CS612

Algorithms for Electronic Design Automation
- J

Placement

Mustafa Ozdal

CS 612 — Lecture 5 ~ MustafaOzdal o ‘
Computer Engineering Department, Bilkent University

MOST SLIDES ARE FROM THE BOOK:
VLSI Physical Design: From Graph Partitioning to Timing Closure

MODIFICATIONS WERE MADE ON THE ORIGINAL SLIDES

Chapter 2 — Netlist and System Partitioning

| Andrew B.Kahng

| JensLienig

| lgor L Markoy
Jin Hu

VLSI Physical Design: Original Authors:
From Graph Partitioning to Timing Closure

Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu

Chapter 4 — Global and Detailed Placement

4.1 Introduction

4.2 Optimization Objectives

4.3 Global Placement
4.3.1 Min-Cut Placement
4.3.2 Analytic Placement
4.3.3 Simulated Annealing
4.3.4 Modern Placement Algorithms

4.4 Legalization and Detailed Placement

4.1 Introduction

> System Specification
<l
‘l‘ v Partitioning
Architectural Design
ENTITY testis
port a: in bit; W

end ENTITY test;

Functional Design ," Chip Planning
»l/ and Logic Design)

N W /) = EEEm
Circuit Design / Placement m I:I I:ID u
v I’ H B B B ®m
H EH B u
5@_: PhysicalDesign Clock Tree Synthesis
PN u
\2 Physical Verification
DRC and Signoff
LVS
ERC v
\Z Fabrication
\\\ v
]
\ / Packaging and Testing
N7
\ %

m Chip

4.1 Introduction

j}q_} Linear Placement
@’fg) DO DD DB

SCCNC00E
1

2 LIE=E B
P {1 B> -
g =DalEDy -

mn]n] (m]u]=

2D Placement Placement and Routing with Standard Cells

Introduction

Global Detailed
Placement Placement
[0 [0 @[O0 [T T TT]
0 @ 00 OO0 » [T 1T
M0 @O0 [[T T 11T

4.2 Optimization Objectives

Total Number of Wire Signal
Wirelength Cut Nets Congestion Delay

Floorplanning vs Placement
-1

Floorplanning Placement
Large blocks Much smaller cells
Rectangles with arbitrary Cells with mostly 1dentical
widths and heights heights
Rectangle packing Placing cells on pre-

defined rows

of blocks not very large Up to a few million cells
CS 612 — Lecture 5 Mustafa Ozdal 8

Computer Engineering Department, Bilkent University

4.2 Optimization Objectives — Total Wirelength

4.2 Optimization Objectives — Total Wirelength

Wirelength estimation for a given placement

Half-perimeter Complete Monotone Star model
wirelength graph chain
(HPWL) (clique)

HPWL =9 Clique Length = Chain Length =12 Star Length = 15
(2/p)2e EcliquedM(e) = 145

4.2 Optimization Objectives — Total Wirelength

Wirelength estimation for a given placement (cont‘d.)

Rectilinear Rectilinear Rectilinear Single-trunk
minimum Steiner Steiner Steiner
spanning minimum arborescence tree (STST)
tree (RMST) tree (RSMT) model (RSA)

RMST Length =11 RSMT Length = 10 RSA Length = 10 STST Length = 10

4.2 Optimization Objectives — Total Wirelength

Wirelength estimation for a given placement (cont‘d.)

Preferred method: Half-perimeter wirelength (HPWL)

* Fast (order of magnitude faster than RSMT)

e Equal to length of RSMT for 2- and 3-pin nets

* Margin of error for real circuits approx. 8% |[Chu, |(CCAD 04]

Lipw =wW+h

RSMT Length = 10

4.2 Optimization Objectives — Total Wirelength

Total wirelength with net weights (weighted wirelength)

* For a placement P, an estimate of total weighted wirelength is

L(P) = Ew(net)I(net)
neteP
where w(net) is the weight of net, and L(net) is the estimated wirelength of net.

 Example:

NetS Weights
N, = (a,. by d)) w(N,)=2 ________ |)
N, = (cq, dy, fy) wiN)=4 ;]

N3 e (61, f2) W(N3) — 1

L(P) = Ew(net)-L(net)=2°7+4-4+1-35=353

net&P

4.2 Optimization Objectives — Number of Cut Nets

Cut sizes of a placement

* To improve total wirelength of a placement P, separately calculate the number
of crossings of global vertical and horizontal cutlines, and minimize

LP)= N wp(M)+ ¥ wp(h)
where W(cut) be the set of nets cut by a cutline cut

4.2 Optimization Objectives — Number of Cut Nets

Cut sizes of a placement

* Example: I I

Nets

N; = (ay, by, dy)
N, = (¢4, dy, ;)
N5 = (e4, f)

e Cut values for each global cutline
Wp(vy) =1 Wp(Vy) = 2
Wp(hy) =3 We(hy) = 2
e Total number of crossings in P
We(vy) + Wp(va) + Wp(hy) + Yp(hy) =1+2+3+2=8

4.2 Optimization Objectives — Wire Congestion

Routing congestion of a placement

Formally, the local wire density @s(e) of an edge e between two neighboring
grid cells is

np(e)

op(e)

where np(e) is the estimated number of nets that cross e and
op(€e) is the maximum number of nets that can cross e

Pp(e) =

If s(€) > 1, then too many nets are estimated to cross e, making P more likely
to be unroutable.

The wire density of Pis ~ ®(P) = max(q)]D (e))
eck

where E is the set of all edges

If ®(P) < 1, then the design is estimated to be fully routable, otherwise routing
will need to detour some nets through less-congested edges

4.2 Optimization Objectives — Wire Congestion

Wire Density of a placement

Assume edge capacity is 3 for all edges

ne(hy) = 1 Np(vq) = 1
Ne(hy) = 2 Ne(vz) =0
ne(hs) =0 Nne(v3) = 0
ne(hy) = 1 Np(v4) = 0
Np(hs) = 1 Np(Vs) = 2
Nne(hs) = 0 Np(ve) = 0
Maximum: ne(e) = 2

_ np(e) _ z
O(P) = 5 0(0) =3 » Routable

4.2 Optimization Objectives — Signal Delay

Circuit timing of a placement

e Static timing analysis using actual arrival time (AAT) and required arrival time
(RAT)

— AAT(v) represents the latest transition time at a given node v
measured from the beginning of the clock cycle

— RAT(v) represents the time by which the latest transition at v must complete
in order for the circuit to operate correctly within a given clock cycle.

* For correct operation of the chip with respect to setup (maximum path delay)
constraints, it is required that AAT(v) < RAT(v).

Global Placement

=P 4.3 Global Placement
4.3.1 Min-Cut Placement
4.3.2 Analytic Placement
4.3.3 Simulated Annealing
4.3.4 Modern Placement Algorithms

Global Placement

* Partitioning-based algorithms:

— The netlist and the layout are divided into smaller sub-netlists and sub-regions,
respectively

— Process is repeated until each sub-netlist and sub-region is small enough
to be handled optimally

— Detailed placement often performed by optimal solvers, facilitating a natural
transition from global placement to detailed placement

— Example: min-cut placement

* Analytic techniques:

— Model the placement problem using an objective (cost) function,
which can be optimized via numerical analysis

— Examples: quadratic placement and force-directed placement

* Stochastic algorithms:

— Randomized moves that allow hill-climbing are used to optimize the cost
function

— Example: simulated annealing

Simulated annealing

Stochastic
- -

N

2

Force-directed
placement

- 4

OO0Ooooood

||||||||||||||||

Analytic

8

Quadratic
placement
oooooooog

————-
o
1
1
1
r=-=---

b
c
(]
S
(]
&)

L

o

©

o)

o

o

Min-cut
placement

Partitioning-based
e

4.3.1 Min-Cut Placement

* Uses partitioning algorithms to divide (1) the netlist and (2) the layout region
into smaller sub-netlists and sub-regions

* Conceptually, each sub-region is assigned a portion of the original netlist

* Each cut heuristically minimizes the number of cut nets using, for example,
— Kernighan-Lin (KL) algorithm
— Fiduccia-Mattheyses (FM) algorithm

4.3.1 Min-Cut Placement

Alternating cutline directions Repeating cutline directions

se]
n

49

.

2a

3a 3b 2a

w
ey

—
N
(@)
S
Q

—A——
w
Q

———

1N
Q
D
oy

N

Q
D
P
w
9]

3c

} 3d 2b
i

AN
3
S
Q
— | ——
w
Q
—r Y ——

2b

4.3.1 Min-Cut Placement

Input: netlist Netlist, layout area LA, minimum number of cells per region cells_min
Output: placement P

P=0
regions = ASSIGN(Netlist,LA) // assign netlist to layout area
while (regions '= @) /] while regions still not placed
region = FIRST_ELEMENT(regions) /[first element in regions
REMOVE(regions, region) // remove first element of regions
if (region contains more than cell_min cells)
(sr1,sr2) = BISECT(region) /l divide region into two subregions
/[sr1 and sr2, obtaining the sub-
/[netlists and sub-areas
ADD_TO_ END(regions,sr1) /[add sr1 to the end of regions
ADD_TO_END(regions,sr2) /[add sr2 to the end of regions
else
PLACE(region) Il place region

ADD(P,region) /[add region to P

4.3.1 Min-Cut Placement — Example

Given:

%}

>29J>—5 6

| |

Task: 4 x 2 placement with minimum wirelength using alternative
cutline directions and the KL algorithm

cut,

=)

Vertical cut cut,: L={1,2,3}, R={4,5,6}

: |
0 » ©
@ e KL Algorithm

Cut»] CUt'l

cut,
Horizontal cut cut, : T={1,4}, B={2,0} Horizontal cut cut,g: T={3,5}, B={6,0}

4.3.1 Min-Cut Placement — Terminal Propagation

 Terminal Propagation

— External connections are represented by artificial connection points
on the cutline

— Dummy nodes in hypergraphs

4.3.1 Min-Cut Placement

* Advantages:
— Reasonable fast
— Objective function and be adjusted, e.g., to perform timing-driven placement

— Hierarchical strategy applicable to large circuits

* Disadvantages:

— Randomized, chaotic algorithms — small changes in input lead to large changes
in output

— Optimizing one cutline at a time may result in routing congestion elsewhere

4.3.2 Analytic Placement — Quadratic Placement

* Objective function is quadratic; sum of (weighted) squared Euclidean distance
represents placement objective function

L(P)=%§Cij((xi —xj) i +(yi —yj) 2)

Z,j=1
where n is the total number of cells, and c(i)j) is the connection cost between cells jand j.

e Only two-point-connections

* Minimize objective function by equating its derivative to zero
which reduces to solving a system of linear equations

4.3.2 Analytic Placement — Quadratic Placement

e Similar to Least-Mean-Square Method (root mean square)
* Build error function with analytic form: E(a,b) = E(a-x,- +b-y;)2

7000

y = 1.0001x - 0.3943 .
?=0.69** . S
RMSE = 375.5

6500 -

6000 -

5500

5000 -

4500

4000 -

3500 -

3000 T T T ;
3000 3500 4000 4500 5000 5500 6000 6500 7000

4.3.2 Analytic Placement — Quadratic Placement

n

L(P>=%Ec,j((x,-)+ l-p)?)

i,j=1
where n I1s the total number of cells, and c(/y) Is the connection cost between cells /i and j.

* Each dimension can be considered independently:

L(P)= Y el)oy-x)" L,(P)= 2c(i,j><yi—yj)2
i=1, j=1 i=1, j=1

 Convex quadratic optimization problem: any local minimum solution
is also a global minimum

 Optimal x- and y-coordinates can be found by setting the partial derivatives
of L,(P) and L (P) to zero

4.3.2 Analytic Placement — Quadratic Placement

n

L(P>=%Ec,j((x,-)+ l-p)?)

i,j=1
where n I1s the total number of cells, and c(/y) Is the connection cost between cells /i and j.

* Each dimension can be considered independently:

L(P)= Y @) =x)" L,(P)= zca, Ni=;)’
i=1, =1 i=1, =1
—— ——
BB x _p 0 D) y_b, =0
0X) Y g

where A is a matrix with A[i][j]] = -c(ij) when i #,

and A[/][/]] = the sum of incident connection weights of cell i.

X is a vector of all the x-coordinates of the non-fixed cells, and b, is a vector
with b,[/] = the sum of x-coordinates of all fixed cells attached to i.

Y is a vector of all the y-coordinates of the non-fixed cells, and b, is a vector
with b []] = the sum of y-coordinates of all fixed cells attached to /.

4.3.2 Analytic Placement — Quadratic Placement

n

L(P>=%Ec,j((x,-)+ l-p)?)

i,j=1
where n I1s the total number of cells, and c(/y) Is the connection cost between cells /i and j.

* Each dimension can be considered independently:
n n

L(P)= N el)xi=x,)" Ly(P)= 2c(i,j><yi—yj)2
i=Lj

gl =l =l
—— ——

LAD) _ gx b, =0 =AY -b, =0
0x 5%

* System of linear equations for which iterative numerical methods can be used
to find a solution

4.3.2 Analytic Placement — Quadratic Placement

e Second stage of quadratic placers: cells are spread out to remove overlaps
* Methods:

— Adding fake nets that pull cells away from dense regions toward anchors

— Geometric sorting and scaling

— Partitioning, etc.

R_J BE_B

Cell Spreading Based on Partitioning
N

o Geometric partitioning:

o Enforce partition
constraints based on sizes
of the regions

O Try to respect the relative
cell locations during
partitioning

0 Define center of gravity
for each partition, and
add 1t as a constraint to
the quadratic placer.

o Terminal propagation

CS 612 — Lecture 5 . Mustafa Ozdal . . . 36
Computer Engineering Department, Bilkent University

4.3.2 Analytic Placement — Quadratic Placement

* Advantages:
— Captures the placement problem concisely in mathematical terms
— Leverages efficient algorithms from numerical analysis and available software
— Can be applied to large circuits without netlist clustering (flat)

— Stability: small changes in the input do not lead to large changes in the output

* Disadvantages:

— Connections to fixed objects are necessary: I/O pads, pins of fixed macros, etc.

4.3.2 Analytic Placement — Quadratic Placement

* Mechanical analogy: mass-spring system

kS

— Squared Euclidean distance is proportional to the energy of a spring
between these points

— Quadratic objective function represents total energy of the spring system;
for each movable object, the x (y) partial derivative represents the total force
acting on that object

— Setting the forces of the nets to zero, an equilibrium state is mathematically
modeled that is characterized by zero forces acting on each movable object

— At the end, all springs are in a force equilibrium with a minimal total spring
energy; this equilibrium represents the minimal sum of squared wirelength

— Result: many cell overlaps

4.3.2 Analytic Placement — Force-directed Placement

* Cells and wires are modeled using the mechanical analogy of a mass-spring
system, i.e., masses connected to Hooke’s-Law springs

5

* Attraction force between cells is directly proportional to their distance

* Cells will eventually settle in a force equilibrium — minimized wirelength

4.3.2 Analytic Placement — Force-directed Placement

e Given two connected cells a and b, the attraction force ITal; exerted onaby b is

 — —->

F, =cla,b) (b-a)
where
— ¢(a,b) is the connection weight (priority) between cells a and b, and

- (]; — ;) is the vector difference of the positions of a and b in the Euclidean plane

* The sum of forces exerted on a cell i connected to othercells 1...j is

F, - ZF,,-
c(i,7)=0

» Zero-force target (ZFT): position that minimizes this sum of forces

4.3.2 Analytic Placement — Force-directed Placement

Zero-Force-Target (ZFT) position of cell i

a

/"
d< £ >b

7N

ZFT Position <

min F,=c(i,a)- @—1)+c(ib)- (b—1)+c(ic)- (¢—1)+c(id) - {d—]

)

4.3.2 Analytic Placement — Force-directed Placement

Basic force-directed placement

* lteratively moves all cells to their respective ZFT positions

* x-and y-direction forces are set to zero:

2c(i,j>-<x?—x?>=o 2c(i,j>-<y?—y?)=o

c(1,7)=0 c(i,j)=0

e Rearranging the variables to solve for x° and y yields
.o 0 .0
c(i, j) x; c(i,) y; Computation of
0 c(i,))=0 0 c(i,j)=0 ZFT position of cell i

Xi = .. Vi = . connected with
Zc(la]) 26(19]) cells 1 ... j
c(1,7)=0 c(i,j)=0

4.3.2 Analytic Placement — Force-directed Placement

Example: ZFT position

Given:
— Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
— Pad positions: In1 (2,2), In2(0,2), In3 (0,0), Out(2,0)
— Weighted connections: c¢(a,ln1) =8, c(a,In2) =10, c(a,n3) =2, c(a,Out) =2

Task: find the ZFT position of cell a

In2 In1
In1 I . ________ . _________
In2 D— Out i i
| 1 o s e
In3 : :
In3 Out

4.3.2

Analytic Placement — Force-directed Placement

Example: ZFT position

Given:

Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
— Pad positions: In1 (2,2), In2(0,2), In3 (0,0), Out(2,0)

Solution:

c(a,j)"x;
RO c(z;:éo _ c(a,dnl) xpy +c(a,dn2) Xy, +c(a,In3) xp,3 +c(a,0ut) xg,, 8:2+10-0+2-0+2-2 20

: qu%ﬁ c(a, Inl) + c(a,In2) +c(a, 3) + c(a Out) ST sel0s2e2 2
c(i,j)=0

}kayﬁ
yo _ cfP=0 _ c(a,Inl)-y, +c(a,In2)y,, +c(a,n3): y,; +c(a,Out) y,,
¢ Zc(a,j) c(a,Inl) +c(a,In2) + c(a,In3) + c(a,Out)

c(i,j)=0

8:2410:242:042:0 36

8+10+2+2 Y

~1.6

ZFT position of cell ais (1,2)

4.3.2 Analytic Placement — Force-directed Placement

Example: ZFT position

Given:
— Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
— Pad positions: In1 (2,2), In2(0,2), In3 (0,0), Out(2,0)

Solution:

ZFT position of cell ais (1,2)

4.3.2 Analytic Placement — Force-directed Placement

Input: set of all cells V
Output: placement P

P = PLACE(V)
loc = LOCATIONS(P)
foreach (cell c € V)
status[c] = UNMOVED
while (ALL_MOVED(V) || 'STOP())

¢ = MAX DEGREE(V,status)

ZFT pos = ZFT _POSITION(c)
if (loc[ZFT _pos] == Q)
loc[ZFT pos] =c¢
else
RELOCATE(c,loc)
status[c] = MOVED

/[arbitrary initial placement
/| set coordinates for each cell in P

/l continue until all cells have been
/[moved or some stopping

/[criterion is reached

/[unmoved cell that has largest

/[number of connections

/I ZFT position of ¢

/[if position is unoccupied,

/I move ctoits ZFT position

// use methods discussed next
/I mark ¢ as moved

4.3.2 Analytic Placement — Force-directed Placement

Finding a valid location for a cell with an occupied ZFT position

(p: incoming cell, g: cell in p's ZFT position)

* If possible, move p to a cell position close to q.

* Chain move: cell p is moved to cells g’s location.

— Cell g, in turn, is shifted to the next position. If a cell r is occupying this space,
cell r is shifted to the next position.

— This continues until all affected cells are placed.

 Compute the cost difference if p and g were to be swapped.
If the total cost reduces, i.e., the weighted connection length L(P) is smaller,

then swap p and q.

Analytic Placement — Force-directed Placement (Example)

Given:

Nets Weight -

Ny = (bs, bs) o(Ny) =2 B
N> = (b, bs) c(No) =1 |

4.3.2 Analytic Placement — Force-directed Placement (Example)

Given:
Nets Weight -
Ny = (b, by) o(Ny) =2 u B
N2 = (b, bs) c(N2) =1 | |
0 1 2
| L(P)
Incoming ZFT position Cellg pefore L(P) / placement
cell p of cell p move after move
N
N clb.)x; o4
b3 L0 _ clBi)=0 _20+11 0 b L(P)=5 L(P)=5 b3 | b>] b1
by = N ;

cby,j) 2+l
c(b3,7)#0 = No swapping of b; and b

4.3.2 Analytic Placement — Force-directed Placement (Example)

Given:
Nets Weight -
Ny = (b, by) o(Ny) =2 u B
N = (b2, bs) c(N2) =1 | |
0 1 2
, L(P)
Incoming ZFT position Cellg pefore L(P) / placement
cell p of cell p move after move
.0
N clb.)x; 4
bs L0 _ clBi)=0 _20+11 o0 by L(P)=5 L(P)=5 b T b
" c(bs.j) 2+
c(b3,7)#0 — No swapping of bs and b
PECHRY
xO _C(bZaj)#O _1°2_2 *—o
b2 b, ~ C(bz,j) B 1 B b3 L(P) =93 L(P) =3 b1 L . b3 b2
c(b,,j)=0

— Swapping of b, and b;

4.3.2 Analytic Placement — Force-directed Placement

* Advantages:
— Conceptually simple, easy to implement

— Primarily intended for global placement, but can also be adapted to detailed
placement

* Disadvantages:
— Does not scale to large placement instances
— Is not very effective in spreading cells in densest regions

— Poor trade-off between solution quality and runtime

* In practice, FDP is extended by specialized techniques for cell spreading

— This facilitates scalability and makes FDP competitive

Modern Force-Directed Placement Algorithms

1 |
o Similar to the quadratic placement algorithms:

o Cell locations are determined through quadratic optimization

o Cell overlaps are eliminated through repulsive forces
o Repulsive forces: Perturbation to the quadratic formulation
o Move cells from over-utilized regions to under-utilized regions

o Overlaps not resolved 1n a single 1teration

o Repulsive forces updated based on the cell distribution 1in every
iteration

o Accumulated over multiple iterations

CS 612 — Lecture 5 . Mustafa Ozdal . . . 52
Computer Engineering Department, Bilkent University

4.3.3 Simulated Annealing

Cost

IHNINENEINEEE

UL TTITE o 11T

M *MTT T TTTT]

v

Time
* Analogous to the physical annealing process

— Melt metal and then slowly cool it
— Result: energy-minimal crystal structure

* Modification of an initial configuration (placement) by moving/exchanging
of randomly selected cells

— Accept the new placement if it improves the objective function

— If no improvement: Move/exchange is accepted with temperature-dependent
(i.e., decreasing) probability

4.3.3 Simulated Annealing — Algorithm

Input: set of all cells V
Output: placement P

T=T,
P = PLACE(V)
while (T > T,,,)
while (ISTOP())
new P = PERTURB(P)
Acost = COST(new_P) — COST(P)
if (Acost < 0)
P = new_P
else
r= RANDOM(0,1)
if (I’< e -Acost/T)
P=new P
T'=a-T

/[set initial temperature
/[arbitrary initial placement

/[not yet in equilibrium at T

// cost improvement

/[accept new placement
/ no cost improvement
/l random number [0,1)
/[probabilistically accept

[[reduce T,0<a<1

Simulated Annealing — Animation
1

Chain number: 51

900 —
) (3 -k« 5
N IAAN Vo
5o -«J‘i 1&)«\‘ <7 400 —
ol e\
a0 ’n’.‘ @
o
“ 300
200 —
100 —
[| | | | |
=7 1 0 1 2 3

log10{temperature)

Source: http://www.biostat.jhsph.edu/~iruczins/teaching/misc/annealing/animation.html

CS 612 — Lecture 5 . Mustafa Ozdal . . . 55
Computer Engineering Department, Bilkent University

4.3.3 Simulated Annealing

* Advantages:

— Can find global optimum (given sufficient time)
— Well-suited for detailed placement

* Disadvantages:
— Very slow

— To achieve high-quality implementation, laborious parameter tuning is necessary

— Randomized, chaotic algorithms - small changes in the input
lead to large changes in the output

* Practical applications of SA:

— Very small placement instances with complicated constraints

— Detailed placement, where SA can be applied in small windows
(not common anymore)

- FPGA layout, where complicated constraints are becoming a norm

4.3.4 Modern Placement Algorithms

* Predominantly analytic algorithms

* Solve two challenges: interconnect minimization and cell overlap removal
(spreading)

e Two families:
—— ——

Non-convex

Quadratic placers L
optimization placers

4.3.4 Modern Placement Algorithms

~g—

Quadratic placers

* Solve large, sparse systems of linear equations (formulated
using force-directed placement) by the Conjugate Gradient algorithm

* Perform cell spreading by adding fake nets that pull cells away
from dense regions toward carefully placed anchors

4.3.4 Modern Placement Algorithms

g

Non-convex
optimization placers

* Model interconnect by sophisticated differentiable functions,
e.g., log-sum-exp is the popular choice

* Model cell overlap and fixed obstacles by additional (non-convex) functional
terms

* Optimize interconnect by the non-linear Conjugate Gradient algorithm
* Sophisticated, slow algorithms

* All leading placers in this category use netlist clustering to improve
computational scalability (this further complicates the implementation)

4.3.4 Modern Placement Algorithms

— —
Quadratic Non-convex
Placement optimization placers

Pros and cons:
* Quadratic placers are simpler and faster, easier to parallelize
* Non-convex optimizers tend to produce better solutions

* As of 2011, quadratic placers are catching up in solution quality
while running 5-6 times faster

4.4 Legalization and Detailed Placement

=P 4.4 Legalization and Detailed Placement

4.4 Legalization and Detailed Placement

* Global placement must be legalized
— Cell locations typically do not align with power rails

— Small cell overlaps due to incremental changes, such as cell resizing or buffer
insertion

* Legalization seeks to find legal, non-overlapping placements for all placeable
modules

* Legalization can be improved by detailed placement techniques, such as
— Swapping neighboring cells to reduce wirelength
— Sliding cells to unused space

* Software implementations of legalization and detailed placement are often
bundled

4.4 Legalization and Detailed Placement

Legal positions of standard cells between VDD and GND rails

. e DU "’ft ;;T'j\

i{ Standard Cell Row

-
e e e o
- ; ;3 %7 ;v“-‘ ‘,: < r_] qoay v;n‘ :q\ R T A
e e qrd_nw.uaii\h-d1'-mff4gm

| IV |[NAND [NOR]

Summary of Chapter 4 — Problem Formulation and Objectives

* Row-based standard-cell placement

— Cell heights are typically fixed, to fit in rows (but some cells may have double
and quadruple heights)

— Legal cell sites facilitate the alignment of routing tracks, connection to power
and ground rails

* Wirelength as a key metric of interconnect
— Bounding box half-perimeter (HPWL)
— Cliques and stars
— RMSTs and RSMTs

* Objectives: wirelength, routing congestion, circuit delay
— Algorithm development is usually driven by wirelength

— The basic framework is implemented, evaluated and made competitive
on standard benchmarks

— Additional objectives are added to an operational framework

Summary of Chapter 4 — Global Placement

* Combinatorial optimization techniques: min-cut and simulated annealing
— Can perform both global and detailed placement
— Reasonably good at small to medium scales
— SA is very slow, but can handle a greater variety of constraints

— Randomized and chaotic algorithms — small changes at the input can lead
to large changes at the output

* Analytic techniques: force-directed placement and non-convex optimization
— Primarily used for global placement
— Unrivaled for large netlists in speed and solution quality
— Capture the placement problem by mathematical optimization
— Use efficient numerical analysis algorithms

— Ensure stability: small changes at the input can cause only small changes
at the output

— Example: a modern, competitive analytic global placer takes 20mins for global
placement of a netlist with 2.1M cells (single thread, 3.2GHz Intel CPU)

Summary of Chapter 4 — Legalization and Detailed Placement

Legalization ensures that design rules & constraints are satisfied

— All cells are in rows

— Cells align with routing tracks

— Cells connect to power & ground rails

— Additional constraints are often considered, e.g., maximum cell density

Detailed placement reduces interconnect, while preserving legality
— Swapping neighboring cells, rotating groups of three

— Optimal branch-and-bound on small groups of cells

— Sliding cells along their rows

— Other local changes

* Extensions to optimize routed wirelength, routing congestion and circuit timing

* Relatively straightforward algorithms, but high-quality, fast implementation
is important

* Most relevant after analytic global placement, but are also used after min-cut
placement

* Rule of thumb: 50% runtime is spent in global placement, 50% in detailed
placement

