. Right-click and select Create Time Group.

20. In the Create Time Group dialog, type display_grp for the Time group name, then
click OK. .

21. When asked if you would like to create an offest constraint, click OK.

22. In the External clock to pad (offset out) field, enter 32 ns.

Figure 5-9: Creating a Time Group

104 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

23. Click OK.

24. Select File > Save in the Constraints Editor.

The changes are now saved in the stopwatch.ucf file in your current working
directory.

25. Close the Constraints Editor by selecting File > Close.

Assigning I/O Locations Using PlanAhead
Use PlanAhead to add and edit the pin locations and area group constraints defined in the
NGD file. PlanAhead writes the constraints to the project UCF file. In the case of multiple
UCF files in the project, you will asked to specify which constaint file new constraints
should be written to. If you modify existing constraints they will be written back to the
same constraint file they originated in. PlanAhead also provides device specific design rule
checks to aid you in pin planning and placement.

The Translate step uses the design UCF file, along with the design source netlists, to
produce a newer NGD file. The NGD file incorporates the changes made in the design and
the UCF file from the previous section.

This section describes the creation of IOB assignments for several signals.

1. Select the stopwatch module in the Sources window of the Design tab.

2. Click the + next to User Constraints to expand the process hierarchy in the Processes
window.

3. Double-click I/O Pin Planning (PlanAhead) - Post-Synthesis, located under User
Constraints.

Figure 5-10: Clock to Pad Dialog Box

ISE 11 In-Depth Tutorial www.xilinx.com 105
UG695 (v 11.2)

Assigning I/O Locations Using PlanAhead
R

I/O Pin Planning can be performed either Pre- or Post- Synthesis. Whenever possible
it is recommended that the process be run Post-Synthesis since the design then
contains information needed for I/O and clock related design rule checks that can be
performed by PlanAhead.

This process launches PlanAhead. If the design has not yet completed synthesis, Project
Navigator will first automatically run synthesis before launching PlanAhead for I/O
Planning.

The Welcome to PlanAhead screen provides links to detailed documentation, tutorials, and
other training material to help you learn more about PlanAhead. This tutorial provides a
simple overview of the use and capabilities of PlanAhead; for more information and to
learn about the full capabilities, please visit the other resources available.

Figure 5-12: PlanAhead Welcome screen

Figure 5-11: Floorplan Area/IO/Logic - Post Synthesis

106 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

4. Click Close on the Welcome dialog to proceed into PlanAhead.

5. In the I/O Ports tab, expand the Scalar Ports tree under All ports. You will now create
pin assignments for the lcd_e, lcd_rs, and lcd_rw I/O signals.

6. Locate the lcd_e output signal, then click and drag it into the Package view and drop
it on the AB4 pin location.

Figure 5-14: Assigning I/O pins by dragging into Package view

7. Repeat the previous step to place the following additional output pins.

Figure 5-13: PlanAhead for I/O Planning

ISE 11 In-Depth Tutorial www.xilinx.com 107
UG695 (v 11.2)

Mapping the Design
R

♦ LCD_RS: Y14

♦ LCD_RW: W13

Alternatively, you can type the location in the Site field in the I/O Port Properties tab
when the I/O signal is selected.

Figure 5-15: Assigning I/O pins via I/O Port Properties

8. Using either the drag and drop or Port Properties method, place the following input
signals onto the appropriate I/O pin locations:

♦ LAP_LOAD: T16

♦ RESET: U15

♦ MODE: T14

♦ STRTSTOP: T15

9. Once the pins are locked down, select File > Save Project. The changes are saved in
the project’s stopwatch.ucf file.

10. Close PlanAhead by selecting File > Exit.

Mapping the Design
Now that the implementation properties and constraints have been defined, continue with
the implementation of the design.

1. Select the stopwatch module in the Sources window.

2. In the Processes tab, expand the Implement Design process, then run the Map process
by right-clicking on Map and selecting Run.

Note: This can also be accomplished by double-clicking Map.

If the Translate process is not up-to-date, Project Navigator automatically runs that process
as well.

The design is mapped into CLBs and IOBs. Map performs the following functions:

• Allocates CLB and IOB resources for all basic logic elements in the design.

• Processes all location and timing constraints, performs target device optimizations,
and runs a design rule check on the resulting mapped netlist.

108 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

Each step generates its own report as shown in the following table. .

To view a report:

1. Open the Design Summary/Reports window. If it is not already open in the
Workspace you can open it by running the Design Summary/Reports process.

Table 5-2: Reports Generated by Map

Translation Report
Includes warning and error messages from the translation
process.

Map Report
Includes information on how the target device resources are
allocated, references to trimmed logic, and device
utilization.

All NGDBUILD and
MAP Reports

For detailed information on the Map reports, refer to the
Development System Reference Guide. This Guide is available
with the collection of software manuals and is accessible
from ISE by selecting Help > Software Manuals, or from the
web at
http://www.xilinx.com/support/documentation/dt_ise11
-1.htm

Figure 5-16: Opening the Design Summary/Reports

ISE 11 In-Depth Tutorial www.xilinx.com 109
UG695 (v 11.2)

Using Timing Analysis to Evaluate Block Delays After Mapping
R

Figure 5-17: Design Summary/Report Viewer

2. Select a report such as the Translation Report or Map Report in the Detailed Reports
section of the Design Summary.

3. Review the report.

4. The Design Summary also provides a Summary of the design results, and a list of all of
the messages (Errors, Warnings, INFO) generated by the implementation run.

Using Timing Analysis to Evaluate Block Delays After Mapping
After the design is mapped, evaluate the Logic Level details in the Post-Map Static Timing
Report to evaluate the logical paths in the design. Evaluation verifies that block delays are
reasonable given the design specifications. Because the design is not yet placed and routed,
actual routing delay information is not available. The timing report describes the logical
block delays and estimated routing delays. The net delays provided are based on an
optimal distance between blocks (also referred to as unplaced floors).

Estimating Timing Goals with the 50/50 Rule
For a preliminary indication of how realistic your timing goals are, evaluate the design
after the map stage. A rough guideline (known as the 50/50 rule) specifies that the block
delays in any single path make up approximately 50% of the total path delay after the
design is routed. For example, a path with 10 ns of block delay should meet a 20 ns timing
constraint after it is placed and routed.

If your design is extremely dense, the Post-Map Static Timing Report provides a summary
analysis of your timing constraints based on block delays and estimates of route delays.

110 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

This analysis can help to determine if your timing constraints are going to be met. This
report is produced after Map and prior to Place and Route (PAR).

Report Paths in Timing Constraints Option
Use the Post-Map Static Timing Report to determine timing violations that may occur prior
to running PAR. Since you defined timing constraints for the stopwatch design, the timing
report will display the path for each of the timing constraints.

To view the Post-Map Static Timing Report and review the PERIOD Constraints that were
entered earlier:

1. In the Processes tab, click the + next to Map to expand the process hierarchy.

2. Double-click Generate Post-Map Static Timing.

3. To open the Post-Map Static Timing Report, double-click Analyze Post-Map Static
Timing.

Timing Analyzer automatically launches and displays the report.

4. Select the TS_inst_dcm1_CLKFX_BUF timing constraint under the Timing tab.

The work space shows the report for the selected constraint. At the top of this report, you
will find the selected period constraint and the minimum period obtained by the tools after
mapping. By default, only three paths per timing constraint will be shown. Selecting one of

Figure 5-18: Post-Map Static Timing Report Process

Figure 5-19: Selecting Post-Map Static Timing constraint

ISE 11 In-Depth Tutorial www.xilinx.com 111
UG695 (v 11.2)

Placing and Routing the Design
R

the three paths allows you to see a breakdown of the path which contains the component
and routing delays.

Notice that the report displays the percentage of logic versus the percentage of routing at
the end of each path (e.g. 88.0% logic, 12.0% route). The unplaced floors listed are estimates
(indicated by the letter “e” next to the net delay) based on optimal placement of blocks.

5. After viewing the report, close the Timing Analyzer by selecting File > Close.

Note: Even if you do not generate a timing report, PAR still processes a design based on the
relationship between the block delays, floors, and timing specifications for the design. For example, if
a PERIOD constraint of 8 ns is specified for a path, and there are block delays of 7 ns and unplaced
floor net delays of 3 ns, PAR stops and generates an error message. In this example, PAR fails
because it determines that the total delay (10 ns) is greater than the constraint placed on the design
(8 ns). The Post-Map Static Timing Report will list any pre-PAR timing violations.

Placing and Routing the Design
After the mapped design is evaluated, the design can be placed and routed.

One of two place-and-route algorithms is performed during the Place & Route (PAR)
process:

• Timing Driven PAR

PAR is run with the timing constraints specified in the input netlist and/or in the
constraints file.

• Non-Timing Driven PAR

PAR is run, ignoring all timing constraints.

Since you defined timing constraints earlier in this chapter, the Place & Route (PAR)
process performs timing driven placement and routing.

1. To run PAR, in the Processes tab, double-click Place & Route under the Implement
Design process group.

To review the reports that are generated after the Place & Route process is completed:

2. Open the Design Summary window by running the Design Summary/Reports
process or by clicking on the Design Summary/Reports toolbar icon.

3. Select the Place & Route Report in the Detailed Reports section.

Note: Additional optional Place & Route Reports can also be generated by enabling their creation in
the Place & Route process properties. When these are created, they will appear in the Design
Summary in the Secondary Reports section.

Table 5-3: Reports Generated by PAR

Report Description

Place & Route Report
Provides a device utilization and delay summary.
Use this report to verify that the design successfully
routed and that all timing constraints were met.

Asynchronous Delay Report
Lists all nets in the design and the delays of all
loads on the net.

112 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

Figure 5-20: Design Summary of the Place & Route Report

Using FPGA Editor to Verify the Place and Route
Use the FPGA Editor to display and configure Field Programmable Gate Arrays (FPGAs).

The FPGA Editor reads and writes Native Circuit Description (NCD) files, Macro files
(NMC) and Physical Constraints Files (PCF).

Use FPGA Editor to:

• Place and route critical components before running the automatic place-and-route
tools.

• Finish placement and routing if the routing program does not completely route your
design.

• Add probes to your design to examine the signal states of the targeted device. Probes
are used to route the value of internal nets to an IOB (Input/Output Block) for
analysis during debugging of a device.

• Run the BitGen program and download the resulting bitstream file to the targeted
device.

Clock Region Report

All PAR Reports

For detailed information on the PAR reports, refer
to the Development System Reference Guide. This
Guide is available with the collection of software
manuals and is accessible from ISE by selecting
Help > Online Documentation, or from the web at
http://www.xilinx.com/support/documentation
/dt_ise11-1.htm

Table 5-3: Reports Generated by PAR

Report Description

ISE 11 In-Depth Tutorial www.xilinx.com 113
UG695 (v 11.2)

Using FPGA Editor to Verify the Place and Route
R

• View and change the nets connected to the capture units of an Integrated Logic
Analyzer (ILA) core in your design.

To view the actual design layout of the FPGA:

1. Click the + next to Place & Route to expand the process hierarchy, and double-click
View/Edit Routed Design (FPGA Editor).

2. In FPGA Editor, change the List Window from All Components to All Nets. This
enables you to view all of the possible nets in the design.

Figure 5-21: View/Edit Routed Design (FPGA Editor) Process

Figure 5-22: List Window in FPGA Editor

114 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

3. Select the clk_262144K (Clock) net to see the fanout of the clock net.

4. To exit FPGA Editor, select File > Exit.

Evaluating Post-Layout Timing
After the design is placed and routed, you can analyze the Post-Place & Route timing
results to verify how the design performs against your specified timing goals.

There are multiple ways in which you can analyze timing:

• Viewing the Post-Place & Route Static Timing Report

• Using PlanAhead for Post-Place & Route Timing Analysis

• Using hyperlinks in Design Summary to analyze individual timing constraints

Viewing the Post-Place & Route Static Timing Report
This report evaluates the logical block delays and the routing delays. The net delays are
now reported as actual routing delays after the Place and Route process. To display this
report:

1. In the Design Summary/Reports, select Static Timing in the Design Overview
section. Alternatively you can run the Analyze Post-Place & Route Static Timing
process in the Process view under Implement Design > Place & Route > Generate Post-
Place & Route Static Timing.

2. The Timing Report will open in Timing Analyzer.

Figure 5-23: Clock Net

ISE 11 In-Depth Tutorial www.xilinx.com 115
UG695 (v 11.2)

Evaluating Post-Layout Timing
R

The following is a summary of the Post-Place & Route Static Timing Report for the
stopwatch design:

♦ The minimum period value increased due to the actual routing delays.

The Post-Map timing report showed logic delays contributed to 80% to 90% of the
minimum period attained. The post-layout report indicates that the logical delay
value now equals between 30% and 40% of the period. The total unplaced floors
estimate changed as well.

♦ The post-layout result does not necessarily follow the 50/50 rule previously
described because the worst case path primarily includes component delays.

♦ For some hard to meet timing constraints, the worst case path is mainly made up
of logic delay. Since total routing delay makes up only a small percentage of the
total path delay spread out across two or three nets, expecting the timing of these
paths to be reduced any further is unrealistic. In general, you can reduce excessive
block delays and improve design performance by decreasing the number of logic
levels in the design.

Analyzing the Design using PlanAhead
PlanAhead can be used to perform post-layout design analysis. Graphical layout analysis
and timing path viewing, as well as floorplanning can be performed to both analyze
design results as well as aid in design closure.

1. From the process tree, run the Analyze Timing/Floorplan Design (PlanAhead)
process under Place & Route.

Figure 5-24: Analyze Timing / Floorplan Design (PlanAhead) process

2. When PlanAhead opens, select one of the timing paths in the Timing Results tab. You
will be able to view the path graphically in the Device view, and also view details of
the path and the associated delays in the Properties tab.

116 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

Figure 5-25: Viewing Timing Path in PlanAhead

3. Zoom in on the path in the Device view by clicking and dragging a box around the area
of interest.

For a detailed tutorial on the full set of capabilities in PlanAhead related to timing analysis
and design closure, see the Design Analysis and Floorplanning tutorial available in
PlanAhead by selecting Help > Tutorial > Design Analysis and Floorplanning.

4. Close PlanAhead by selecting File > Exit.

Creating Configuration Data
After analyzing the design, you need to create configuration data. A configuration
bitstream is created for downloading to a target device or for formatting into a PROM
programming file.

In this tutorial, you will create configuration data for a Xilinx Serial PROM. To create a
bitstream for the target device, set the properties and run configuration as follows:

1. Right-click the Generate Programming File process.

2. Select Process Properties. The Process Properties dialog box opens.

3. Click the Startup Options category.

4. Change the FPGA Start-Up Clock property from CCLK to JTAG Clock.

ISE 11 In-Depth Tutorial www.xilinx.com 117
UG695 (v 11.2)

Creating Configuration Data
R

Note: You can use CCLK if you are configuring Select Map or Serial Slave.

5. Click OK.

6. In the Processes tab, double-click Generate Programming File to create a bitstream of
this design.

The BitGen program creates the bitstream file (in this tutorial, the stopwatch.bit
file), which contains the actual configuration data.

7. To review the Programming File Generation Report, open the Bitgen Report in the
Design Summary/Report Viewer. Verify that the specified options were used when
creating the configuration data

Creating a PROM File with iMPACT
To program a single device using iMPACT, all you need is a bitstream file. To program
several devices in a daisy chain configuration, or to program your devices using a PROM,
you must use iMPACT to create a PROM file. iMPACT accepts any number of bitstreams
and creates one or more PROM files containing one or more daisy chain configurations.

In iMPACT, a wizard enables you to do the following:

• Create a PROM file.

• Add additional bitstreams to the daisy chain.

• Create additional daisy chains.

• Remove the current bitstream and start over, or immediately save the current PROM
file configuration.

For this tutorial, create a PROM file in iMPACT as follows:

1. In the Processes tab, double-click Generate Target PROM/ACE File, located under the
Configure Target Device process hierarchy.

2. In iMPACT, double-click on Create PROM File (PROM File Formatter) in the
iMPACT Flows window.

Figure 5-27: Create PROM File

Figure 5-26: Process Properties Startup Options

118 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

3. In the PROM File Formatter window, select Xilinx Flash/PROM in the Select Storage
Target section.

4. Click the green arrow to activate the next section.

5. In the Add Storage Device(s) section, click the Auto Select PROM checkbox.

6. Click the green arrow to activate the next section.

7. In the Enter Data section, enter an Output File Name of stopwatch1.

8. Verify that the Checksum Fill Value is set to FF and the File Format is MCS. .

9. Click OK to close the PROM File Formatter.

10. In the Add Device dialog box, click OK and then select the stopwatch.bit file.

Note: You will receive a warning that the startup clock is being changed from jtag to CCLK.

11. Click No when you are asked if you would like to add another design file to the
datastream.

12. Click OK to complete the process.

13. Select the device graphic in the workspace area, then in the iMPACT Processes view,
select Generate File...

iMPACT displays the PROM associated with your bit file.

Figure 5-29: PROM File

14. To close iMPACT, select File > Exit.

15. If prompted to save the project, select Yes, then name the project file
stopwatch_impact.ipf.

With the resulting stopwatch.bit, stopwatch1.mcs and a MSK file generated along
with the BIT file, you are ready for programming your device using iMPACT. For more

Figure 5-28: PROM File Formatter

ISE 11 In-Depth Tutorial www.xilinx.com 119
UG695 (v 11.2)

Command Line Implementation
R

information on programming a device, see the iMPACT Help, available from the iMPACT
application by selecting Help > Help Topics.

This completes the Design Implementation chapter of the tutorial. For more information
on this design flow and implementation methodologies, see the ISE Help, available from
the ISE application by selecting Help > Help Topics.

Command Line Implementation
ISE allows a user to easily view and extract the command line arguments for the various
steps of the implementation process. This allows a user to verify the options being used or
to create a command batch file to replicate the design flow.

At any stage of the design flow you can look at the command line arguments for completed
processes by double-clicking View Command Line Log File from the Design Utilities
process hierarchy in the Processes view. This process opens a file named
<source_name>.cmd_log in read-only mode.

To create an editable batch file, select File > Save As and enter the desired file name.

Sections of the Command Line Log File may also be copied from
<source_name>.cmd_log using either the copy-and-paste method or the drag-and-
drop method into a text file.

For a complete listing of command line options for most Xilinx executables, refer to the
Command Line Tools User Guide. Command line options are organized according to
implementation tools. This Guide is available with the collection of software manuals and
is accessible from ISE by selecting Help > Software Manuals, or from the web at
http://www.xilinx.com/support/software_manuals.htm. Command line options may
also be obtained by typing the executable name followed by the -h option at a command
prompt.

http://toolbox.xilinx.com/docsan/xilinx10/books/manuals.pdf

120 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 5: Design Implementation
R

ISE 11 In-Depth Tutorial www.xilinx.com 121
UG695 (v 11.2)

R

Chapter 6

Timing Simulation

This chapter includes the following sections.

• “Overview of Timing Simulation Flow”

• “Getting Started”

• “Timing Simulation Using ModelSim”

• “Timing Simulation Using Xilinx ISim”

Overview of Timing Simulation Flow
Timing simulation uses the block and routing delay information from a routed design to
give a more accurate assessment of the behavior of the circuit under worst-case conditions.
For this reason, timing simulation is performed after the design has been placed and
routed.

Timing (post-place and route) simulation is a highly recommended part of the HDL design
flow for Xilinx® devices. Timing simulation uses the detailed timing and design layout
information that is available after place and route. This enables simulation of the design,
which closely matches the actual device operation. Performing a timing simulation in
addition to a static timing analysis will help to uncover issues that cannot be found in a
static timing analysis alone. To verify the design, the design should be analyzed both
statically and dynamically.

In this chapter, you will perform a timing simulation using either the ModelSim simulator
or the Xilinx ISE Simulator.

Getting Started
The following sections outline the requirements to perform this part of the tutorial flow.

Required Software
To simulate with ModelSim, you must have Xilinx ISE™ 11 and ModelSim simulator
installed. Refer to Chapter 4, “Behavioral Simulation” for information on installing and
setting up ModelSim. Simulating with the Xilinx ISE simulator requires that the ISE 11
software is installed

122 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 6: Timing Simulation
R

Required Files
The timing simulation flow requires the following files:

• Design Files (VHDL or Verilog)

This chapter assumes that you have completed Chapter 5, “Design Implementation,”
and thus, have a placed and routed design. The Netgen tool will be used in this chapter
to create a simulation netlist from the placed and routed design which will be used to
represent the design during the Timing Simulation.

• Test Bench File (VHDL or Verilog)

In order to simulate the design, a test bench is needed to provide stimulus to the
design. You should use the same test bench that was used to perform the behavioral
simulation. Please refer to the “Adding an HDL Test Bench” in Chapter 4 if you do not
already have a test bench in your project.

• Xilinx Simulation Libraries

For timing simulation, the SIMPRIM library is needed to simulate the design.

To perform timing simulation of Xilinx designs in any HDL simulator, the SIMPRIM
library must be set up correctly. The timing simulation netlist created by Xilinx is
composed entirely of instantiated primitives, which are modeled in the SIMPRIM library.

If you completed Chapter 4, “Behavioral Simulation”, the SIMPRIM library should already
be compiled. For more information on compiling and setting up Xilinx simulation
libraries, see to “Xilinx Simulation Libraries” in Chapter 4.

Specifying a Simulator
To select either the desired simulator to simulate the stopwatch design, complete the
following:

1. In the Sources tab, right-click the device line (xc3s700A-4fg484) and select Properties.

2. In the Project Properties dialog box click the down arrow in the Simulator value field
to display a list of simulators.

Note: ModelSim and Xilinx ISim are the only simulators that are integrated with Project
Navigator. Selecting a different simulator (e.g. NC-Sim or VCS) will set the correct options for
Netgen to create a simulation netlist for that simulator but Project Navigator will not directly open
the simulator. For additional information about simulation, and for a list of other supported
simulators, see Chapter 5 of the Synthesis and Verification Guide. This Guide is accessible from
within ISE by selecting Help > Software Manuals, and from the web at
http://www.xilinx.com/support/software_manuals.htm

3. Select ISim (VHDL/Verilog) or Modelsim with the appropriate version and language
in the Simulator value field.

Timing Simulation Using ModelSim
Xilinx ISE provides an integrated flow with the Mentor ModelSim simulator. ISE enables
you to create work directories, compile source files, initialize simulation, and control
simulation properties for ModelSim.

Note: To simulate with ISim, skip to “Timing Simulation Using Xilinx ISim”. Whether you choose to
use the ModelSim simulator or ISim for this tutorial, the end result is the same.

http://www.xilinx.com/support/software_manuals.htm

ISE 11 In-Depth Tutorial www.xilinx.com 123
UG695 (v 11.2)

Timing Simulation Using ModelSim
R

Specifying Simulation Process Properties
To set the simulation process properties:

1. In the Sources tab, select Post-Route Simulation in the Sources for field.

2. Select the test bench file (stopwatch_tb).

3. In the Processes tab, click the + next to ModelSim Simulator to expand the process
hierarchy.

Note: If the ModelSim Simulator processes do not appear, it means that either ModelSim is not
selected as the Simulator in the Project Properties dialog box, or Project Navigator cannot find
modelsim.exe.

If ModelSim is installed but the processes are not available, the Project Navigator
preferences may not be set correctly. To set the ModelSim location, select Edit >
Preferences, click the + next to ISE General to expand the ISE preferences, and click
Integrated Tools in the left pane. In the right pane, under Model Tech Simulator, browse to
the location of modelsim.exe file. For example,

c:\modeltech_xe\win32xoem\modelsim.exe.

4. Right-click Simulate Post-Place & Route Model.

5. Select Properties.

The Process Properties dialog box displays.

6. Select the Simulation Model Properties category.

The properties should appear as shown in Figure 6-1. These properties set the options
that NetGen uses when generating the simulation netlist. For a description of each
property, click the Help button.

7. Ensure that you have set the Property display level to Advanced.

This global setting enables you to see all available properties.

124 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 6: Timing Simulation
R

For this tutorial, the default Simulation Model Properties are used.

8. Select the Display Properties category.

This tab gives you control over the ModelSim simulation windows. By default, three
windows open when timing simulation is launched from ISE. They are the Signal
window, the Structure window, and the Wave window. For more details on ModelSim
Simulator windows, refer to the ModelSim User Guide.

9. Select the Simulation Properties category.

The properties should appear as shown in Figure 6-2. These properties set the options
that ModelSim uses to run the timing simulation. For a description of each property,
click the Help button.

Figure 6-1: Simulation Model Properties

ISE 11 In-Depth Tutorial www.xilinx.com 125
UG695 (v 11.2)

Timing Simulation Using ModelSim
R

10. In the Simulation Properties tab, set the Simulation Run Time property to 2000 ns.

11. Click OK to close the Process Properties dialog box.

Performing Simulation
To start the timing simulation, double-click Simulate Post-Place and Route Model in the
Processes tab.

ISE will run Netgen to create the timing simulation model. ISE will then call ModelSim and
create the working directory, compile the source files, load the design, and run the
simulation for the time specified.

Note: The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose
of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

Adding Signals

To view signals during the simulation, you must add them to the Wave window. ISE
automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window.

• Drag and drop from the Signal/Object window.

• Highlight signals in the Signal/Object window and then select Add > Wave >
Selected Signals.

Figure 6-2: Simulation Properties

126 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 6: Timing Simulation
R

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

Note: If you are using ModelSim version 6.0 or higher, all the windows are docked by default. All
windows can be undocked by clicking the Undock icon.

1. In the Structure/Instance window, click the + next to uut to expand the hierarchy.

Figure 6-4 shows the Structure/Instance window for the Schematic flow. The graphics and
the layout of the Structure/Instance window for a Verilog or VHDL flow may appear
different.

2. Click the Structure/Instance window and select Edit > Find.

3. Type in X_DCM in the search box and select Entity/Module in the Field section.

4. Once ModelSim locates X_DCM, select X_DCM_SP and click on the signals/objects
window. All the signal names for the DCM will be listed.

5. Select the Signal/Object window and select Edit > Find.

6. Type CLKIN in the search box and select the Exact checkbox.

7. Click and drag CLKIN from the Signal/Object window to the Wave window.

Figure 6-3: Undock icon

Figure 6-4: Structure/Instance Window - Schematic Flow

ISE 11 In-Depth Tutorial www.xilinx.com 127
UG695 (v 11.2)

Timing Simulation Using ModelSim
R

8. Click and drag the following signals from the Signal/Object window to the Wave
window:

♦ RST

♦ CLKFX

♦ CLK0

♦ LOCKED

Note: Multiple signals can be selected by holding down the Ctrl key. In place of using the drag and
drop method select Add to Wave > Selected Signals.

Adding Dividers

Modelsim has the capability to add dividers in the Wave window to make it easier to
differentiate the signals. To add a divider called DCM Signals:

1. Click anywhere in the Wave window.

2. If necessary, undock the window and then maximize the window for a larger view of
the waveform.

3. Right-click the Wave window and click Insert > Divider.

4. Enter DCM Signals in the Divider Name box.

5. Click and drag the newly created divider to above the CLKIN signal.

Note: Stretch the first column in the waveform to see the signals clearly. The hierarchy in the signal
name can also be turned off by selecting Tools > Options > Wave Preferences. In the Display
Signal Path box, enter 2 and click OK.

The waveform should look as shown in Figure 6-5.

Figure 6-5: The Resulting Waveform

128 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 6: Timing Simulation
R

Notice that the waveforms have not been drawn for the newly added signals. This is
because ModelSim did not record the data for these signals. By default, ModelSim will
only record data for the signals that have been added to the Wave window while the
simulation is running. Therefore, after new signals are added to the Wave window, you
need to rerun the simulation for the desired amount of time.

Rerunning Simulation

To restart and re-run the simulation:

1. Click the Restart Simulation icon.

The Restart dialog box opens.

2. Click Restart.

3. At the ModelSim command prompt, enter run 2000 ns and hit the Enter key.

The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in
the Wave window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that it works as expected. The CLK0 needs
to be 50 Mhz and the CLKFX should be ~26 Mhz. The DCM signals should only be
analyzed after the LOCKED signal has gone high. Until the LOCKED signal is high the
DCM outputs are not valid.

Modelsim has the capability to add cursors to carefully measure the distance between
signals.

To measure the CLK0:

Figure 6-6: Restart Simulation Icon

Figure 6-7: Restart Dialog Box

Figure 6-8: Entering the Run Command

ISE 11 In-Depth Tutorial www.xilinx.com 129
UG695 (v 11.2)

Timing Simulation Using ModelSim
R

1. Select Add > Cursor twice to place two cursors on the wave view.

2. Click and drag the first cursor to the rising edge transition on the CLK0 signal after the
LOCKED signal has gone high.

3. Click and drag the second cursor to a position just right of the first cursor on the CLK0
signal.

4. Click the Find Next Transition icon twice to move the cursor to the next rising edge on
the CLK0 signal.

Look at the bottom of the waveform to view the distance between the two cursors. The
measurement should read 20000 ps. This converts to 50 Mhz, which is the input frequency
from the test bench, which in turn should be the DCM CLK0 output.

Measure CLKFX using the same steps as above. The measurement should read 38462 ps.
This equals approximately 26 Mhz.

Saving the Simulation

The ModelSim Simulator provides the capability of saving the signals list in the Wave
window. Save the signals list after new signals or stimuli are added, and after simulation is
rerun. The saved signals list can easily be loaded each time the simulation is started.

1. In the Wave window, select File > Save Format.

2. In the Save Format dialog box, rename the filename from the default wave.do to
dcm_signal_tim.do.

3. Click Save.

After restarting the simulation, you can select File > Load in the Wave window to reload
this file.

Your timing simulation is complete and you are ready to program your device by
following Chapter 7, “iMPACT Tutorial.”

Figure 6-9: Find Next Transition Icon

Figure 6-10: Save Format Dialog Box

130 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 6: Timing Simulation
R

Timing Simulation Using Xilinx ISim
Follow this section of the tutorial if you have skipped the previous section, “Timing
Simulation Using ModelSim.”

Specifying Simulation Process Properties
To set the simulation process properties:

1. In the Sources tab, select Post-Route Simulation in the Sources for field.

2. Select the test bench file (stopwatch_tb).

3. In the Processes tab, click the + next to Xilinx ISE Simulator to expand the process
hierarchy.

4. Right-click Simulate Post-Place & Route Model.

5. Select Process Properties.

The Process Properties dialog box displays.

6. Select the Simulation Model Properties category.

These properties set the options that NetGen uses when generating the simulation
netlist. For a description of each property, click the Help button.

7. Ensure that you have set the Property display level to Advanced.

This global setting enables you to now see all available properties.

For this tutorial, the default Simulation Model Properties are used.

8. Select the ISE Simulator Properties category.

The properties should appear as shown in Figure 6-11. These properties set the options
the simulator uses to run the timing simulation. For a description of each property,
click the Help button.

9. In the Simulation Properties tab, set the Simulation Run Time property to 2000 ns.

10. Click OK to close the Process Properties dialog box.

Figure 6-11: Simulation Properties

ISE 11 In-Depth Tutorial www.xilinx.com 131
UG695 (v 11.2)

Timing Simulation Using Xilinx ISim
R

Performing Simulation
To start the timing simulation, double-click Simulate Post-Place and Route Model in the
Processes tab.

When a simulation process is run, Project Navigator automatically runs Netgen to generate
a timing simulation model from the placed and routed design. The ISE Simulator will then
compile the source files, load the design, and run the simulation for the time specified.

Note: The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose
of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

Adding Signals

To view signals during the simulation, you must add them to the waveform window. ISE
automatically adds all the top-level ports to the waveform window. All available external
(top-level ports) and internal signals are displayed in the Sim Hierarchy window.

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

1. In the Instances and Processes panel, click the > next to stopwatch_tb to expand the
hierarchy.

2. Click the > next to UUT to expand the hierarchy.

3. Locate and select Inst_dcm1_DCM_SP_INST

4. In the Objects window, select the locked signal and click on Add to Wave Window.

Figure 6-12 shows the Sim Instances and Sim Objects window for the VHDL flow. The
signal names and layout in the Sim Instances window for a schematic or VHDL flow may
appear different.

Figure 6-12: Sim Instances and Sim Objects Windows- VHDL Flow

132 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 6: Timing Simulation
R

5. Click and drag the following X_DCM_SP signals from the SIM Hierarchy window to
the waveform window:

♦ RST

♦ CLKFX

♦ CLK0

♦ CLKIN

Note: Multiple signals can be selected by holding down the Ctrl key.

Viewing Full Signal Names

A signal name may be viewed with either the complete hierarchical name or by the short
name which omits hierarchy information. To change the signal name display;

1. Right click the desired signal in the waveform window.

2. Select Name > Long or Name > Short as desired.

Note: Stretch the first column in the waveform to see the signals clearly.

The waveform should appear as shown in Figure 6-13.

Notice that the waveforms have not been drawn for the newly added signals. This is
because the ISE Simulator did not record the data for these signals. The ISE Simulator will
only record data for the signals that have been added to the waveform window while the
simulation is running. Therefore, after new signals are added to the waveform window,
you need to rerun the simulation for the desired amount of time.

Rerunning Simulation

To restart and re-run the simulation:

Figure 6-13: The Resulting Waveform

ISE 11 In-Depth Tutorial www.xilinx.com 133
UG695 (v 11.2)

Timing Simulation Using Xilinx ISim
R

1. Click the Restart Simulation icon.

2. At the Sim Console command prompt, enter run 2000 ns and hit the Enter key.

The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in
the Simulation window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that it does work as expected. The CLK0
needs to be 50 Mhz and the CLKFX should be ~26 Mhz. The DCM signals should only be
analyzed after the LOCKED signal has gone high. Until the LOCKED signal is high the
DCM outputs are not valid.

ISE Simulator has the capability to add cursors to carefully measure the distance between
signals.

To measure the CLK0:

1. If necessary, zoom in on the waveform using the zoom local toolbar buttons.

2. Click the Snap to Transition toolbar button in the waveform viewer local toolbar.

3. Click on the first rising edge transition on the CLK0 signal after the LOCKED signal
has gone high, then drag the cursor to the right to the next rising edge transition of the
CLK0 signal.

At the bottom of the waveform window, the start point time, end point time, and delta
times are shown. The delta should read 20.0 ns. This converts to 50 Mhz, which is the
input frequency from the test bench, which in turn should be the DCM CLK0 output.

Measure CLKFX using the same steps as above. The measurement should read 38.5 ns,
this equals approximately 26 Mhz.

Figure 6-14: Restart Simulation Icon

Figure 6-15: Entering the Run Command

134 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 6: Timing Simulation
R

Your timing simulation is complete and you are ready to program your device by
following Chapter 7, “iMPACT Tutorial.”.

Figure 6-16: Measuring Transitions

ISE 11 In-Depth Tutorial www.xilinx.com 135
UG695 (v 11.2)

R

Chapter 7

iMPACT Tutorial

This chapter takes you on a tour of iMPACT, a file generation and device programming
tool. iMPACT enables you to program through several parallel cables, including the
Platform Cable USB. iMPACT can create bit files, System ACE files, PROM files, and
SVF/XSVF files. The SVF/XSVF files can be played backed without having to recreate the
chain.

This tutorial contains the following sections:

• “Device Support”

• “Download Cable Support”

• “Configuration Mode Support”

• “Getting Started”

• “Creating a iMPACT New Project File”

• “Using Boundary Scan Configuration Mode”

• “Troubleshooting Boundary Scan Configuration”

• “Creating an SVF File”

• “Other Configuration Modes”

Device Support
The following devices are supported.

• Virtex™/-E/-II/-II PRO/4/5/6

• Spartan™/-II/-IIE/XL/3/3E/3A/6

• XC4000™/E/L/EX/XL/XLA/XV

• CoolRunner™XPLA3/-II

• XC9500™/XL/XV

• XC18V00P

• XCF00S

• XCF00P

136 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

Download Cable Support

Parallel Cable IV
The Parallel Cable connects to the parallel port and can be used to facilitate Slave Serial and
Boundary-Scan functionality. For more information, go to
http://www.xilinx.com/support, select Documentation > Devices > Configuration
Solutions > Configuration Hardware > Xilinx Parallel Cable IV.

Platform Cable USB
The Platform Cable connects to the USB port and can be used to facilitate Slave Serial, and
Boundary Scan functionality. For more information, go to
http://www.xilinx.com/support, select Documentation > Devices > Configuration
Solutions > Configuration Hardware > Platform Cable USB.

MultiPRO Cable
The MultiPRO cable connects to the parallel port and can be used to facilitate Desktop
Configuration Mode functionality. For more information, go to
http://www.xilinx.com/support, select Documentation > Devices > Configuration
Solutions > Configuration Hardware > MultiPRO Desktop Tool.

Configuration Mode Support
Impact currently supports the following configuration modes:

• Boundary Scan —FPGAs, CPLDs, and PROMs(18V00,XCFS,XCFP)

• Slave Serial—FPGAs

• SelectMAP—FPGAs

• Desktop —FPGAs

Getting Started

Generating the Configuration Files
In order to follow this chapter, you must have the following files for the stopwatch design:

• a BIT file—a binary file that contains proprietary header information as well as
configuration data.

• a MCS file—an ASCII file that contains PROM configuration information.

• a MSK file—a binary file that contains the same configuration commands as a BIT file,
but that has mask data in place of configuration data. This data is not used to
configure the device, but is used for verification. If a mask bit is 0, the bit should be
verified against the bit stream data. If a mask bit is 1, the bit should not be verified.
This file generated along with the BIT file.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

ISE 11 In-Depth Tutorial www.xilinx.com 137
UG695 (v 11.2)

Creating a iMPACT New Project File
R

These files are generated in Chapter 5, “Design Implementation.”

• The Stopwatch tutorial projects can be downloaded from
http://www.xilinx.com/support/techsup/tutorials/tutorials11.htm. Download the
project files for either the VHDL, Verilog or Schematic design flow.

Connecting the Cable
Prior to launching iMPACT, connect the parallel side of the cable to your computer’s
parallel port, and connect the cable to the Spartan-3 Starter Kit demo board. Be sure that
the board is powered.

Starting the Software
This section describes how to start the iMPACT software from ISE™ and how to run it
stand-alone.

Opening iMPACT from Project Navigator

To start iMPACT from Project Navigator, double-click Manage Configuration Project
(iMPACT) in the Processes tab in the Processes window (see Figure 7-1).

Opening iMPACT stand-alone

To open iMPACT without going through an ISE project, use one of the following methods.

• PC — Click Start > All Programs > Xilinx® ISE Design Suite 11 > Accessories >
iMPACT.

• PC, UNIX, or Linux — Type impact at a command prompt.

Creating a iMPACT New Project File
If an iMPACT project doesn’t yet exist, you can create one that will store the settings of the
project for future use. To create a new project for this tutorial:

1. In iMPACT, select File -> New Project.

Figure 7-1: Opening iMPACT from ISE

http://www.xilinx.com/support/techsup/tutorials/tutorials10.htm

138 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

2. In the iMPACT Project dialog box, select create a new project (.ipf).

3. Click the Browse button.

4. Browse to the project directory and then enter stopwatch in the File Name field.

5. Click Save.

6. Click OK.

This creates a new project file in iMPACT. You are prompted to define the project, as
described in the next section.

Using Boundary Scan Configuration Mode
For this tutorial, you will be using the Boundary Scan Configuration Mode. Boundary Scan
Configuration Mode enables you to perform Boundary Scan Operations on any chain
comprising JTAG compliant devices. The chain can consist of both Xilinx® and non-Xilinx
devices; however, limited operations will be available for non-Xilinx devices. To perform
operations, the cable must be connected and the JTAG pins, TDI, TCK, TMS, and TDO need
to be connected from the cable to the board.

Specifying Boundary Scan Configuration Mode
After opening iMPACT, you are prompted to specify the configuration mode and which
device you would like to program.

To select Boundary Scan Mode:

1. Select Configure Devices using Boundary-Scan (JTAG) and leave the selection box
value of Automatically connect to a cable and identify Boundary-Scan chain.

Note: The selection box also gives you the option to Enter a Boundary Scan Chain, which
enables you to then manually add devices to create chain. This option enables you to generate
an SVF/XSVF programming file, and is discussed in a later section in this chapter. Automatically
detecting and initializing the chain should be performed whenever possible.

Figure 7-2: Creating an iMPACT Project

ISE 11 In-Depth Tutorial www.xilinx.com 139
UG695 (v 11.2)

Using Boundary Scan Configuration Mode
R

2. Click OK.

iMPACT will pass data through the devices and automatically identify the size and
composition of the boundary scan chain. Any supported Xilinx device will be recognized
and labeled in iMPACT. Any other device will be labeled as unknown. The software will
then highlight each device in the chain and prompt you to assign a configuration file or
BSDL file.

Note: If you were not prompted to select a configuration mode or automatic boundary scan mode,
right-click in the iMPACT window and select Initialize Chain. The software will identify the chain if the
connections to the board are working. Go to “Troubleshooting Boundary Scan Configuration” if you
are having problems.

Figure 7-3: Selecting automatic boundary scan from Wizard

140 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

Assigning Configuration Files
After initializing a chain, the software prompts you for a configuration file (see Figure 7-4).
The configuration file is used to program the device. There are several types of
configuration files.

• A Bitstream file (*.bit, *.rbt, *.isc) is used to configure an FPGA.

• A JEDEC file (*.jed,*.isc) is used to configure a CPLD.

• A PROM file (*.mcs, .exo, .hex, or .tek) is used to configure a PROM.

When the software prompts you to select a configuration file for the first device
(XC3S700A):

1. Select the BIT file from your project working directory.

2. Click Open.

If the startup clock has not already been set to JtagClk, you will receive a warning stating
that the startup clock has been changed to JtagClk.

3. When prompted to attach SPI or BPI PROMs to the device, select No.

4. When the software prompts you to select a configuration file for the second device
(XCF04S), select the MCS file from your project working directory.

5. Click Open.

Note: If a configuration file is not available, a Boundary Scan Description File (BSDL or BSD) file
can be applied instead. The BSDL file provides the software with the necessary Boundary Scan
information that allows a subset of the Boundary Scan Operations to be available for that device. To

Figure 7-4: Selecting a Configuration File

ISE 11 In-Depth Tutorial www.xilinx.com 141
UG695 (v 11.2)

Using Boundary Scan Configuration Mode
R

have ISE automatically select a BSDL file (for both Xilinx and non-Xilinx devices), select Bypass in
the Assign New Configuration File dialog box.

6. When the Device Programming Properties Dialog Box appears (see Figure 7-5). Select
the Verify option.

The Verify option enables the device to be readback and compared to the BIT file using
the MSK file that was created earlier.

7. Click OK to begin programming.

The options available in the Device Programming Properties dialog box vary based on the device you
have selected.

Saving the Project File
Once the chain has been fully described and configuration files are assigned, you should
save your iMPACT Project File (IPF) for later use. To do this, select File > Save Project As.
The Save As dialog box appears and you can browse and save your project file accordingly.
To restore the chain after reopening iMPACT, select File > Open Project and browse to the
IPF.

Note: Previous versions of ISE use Configuration Data Files (CDF). These files can still be opened
and used in iMPACT. iMPACT Project Files can also be exported to a CDF.

Editing Preferences
To edit the preferences for the Boundary Scan Configuration, select Edit > Preferences.
This selection opens the window shown in Figure 7-6. Click Help for a description of the
Preferences.

Figure 7-5: Device Programming Options

142 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

In this tutorial, keep the default values and click OK.

Performing Boundary Scan Operations
You can perform Boundary Scan operations on one device at a time. The available
Boundary Scan operations vary based on the device and the configuration file that was
applied to the device. To see a list of the available options, right-click on any device in the
chain. This brings up a window with all of the available options.

When you select a device and perform an operation on that device, all other devices in the
chain are automatically placed in BYPASS or HIGHZ, depending on your iMPACT
Preferences setting. (For more information about Preferences, see “Editing Preferences.”)

To perform an operation, right-click on a device and select one of the options. In this
section, you will retrieve the device ID and run the programming option to verify the first
device.

1. Right-click on the XC3S700A device.

Figure 7-6: Edit Preferences

ISE 11 In-Depth Tutorial www.xilinx.com 143
UG695 (v 11.2)

Using Boundary Scan Configuration Mode
R

2. Select Get Device ID from the right-click menu.

The software accesses the IDCODE for this Spartan-3 device. The result is displayed in the
log window (see Figure 7-8).

3. Right-click on the XC3S700A device

4. Right-click on the xc3s700a device again and then click on Program.

The Programming operation begins and an operation status window displays. At the same
time, the log window reports all of the operations being performed.

Figure 7-7: Available Boundary Scan Operations for an XC3S700A Device

Figure 7-8: Log Window Showing Result of Get Device ID

144 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

When the Program operation completes, a large blue message appears showing that
programming was successful (see Figure 7-9). This message disappears after a couple of
seconds.

Your design has been programmed and has been verified. The board should now be
working and should allow you to start, stop and reset the runner’s stopwatch.

Troubleshooting Boundary Scan Configuration

Verifying Cable Connection
When an error occurs during a Boundary Scan operation, first verify that the cable
connection is established and that the software auto detect function is working. If a
connection is still not established after plugging the cable into the board and into your
machine, right-click in a blank portion of the iMPACT window and select either Cable
Auto Connect or Cable Setup. Cable Auto Connect will force the software to search every
port for a connection. Cable Setup enables you to select the cable and the port to which the
cable is connected.

Figure 7-9: Programming Operation Complete

ISE 11 In-Depth Tutorial www.xilinx.com 145
UG695 (v 11.2)

Troubleshooting Boundary Scan Configuration
R

When a connection is found, the bottom of the iMPACT window will display the type of
cable connected, the port attached to the cable, and the cable speed (see Figure 7-10).

If a cable is connected to the system and the cable autodetection fails, refer to Xilinx
Answer Record #15742. Go to http://www.xilinx.com/support and search for “15742”.

Verifying Chain Setup
When an error occurs during a Boundary Scan operation, verify that the chain is set up
correctly and verify that the software can communicate with the devices. The easiest way
to do this is to initialize the chain. To do so, right-click in the iMPACT window and select
Initialize Chain. The software will identify the chain if the connections to the board are
working.

If the chain cannot be initialized, it is likely that the hardware is not set up correctly or the
cable is not properly connected. If the chain can be initialized, try performing simple
operations. For instance, try getting the Device ID of every device in the chain. If this can be
done, then the hardware is set up correctly and the cable is properly connected.

The debug chain can also be used to manually enter JTAG commands (see Figure 7-11).
This can be used for testing commands and verifying that the chain is set up correctly. To
use this feature, select Debug > Enable/Disable Debug Chain in iMPACT.

Figure 7-10: Cable Connection Successful

Figure 7-11: Debug Chain

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

146 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

For help using iMPACT Boundary-Scan Debug, use the iMPACT Help (accessible from
Help > Help Topics), or file a Web case at http://www.xilinx.com/support.

Creating an SVF File
This section is optional and assumes that you have followed the “Using Boundary Scan
Configuration Mode” section and have successfully programmed to a board. In this
section, all of the configuration information is written to the SVF file.

iMPACT supports the creation of device programming files in three formats, SVF, XSVF,
and STAPL. If you are using third-party programming solutions, you may need to set up
your Boundary Scan chain manually and then create a device programming file. These
programming files contain both programming instructions and configuration data, and
they are used by ATE machines and embedded controllers to perform Boundary Scan
operations. A cable normally does not need to be connected because no operations are
being performed on devices.

Setting up Boundary Scan Chain
This section assumes that you are continuing from the previous sections of this chapter and
already have the chain detected. If not, skip to “Manual JTAG chain setup for SVF
generation” to define the chain manually.

JTAG chain setup for SVF generation

1. Select Output > SVF File > Create SVF File to indicate that you are creating a
programming file.

2. Enter getid in the File Name field of the Create a New SVF File dialog box and click
Save.

3. An informational message appears stating that all device operations will be directed to
the .svf file. Click OK.

Manual JTAG chain setup for SVF generation

For this tutorial, you may skip this section if you completed the “Using Boundary Scan
Configuration Mode.” section.

The Boundary-Scan chain can be manually created or modified as well. To do this,

1. Ensure that you are in Boundary Scan Mode (click the Boundary-Scan tab).

You can now add one device at a time.

2. Right-click on an empty space in the iMPACT Boundary-Scan window and select Add
Xilinx Device or Add Non-Xilinx device.

An Add Device dialog box appears allowing you to select a configuration file.

3. Select stopwatch.bit and then click Open.

The device is added where the large cursor is positioned. To add a device between
existing devices, click on the line between them and then add the new device.

Repeat steps 2 and 3 to add the stopwatch.mcs file to the chain.

Note: The boundary scan chain that you manually create in the software must match the chain on
the board, even if you intend to program only some of the devices. All devices must be represented
in the iMPACT window.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

ISE 11 In-Depth Tutorial www.xilinx.com 147
UG695 (v 11.2)

Creating an SVF File
R

Writing to the SVF File
The process of writing to an SVF file is identical to performing Boundary Scan operations
with a cable. You simply right-click on a device and select an operation. Any number of
operations can be written to an SVF file.

In this section, you will be writing the device ID to the programming file for the first
device, and performing further instructions for the second device.

To write the device ID:

1. Right-click the first device (XC3S700A).

2. Select Get Device ID from the right-click menu.

The instructions that are necessary to perform a Get Device ID operation are then
written to the file.

3. To see the results, select View > View SVF-STAPL File. Figure 7-13 shows what the
SVF file looks like after the Get Device ID operation is performed.

Figure 7-12: Selecting a Boundary Scan Operation

Figure 7-13: SVF File that Gets a Device ID from the First Device in the Chain

148 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

To write further instructions to the SVF for the second device:

1. Right-click the second device (XCF02S).

2. Select Program from the right-click menu.

3. Click OK in the Programming Properties window.

The instructions and configuration data needed to program the second device are added to
the SVF file.

Stop Writing to the SVF
After all the desired operations have been performed, you must add an instruction to close
the file from further instructions. To stop writing to the programming file:

Select Output > SVF File > Stop Writing to SVF File.

To add other operations in the future, you can select Output > SVF File > Append to SVF
File, select the SVF file and click Save.

Playing back the SVF or XSVF file
To play back the SVF file that you created to verify the instructions, you will

• Manually create a new chain.

• Assign the SVF file to the chain by right clicking and selecting Add Xilinx Device and
selecting the SVF file in the search window.

• Right-click on the SVF file in the Boundary-Scan chain and select Execute XSVF/SVF.

Other Configuration Modes

Slave Serial Configuration Mode
Slave Serial Configuration mode allows you to program a single Xilinx device or a serial
chain of Xilinx devices. To use the Slave Serial Configuration Mode, double-click Slave
Serial in the Configuration Modes tab.

Figure 7-14: Available Boundary Scan Operations for a XCF04S Device

ISE 11 In-Depth Tutorial www.xilinx.com 149
UG695 (v 11.2)

R

SelectMAP Configuration Mode
With iMPACT, SelectMAP Configuration mode allows you to program up to three Xilinx
devices. The devices are programmed one at a time and are selected by the assertion of the
correct CS pin. To use the SelectMAP Configuration Mode, double click SelectMAP in the
Configuration Modes tab. Only the MultiPRO cable can be used for SelectMAP
Configuration.

Note: These modes cannot be used with the Spartan-3 Starter Kit.

150 www.xilinx.com ISE 11 In-Depth Tutorial
UG695 (v 11.2)

Chapter 7: iMPACT Tutorial
R

	ISE In-Depth Tutorial
	About This Tutorial
	About the In-Depth Tutorial
	Tutorial Contents
	Tutorial Flows
	HDL Design Flow
	Schematic Design Flow
	Implementation-only Flow

	Additional Resources

	Table of Contents
	Overview of ISE
	Overview of ISE
	Project Navigator Interface
	Design Panel
	Files Panel
	Libraries Panel
	Console Panel
	Errors Panel
	Warnings Panel
	Workspace
	Design Summary & Report Viewer

	Using Project Revision Management Features
	ISE Project File
	Making a Copy of a Project
	Using the Project Browser
	Using Project Archives

	HDL-Based Design
	Overview of HDL-Based Design
	Getting Started
	Required Software
	Optional Software Requirements
	VHDL or Verilog?
	Installing the Tutorial Project Files
	Starting the ISE Software
	Creating a New Project
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Adding Source Files
	Checking the Syntax
	Correcting HDL Errors
	Creating an HDL-Based Module
	Creating a CORE Generator Module
	Creating a DCM Module

	Synthesizing the Design
	Synthesizing the Design using XST
	Synthesizing the Design using Synplify/Synplify Pro
	Synthesizing the Design Using Precision Synthesis

	Schematic-Based Design
	Overview of Schematic-Based Design
	Getting Started
	Required Software
	Installing the Tutorial Project Files
	Starting the ISE Software
	Creating a New Project
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Opening the Schematic File in the Xilinx Schematic Editor
	Manipulating the Window View
	Creating a Schematic-Based Macro
	Defining the time_cnt Schematic
	Creating and Placing the time_cnt Symbol
	Creating a CORE Generator Module
	Creating a DCM Module
	Creating the dcm1 Symbol
	Creating an HDL-Based Module
	Creating Schematic Symbols for HDL modules
	Placing the statmach, timer_preset, dcm1 and debounce Symbols
	Changing Instance Names
	Hierarchy Push/Pop
	Specifying Device Inputs/Outputs
	Assigning Pin Locations
	Completing the Schematic

	Behavioral Simulation
	Overview of Behavioral Simulation Flow
	ModelSim Setup
	ModelSim PE and SE
	ModelSim Xilinx Edition

	ISim Setup
	Getting Started
	Required Files
	Xilinx Simulation Libraries

	Adding an HDL Test Bench
	Adding Tutorial Test Bench File

	Behavioral Simulation Using ModelSim
	Locating the Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Saving the Simulation

	Behavioral Simulation Using ISim
	Locating the Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Rerunning Simulation

	Design Implementation
	Overview of Design Implementation
	Getting Started
	Continuing from Design Entry
	Starting from Design Implementation

	Specifying Options
	Creating Timing Constraints
	Translating the Design
	Using the Constraints Editor
	Assigning I/O Locations Using PlanAhead
	Mapping the Design
	Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals with the 50/50 Rule
	Report Paths in Timing Constraints Option

	Placing and Routing the Design
	Using FPGA Editor to Verify the Place and Route
	Evaluating Post-Layout Timing
	Viewing the Post-Place & Route Static Timing Report
	Analyzing the Design using PlanAhead

	Creating Configuration Data
	Creating a PROM File with iMPACT

	Command Line Implementation

	Timing Simulation
	Overview of Timing Simulation Flow
	Getting Started
	Required Software
	Required Files
	Specifying a Simulator

	Timing Simulation Using ModelSim
	Specifying Simulation Process Properties
	Performing Simulation

	Timing Simulation Using Xilinx ISim
	Specifying Simulation Process Properties
	Performing Simulation

	iMPACT Tutorial
	Device Support
	Download Cable Support
	Parallel Cable IV
	Platform Cable USB
	MultiPRO Cable

	Configuration Mode Support
	Getting Started
	Generating the Configuration Files
	Connecting the Cable
	Starting the Software

	Creating a iMPACT New Project File
	Using Boundary Scan Configuration Mode
	Specifying Boundary Scan Configuration Mode
	Assigning Configuration Files
	Saving the Project File
	Editing Preferences
	Performing Boundary Scan Operations

	Troubleshooting Boundary Scan Configuration
	Verifying Cable Connection
	Verifying Chain Setup

	Creating an SVF File
	Setting up Boundary Scan Chain
	Writing to the SVF File
	Stop Writing to the SVF
	Playing back the SVF or XSVF file

	Other Configuration Modes
	Slave Serial Configuration Mode
	SelectMAP Configuration Mode

