
CS425: Algorithms for Web Scale Data

Most of the slides are from the Mining of Massive Datasets book.

These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

http://www.mmds.org/


 Classic model of algorithms

 You get to see the entire input, then compute 
some function of it

 In this context, “offline algorithm”

 Online Algorithms

 You get to see the input one piece at a time, and 
need to make irrevocable decisions along the way

2J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Bipartite Graphs

 Bipartite graph:

 Two sets of nodes: A and B

 There are no edges between nodes that belong to the same set. 

 Edges are only between nodes in different sets.
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Bipartite Matching

 Maximum Bipartite Matching: Choose a subset of edges EM such that:

1. Each vertex is connected to at most one edge in EM

2. The size of EM is as large as possible

 Example: Matching projects to groups
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M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching = |M| = 3
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Bipartite Matching

 Maximum Bipartite Matching: Choose a subset of edges EM such that:

1. Each vertex is connected to at most one edge in EM

2. The size of EM is as large as possible

 Example: Matching projects to groups

1

2

3

4

a

b

c

d

Projects Groups

M = {(1,c),(2,b),(3,d),(4,a)} is a 
maximum matching

Cardinality of matching = |M| = 4



M = {(1,c),(2,b),(3,d),(4,a)} is a 
perfect matching

7J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Perfect matching … all vertices of the graph are matched

Maximum matching …  a matching that contains the largest possible number of matches
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 Problem: Find a maximum matching for a 
given bipartite graph

 A perfect one if it exists

 There is a polynomial-time offline algorithm 
based on augmenting paths (Hopcroft & Karp 1973,

see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

 But what if we do not know the entire 
graph upfront?

8J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm
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Online Bipartite Matching Problem

 Initially, we are given the set of projects

 The TA receives an email indicating the preferences of one group.

 The TA must decide at that point to either:

assign a prefered project to this group, or

not assign any projects to this group

 Objective is to maximize the number of preferred assignments

Note: This is not how your projects were assigned 
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Greedy Online Bipartite Matching

 Greedy algorithm 

For each group g

Let Pg be the set of projects group g prefers

if there is a p ∈ Pg that is not already assigned to another group

assign project p to group g

else

do not assign any project to g
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 For input I, suppose greedy produces 
matching Mgreedy while an optimal 
matching is Mopt

Competitive ratio = 
minall possible inputs I (|Mgreedy|/|Mopt|)

(what is greedy’s worst performance over all possible inputs I)

12J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Analysis of the Greedy Algorithm

Step 1: Find a lower bound for the competitive ratio

A

L

B

Definitions:

Mo: The optimal matching

Mg: The greedy matching

L: The set of vertices from A 

that are in Mo, but not in Mg

R: The set of vertices from B

that are connected to at least 

one vertex in L

R
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Analysis of the Greedy Algorithm (cont’d)

 Claim: All vertices in R must be in Mg

Proof: 

By contradiction, assume there is a vertex v ∈ R that is not in Mg. 

There must be another vertex u ∈ L that is connected to v.

By definition u is not in Mg either.

When the greedy algorithm processed edge (u, v), both vertices u and v

were available, but it matched none of them. This is a contradiction!

 Fact: |Mo| ≤ |Mg| + |L|

Adding the missing elements to Mg will make its size to be at least the 

size of the optimal matching.

 Fact: |L| ≤ |R|

Each vertex in L was matched to another vertex in Mo
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Analysis of the Greedy Algorithm (cont’d)

 Fact: |R| ≤ |Mg|

All vertices in R are in Mg

 Summary:

|Mo| ≤ |Mg| + |L|

|L| ≤ |R|

|R| ≤ |Mg|

 Combine:

|Mo| ≤ |Mg| + |L| 

≤ |Mg| + |R|

≤ 2 |Mg| 

Lower-bound for competitive ratio:

|𝑀𝑔|

|𝑀𝑜|
≥

1

2
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Analysis of the Greedy Algorithm (cont’d)

 We have shown that the competitive ratio is at least 1/2. However, can it 

be better than 1/2?

 Step 2: Find an upper bound for competitive ratio:

Typical approach: Find an example.

If there is at least one example that has competitive ratio of r,

it must mean that competitive ratio cannot be greater than r.
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Competitive ratio = ½ for this example

So, competitive ratio <= ½ 

The optimal matching is: (4, a), (3,b), (1,c), (2, d)

Greedy matching:
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Greedy Matching Algorithm

 We have shown that competitive ratio for the greedy algorithm is 1/2.

 We proved that both lower bound and upper bound is 1/2

 Conclusion: The online greedy algorithm can result in a matching 

solution that has half the size of an optimal offline algorithm in the 

worst case.





 Banner ads (1995-2001)

 Initial form of web advertising

 Popular websites charged 
X$ for every 1,000 
“impressions” of the ad

 Called “CPM” rate 
(Cost per thousand impressions)

 Modeled similar to TV, magazine ads

 From untargeted to demographically targeted

 Low click-through rates

 Low ROI for advertisers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 19

CPM…cost per mille

Mille…thousand in Latin



 Introduced by Overture around 2000

 Advertisers bid on search keywords

 When someone searches for that keyword, the 
highest bidder’s ad is shown

 Advertiser is charged only if the ad is clicked on

 Similar model adopted by Google with some 
changes around 2002

 Called Adwords

20J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



21J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Performance-based advertising works!

 Multi-billion-dollar industry

 Interesting problem:
What ads to show for a given query? 

 (This lecture)

 If I am an advertiser, which search terms 
should I bid on and how much should I bid? 

 (Not focus of this lecture)

22J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Given:
 1. A set of bids by advertisers for search queries

 2. A click-through rate for each advertiser-query pair

 3. A budget for each advertiser (say for 1 month)

 4. A limit on the number of ads to be displayed with 
each search query

 Respond to each search query with a set of 
advertisers such that:
 1. The size of the set is no larger than the limit on the 

number of ads per query

 2. Each advertiser has bid on the search query

 3. Each advertiser has enough budget left to pay for 
the ad if it is clicked upon

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23



 A stream of queries arrives at the search 
engine: q1, q2, …

 Several advertisers bid on each query
 When query qi arrives, search engine must 

pick a subset of advertisers whose ads are 
shown

 Goal: Maximize search engine’s revenues

 Simplification: Instead of raw bids, use the 
“expected revenue per click” (i.e., Bid*CTR)

 Clearly we need an online algorithm!

24J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Advertiser Bid CTR Bid * CTR
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1.5 cents
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Advertiser Bid CTR Bid * CTR
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 Two complications:

 Budget

 CTR of an ad is unknown

 Each advertiser has a limited budget

 Search engine guarantees that the advertiser 
will not be charged more than their daily budget

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 27



 CTR: Each ad has a different likelihood of 
being clicked

 Advertiser 1 bids $2, click probability = 0.1

 Advertiser 2 bids $1, click probability = 0.5

 Clickthrough rate (CTR) is measured historically

 Very hard problem: Exploration vs. exploitation
Exploit: Should we keep showing an ad for which we have 
good estimates of click-through rate 
or
Explore:  Shall we show a brand new ad to get a better 
sense of its click-through rate

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28
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Simplified Problem

 We will start with the following simple version of Adwords:

 One ad shown for each query

 All advertisers have the same budget B

 All bids are $1

 All ads are equally likely to be clicked and CTR = 1

 We will generalize it later.
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Greedy Algorithm

 Simple greedy algorithm:

For the current query q, pick any advertiser who:

1. has bid 1 on q

2. has remaining budget

 What is the competitive ratio of this greedy algorithm?

 Can we model this problem as bipartite matching?
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Bipartite Matching Model

B nodes 

for each

advertiser

bids queries

Online algorithm:

For each new query q

assign a bid if available

Equivalent to the online 

greedy bipartitite matching 

algorithm, which had 

competitive ratio = 1/2.

So, the competitive ratio

of this algorithm is also ½.



 Two advertisers A and B

 A bids on query x, B bids on x and y

 Both have budgets of $4

 Query stream: x x x x y y y y

 Worst case greedy choice: B B B B _ _ _ _ 

 Optimal: A A A A B B B B

 Competitive ratio = ½

 This is the worst case!
 Note: Greedy algorithm is deterministic – it always 

resolves draws in the same way

32J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 BALANCE Algorithm by Mehta, Saberi, 
Vazirani, and Vazirani

 For each query, pick the advertiser with the 
largest unspent budget

 Break ties arbitrarily (but in a deterministic way)

33J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Two advertisers A and B

 A bids on query x, B bids on x and y

 Both have budgets of $4

 Query stream: x x x x y y y y

 BALANCE choice: A B A B B B _ _

 Optimal: A A A A B B B B

 Competitive ratio ≤ ¾

34J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Analyzing BALANCE: Simple Case

 Try to prove a lower bound for the competitive ratio

 i.e. Consider the worst-case behavior of BALANCE algorithm

 Start with the simple case:

 2 advertisers A1 and A2 with equal budgets B

 Optimal solution exhausts both budgets

 All queries assigned to at least one advertiser in the optimal solution

 Remove the queries that are not assigned by the optimal algorithm

 This only makes things worse for BALANCE

A1 A2

B
Queries allocated to A1 in the optimal solution

Queries allocated to A2 in the optimal solution
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Analysis of BALANCE: Simple Case

 Claim: BALANCE must exhaust the budget of at least one advertiser

 Proof by contradiction: Assume both advertisers have left over budgets

 Consider query q that is assigned in the optimal solution, but not in 

BALANCE.

 Contradiction: q should have been assigned to at least the same 

advertiser because both advertisers have available budget.

Goal: Find a lower bound for:
|𝑺𝒃𝒂𝒍𝒂𝒏𝒄𝒆|

|𝑺𝒐𝒑𝒕𝒊𝒎𝒂𝒍|
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Analysis of BALANCE: Simple Case

x

y
B

A1 A2

x

Optimal solution

A1 A2

B

BALANCE solution

 Without loss of generality, assume the whole budget of A2 is exhausted. 

 Claim: All blue queries (the ones assigned to A1 in the optimal solution) 

must be assigned to A1 and/or A2 in the BALANCE solution. 

 Proof by contradiction: Assume a blue query q not assigned to either A1 or A2. 

Since budget of A1 is not exhausted, it should have been assigned to A1. 

z
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Analysis of BALANCE: Simple Case

Optimal solution

A1 A2

B

 Some of the green queries (the ones assigned to A2 in the optimal 

solution) are not assigned to either A1 or A2. Let x be the # of such 

queries. 

 Prove an upper bound for x

 Worst case for the BALANCE algorithm.

x

y
B

A1 A2

x

BALANCE solution

z
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Analysis of BALANCE: Simple Case

Optimal solution

A1 A2

B

 Consider two cases for z:

 Case 1: z ≥ B/2

size (A1) = y + z  ≥ B/2

size (A1 + A2) = B + y + z ≥ 3B/2

x

y
B

A1 A2

x

BALANCE solution

z
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Analysis of BALANCE: Simple Case

Optimal solution

A1 A2

B

 Case 2: z < B/2

 Consider the time when last 

blue query was assigned to A2:

x

y
B

A1 A2

x

BALANCE solution

z

A1 A2

≥ B/2≥ B/2

A2 has remaining budget of ≤ B/2

For A2 to be chosen, A1 must also have remaining budget of ≤ B/2 
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Analysis of BALANCE: Simple Case

Optimal solution

A1 A2

B

 Case 2: z < B/2

size (A1) ≥ B/2

size (A1 + A2) = B + size(A1) ≥ 3B/2

x

y
B

A1 A2

x

BALANCE solution

z
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Analysis of BALANCE: Simple Case

 Conclusion:

|𝑺𝒃𝒂𝒍𝒂𝒏𝒄𝒆|

|𝑺𝒐𝒑𝒕𝒊𝒎𝒂𝒍|
≥

𝟑𝑩

𝟐

𝟐𝑩
=

𝟑

𝟒

Assumption: Both advertisers have the same budget B

 Can we generalize this result to any 2-advertiser problem?

 The textbook claims we can.

 Exercise: Find a counter-example to disprove textbook’s claim.

Hint: Consider two advertisers with budgets B and B/2.



 For multiple advertisers, worst competitive 
ratio of BALANCE is 1–1/e = approx. 0.63

 Interestingly, no online algorithm has a better 
competitive ratio!

 See textbook for the worst-case analysis.

43J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Arbitrary bids and arbitrary budgets!
 In a general setting BALANCE can be terrible

 Consider two advertisers A1 and A2

 A1: x1 = 1, b1 = 110

 A2: x2 = 10, b2 = 100

 Assume we see 10 instances of q

 BALANCE always selects A1 and earns 10

 Optimal earns 100

44J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Arbitrary bids: consider query q, bidder i
 Bid = xi

 Budget = bi

 Amount spent so far = mi

 Fraction of budget left over fi = 1-mi/bi

 Define i(q) = xi(1-e-fi)

 Allocate query q to bidder i with largest 
value of i(q)

 Same competitive ratio (1-1/e)

45J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Conclusions

 Web Advertising: Try to maximize ad revenue from a stream of queries

 Online algorithms: Make decisions without seeing the whole input set

 Approximation algorithms: Theoretically prove upper and lower bounds 

w.r.t. the optimal solutions.


