

Communication Cost Model

□ The model we will use:

Communication cost = sum of input sizes to each stage

- □ Output sizes are ignored
 - If the output is large, it's likely that it will be input to another stage
 - The real outputs are typically small, e.g. some summary statistics, etc.
- □ Reading from disk is part of the communication cost
 - e.g. The input to the map stage can be from the disk of a reduce task at a different node
- □ Analysis is independent of scheduling decisions
 - e.g. Map and reduce tasks may or may not be assigned to the same node.

Definitions: Replication Rate & Reducer Size

- □ Replication rate: Avg # of key-value pairs generated by Map tasks per input
 - The communication cost between Map and Reduce is determined by this
 - Donated as r
- □ Reducer size: Upper bound for the size of the value list corresponding to a *single* key
 - Donated as q
 - □ Choose q small enough such that:
 - 1. there are many reducers for high levels of parallelism
 - 2. the data for a reducer fits into the main memory of a node
- ☐ Typically **q** and **r** inversely proportional
 - Tradeoff between communication cost and parallelism/memory requirements.

Example: Join with MapReduce

```
□ Map:
```

 \blacksquare For each input tuple $\mathbb{R}(a, b)$:

```
Generate \langle \text{key} = \mathbf{b}, \text{ value} = (\mathbf{R'}, \mathbf{a}) \rangle
```

 \blacksquare For each input tuple S(b, c):

Generate
$$\langle \mathbf{key} = \mathbf{b}, \mathbf{value} = (\mathbf{S}, \mathbf{c}) \rangle$$

□ Reduce:

- Input: <b, value list>
- In the value list:
 - Pair each entry of the form ('R', a) with each entry ('S', c), and output:

$$\langle a, b, c \rangle$$

Replication rate:

$$r = 1$$

Communication cost:

Reducer size (worst case):

$$q = |R| + |S|$$

Example: Single-Step Matrix-Matrix Multiplication

□ Map(input):

```
for each \mathbf{m_{ij}} entry from matrix \mathbf{M}:

for \mathbf{k} = 1 to \mathbf{n}

generate <\mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = ('\mathbf{M'}, \mathbf{j}, \mathbf{m_{ij}}) >

for each \mathbf{n_{jk}} entry from matrix \mathbf{N}:

for \mathbf{i} = 1 to \mathbf{n}

generate <\mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = ('\mathbf{N'}, \mathbf{j}, \mathbf{n_{jk}}) >
```

□ Reduce(key, value_list)

```
\begin{array}{l} \textbf{sum} \leftarrow 0 \\ \text{for each pair } (\textbf{M, j, m}_{ij}) \text{ and } (\textbf{N, j, n}_{jk}) \text{ in value\_list} \\ \textbf{sum} += \textbf{m}_{ij} \cdot \textbf{n}_{jk} \\ \text{output } (\textbf{key, sum}) \end{array}
```

Assume both M and N have size nxn

Replication rate:

r = n

Communication cost:

 $2n^2 + 2n^3$

Reducer size:

q = 2n

A Graph Model for MapReduce Algorithms

- □ Define a vertex for each input and output
- □ Define edges reflecting which inputs each output needs
- □ Every MapReduce algorithm has a schema that assigns outputs to reducers.
- □ Assume that max reducer size is **q**.
- □ Assignment Requirements:
 - 1. No reducer can be assigned more than **q** inputs.
 - 2. Each output is assigned to at least one reducer that receives all inputs needed for that output.

Example: Single-Step Matrix-Matrix Multiplication

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} e & f \\ g & h \end{array}\right] = \left[\begin{array}{cc} i & j \\ k & l \end{array}\right]$$

We have assigned each output to a single reducer. The replication rate r = nThe reducer size q = 2n

Naïve Similarity Join

- \square Objective: Given a large set of elements X and a similarity measure $s(x_1, x_2)$, output the pairs that have similarity above a given threshold.
 - Locality sensitive hashing is not used for the sake of this example.
- □ Example:
 - Each element is an image of 1M bytes
 - There are 1M images in the set
 - About $5x10^{11}$ (500B) image comparisons to make

10

Similarity Join with MapReduce (First Try)

□ Let **n** be the # of pictures in the set.

□ <u>Map:</u>

```
for each picture P_i do:
for each j=1 to n (except i)
generate <key = (i,j), value = P_i>
```

Replication rate r = n-1Reducer size q = 2Communication cost = n + n(n-1)# of reducers = n(n-1)/2

□ Reduce (key, value_list)

```
compute sim(P_i, P_j)
output (i,j) if similarity is above threshold
```

11

Example: 1M pictures with 1MByte size each

□ Communication cost:

```
n(n-1) pictures communicated from Map to Reduce total # bytes transferred = 10^{18}
```

□ Assume gigabit ethernet:

```
time to transfer 10^{18} bytes = 10^{10} seconds (~300 years)
```

- □ Replication rate r = n-1
- □ Reducer size q = 2
- \Box Communication cost = n + n(n-1)
- \square # of reducers = n(n-1)/2

Graph Model

Our MapReduce algorithm:

One reducer per output.

P_i must be sent to each output.

Replication rate r = n-1

Reducer size q = 2

What if a reducer *covers* multiple outputs?

Graph Model: Multiple Outputs per Reducer

Replication rate & communication cost reduced.

How to do the grouping?

Grouping Outputs

- \Box Define **g** intervals between **1** and **n**.
- □ Reducer (u,v) will be responsible for comparing all inputs in range u with all inputs in range v.

Reducer (2, 3) will compare all entries in interval 2 with all entries in interval 3.

Similarity Join with Grouping

- \Box Let **n** be the number of inputs, and **g** be the number of groups.
- □ Map:

```
for each P_i in the input

let \mathbf{u} be the group to which \mathbf{i} belongs

for \mathbf{v} = \mathbf{1} to \mathbf{g}

generate < \mathbf{key} = (\mathbf{u}, \mathbf{v}), \mathbf{value} = (\mathbf{i}, P_i) > \mathbf{value}
```

□ Reduce(key=(u,v), value_list)

for each i that belongs to group u in value_list

for each j that belongs to group v in value_list

compute sim(P_i, P_j), and output (i, j) if it is above threshold.

Problem:

 P_i will be sent to (g_i, g_i)

 P_j will be sent to (g_j, g_i)

Similarity Join with Grouping

- \Box Let **n** be the number of inputs, and **g** be the number of groups.
- □ Map:

```
for each P_i in the input
let u be the group to which i belongs
for v = 1 to g
generate < key = [min(u, v), max(u, v)], value = (i, P_i) >
```

Single key generated for (u,v) and (v,u)

□ Reduce(key=(u,v), value_list)

```
for each i that belongs to group u in value_list
for each j that belongs to group v in value_list
compute sim(P<sub>i</sub>, P<sub>j</sub>), and output (i, j) if it is above threshold.
```

- 17

Example

Example: If g = 4, the highlighted comparisons will be performed.

There will be a reducer for each key (u, v), where $u \le v$

Example

Which reducers will receive and use P_i in group 2?

Reducers: (1, 2), (2, 2), (2, 3), (2, 4)

Complexity Analysis

□ Replication rate:

$$r = g$$

□ Reducer size:

$$q = 2n/g$$

□ Communication cost:

□ # of reducers:

$$g(g+1)/2$$

Example: 1M pictures with 1MByte size each

- □ Let g = 1000
- □ Reducer size $\mathbf{q} = 2\mathbf{n}/\mathbf{g}$ memory needed for one node: ~2GB (reasonable)
- □ Communication cost = $\mathbf{n} + \mathbf{ng}$ total # bytes transferred = $\sim 10^{15}$ (still a lot, but 1000x less than before)
- \Box # of reducers = g(g+1)/2there are $\sim 500 K$ reducers (enough parallelism for 1000s of nodes)
- \square What if g = 100?

21

Tradeoff Between Replication Rate and Reducer Size

Replication rate
$$r = g$$
Reducer size $q = 2n/g$
 $q = 2n/r$
 $q = 2n/r$

- □ Replication rate and reducer size are inversely proportional.
- □ Reducing replication rate will reduce communication, but will increase reducer size.
 - Extreme case: r = 1 and q = 2n. There is a single reducer doing all the comparisons.
 - Extreme case: r = n and q = 2. There is a reducer for each pair of inputs.
- □ Need to choose **r** small enough such that the data fits into local DRAM and there's enough parallelism.

Reminder: Matrix-Matrix Multiplication without Grouping

Each m_{ij} needs to be sent to each reducer $(i,\,k)$ for all k

Reminder: Matrix-Matrix Multiplication without Grouping

Each njk needs to be sent to each reducer (i, k) for all i

Replication rate r = n

Multiple Outputs per Reducer

Notation:

- j: row/column index of an individual matrix entry
- J: set of indices that belong to the Jth interval.

Let reducer (I,K) be responsible for computing all p_{ik} where:

$$i \in I$$
 and $k \in K$

Multiple Outputs per Reducer

Which reducers need m_{ij} ? Reducers (I, K) for all $1 \le K \le g$

Replication rate r = g

Multiple Outputs per Reducer

Which reducers need n_{jk} ? Reducers (I, K) for all $1 \le I \le g$

Replication rate r = g

1D Matrix Decomposition

Which matrix elements will reducer (I, K) receive?

Ith row stripe of M and Kth column stripe of N

MapReduce Formulation

■ <u>Map</u>:

```
for each element \mathbf{m}_{ij} from matrix \mathbf{M} for \mathbf{K} = \mathbf{1} to \mathbf{g} generate < \mathbf{key} = (\mathbf{I}, \mathbf{K}), \mathbf{value} = (\mathbf{M'}, \mathbf{i}, \mathbf{j}, \mathbf{m}_{ij}) > for each element \mathbf{n}_{jk} from matrix \mathbf{N} for \mathbf{I} = \mathbf{1} to \mathbf{g} generate < \mathbf{key} = (\mathbf{I}, \mathbf{K}), \mathbf{value} = (\mathbf{N'}, \mathbf{j}, \mathbf{k}, \mathbf{n}_{jk}) >
```

□ Reduce(key=(I,K), value_list)

```
for each \mathbf{i} \subseteq \mathbf{I} and for each \mathbf{k} \subseteq \mathbf{K}
\mathbf{p_{ik}} = 0
for \mathbf{j} = 1 to \mathbf{n}
\mathbf{p_{ik}} += \mathbf{m_{ij}} \cdot \mathbf{n_{jk}}
output \langle \mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = \mathbf{p_{ik}} \rangle
```

Replication rate:

$$r = g$$

Communication cost:

$$2n^2 + 2gn^2$$

Reducer size:

$$q = 2n^2/g$$

of reducers:

 g^2

Communication Cost vs. Reducer Size

Replication rate vs. reducer size

$$q = 2n^2/g$$
 \rightarrow $q = 2n^2/r$ \rightarrow $qr = 2n^2$

Communication cost vs. reducer size

$$cost = 2n^2 + 2gn^2 = 2n^2 + 4n^4/q$$

Inverse relation between communication cost and reducer size.

Reminder: q value chosen should be small enough such that:

Local memory is sufficient There's enough parallelism Replication rate:

$$r = g$$

Communication cost:

$$2n^2 + 2gn^2$$

Reducer size:

$$q = 2n^2/g$$

of reducers:

 g^2

Two Stage MapReduce Algorithm

□ What are we trying to achieve?

A better tradeoff between replication rate r and reducer size q

The previous algorithm: $qr = 2n^2$

We will show that we can achieve $qr^2 = 2n^2$

For the same reducer size, the replication rate will be smaller

- □ <u>Reminder</u>: Two-stage MapReduce without grouping:
 - Stage 1: "Join" matrix entries that need to be multiplied together
 - Stage 2: Sum up products to compute final results
- □ Use a similar idea, but for sub-blocks of matrices instead of individual elements

2D Matrix Decomposition

Assume that M and N are partitioned to g horizontal and g vertical stripes.

Computing the Product at Stripe (I, K)

$$P_{IK} = \sum_{J=1}^{J=g} M_{IJ} x N_{JK}$$

Note: $M_{IJ} \times N_{JK}$ is multiplication of two sub-matrices

How to Define Reducers?

 M_{IJ} needs to be multiplied with N_{JK} and will produce the partial sum P_{IK}^{J} .

What if we define a reducer for each (I, K)?

It would be identical to the 1D decomposition

What if we define a reducer for each J?

Exercise: Derive the communication cost as a function of n and q

How to Define Reducers?

 M_{IJ} needs to be multiplied with N_{JK} and will produce the partial sum P_{IK}^{J} .

What if we define a reducer for each (I, J, K)? Smaller reducer size

Reducer (I, J, K) will be responsible for computing the Jth partial sum for block PIK

First MapReduce Step

□ Map:

```
for each m_{ij} in M for K=1 to g generate <key = (I, J, K), value = ('M', i, j, m_{ij}) for each n_{jk} in N for I=1 to g generate <key = (I, J, K), value = ('N', j, k, n_{jk})
```

\square Reduce(key = (I, J, K), value_list)

for each
$$\mathbf{i} \in \mathbf{I}$$
 and $\mathbf{k} \in \mathbf{K}$
compute $\mathbf{x}_{ik}^J = \sum_{j \in J} m_{ij} n_{jk}$
output $\langle \mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = \mathbf{x}_{ik}^J \rangle$

MapReduce Step 1: Map

Block M_{IJ} will be sent to the reducers (I, J, K) for all K

Reminder: Reducer (I, J, K) is responsible for computing the Jth partial sum for block PIK

MapReduce Step 1: Map

Block N_{JK} will be sent to the reducers (I, J, K) for all I

Reminder: Reducer (I, J, K) is responsible for computing the Jth partial sum for block PIK

MapReduce Step 1: Reduce

Reducer (I, J, K) will receive M_{IJ} and N_{JK} blocks and will compute the J^{th} partial sum for block P_{IK}

41

MapReduce Step 1: Reducer Output

For each $p_{ik} \in P_{iK}$, there are g reducers that compute a partial sum (each with key=(I, J, K))

The reduce outputs corresponding to p_{ik} : $\langle key = (i, k), value = x^{J}_{ik} \rangle$

MapReduce Step 2

□ Map:

```
for each input \langle \mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = \mathbf{x}^{\mathbf{J}}_{\mathbf{i}\mathbf{k}} \rangle
generate \langle \mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = \mathbf{x}^{\mathbf{J}}_{\mathbf{i}\mathbf{k}} \rangle
```

□ Reduce(key = (i, k), value_list) $p_{ik} = 0$ for each x^{J}_{ik} in value_list $p_{ik} += x^{J}_{ik}$ output <key = (i, k), value = p_{ik} >

Complexity Analysis: Step 1

□ Map:

```
for each m_{ij} in M
for K = 1 to g
generate \langle key = (I, J, K), value = ('M', i, j, m_{ij})
for each n_{jk} in N
for I = 1 to g
generate \langle key = (I, J, K), value = ('N', j, k, m_{jk})
```

 \square Reduce(key = (I, J, K), value_list)

for each
$$\mathbf{i} \subseteq \mathbf{I}$$
 and $\mathbf{k} \subseteq \mathbf{K}$
compute $\mathbf{x}_{ik}^J = \sum_{j \in J} m_{ij} n_{jk}$
output $\langle \mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = \mathbf{x}_{ik}^J \rangle$

Replication rate:

$$r_1 = g$$

Communication cost:

$$2n^2 + 2gn^2$$

Reducer size:

$$q_1 = 2n^2/g^2$$

of reducers:

 g^3

Complexity Analysis: MapReduce Step 2

□ Map:

```
for each input \langle \mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = \mathbf{x}^{\mathbf{J}}_{\mathbf{i}\mathbf{k}} \rangle
generate \langle \mathbf{key} = (\mathbf{i}, \mathbf{k}), \mathbf{value} = \mathbf{x}^{\mathbf{J}}_{\mathbf{i}\mathbf{k}} \rangle
```

□ Reduce(key = (i, k), value_list)
$$p_{ik} = 0$$
for each x^{J}_{ik} in value_list
$$p_{ik} += x^{J}_{ik}$$
output $<$ key = (i, k), value = p_{ik} $>$

Replication rate:

$$r_2 = 1$$

Communication cost:

Reducer size:

$$q_2 = g$$

of reducers:

n²

Complexity Analysis

□ Total communication cost:

$$2n^2 + 3gn^2$$

- □ Which reducer size is the bottleneck?
 - Typical case: $q_1 \ge q_2$ (when $g^3 \le 2n^2$)
 - What if this is not the case? (see next slide)
- \Box Communication cost as function of $\mathbf{q_1}$:

$$q_1 = \frac{2n^2}{g^2} \Longrightarrow g = \frac{\sqrt{2}n}{\sqrt{q_1}}$$
$$comm.cost = 2n^2 + \frac{3\sqrt{2}n^3}{\sqrt{q_1}}$$

 \Box Communication cost as function of $\mathbf{q_2}$:

$$comm. cost = 2n^2 + 3n^2q_2$$

Step 1

Replication rate:

$$r_1 = g$$

Communication cost:

$$2n^2 + 2gn^2$$

Reducer size:

$$q_1 = 2n^2/g^2$$

of reducers:

$$g^3$$

Step 2

Replication rate:

$$r_2 = 1$$

Communication cost:

Reducer size:

$$q_2 = g$$

of reducers:

 n^2

Tradeoff Between Communication Cost and Reducer Size

□ To decrease communication cost:

Choose g small enough

□ To decrease reducer size:

Choose g large enough to reduce q_1

Size of $\mathbf{q_2}$ is less of a concern. Why?

The reduce operation in step 2:

Simply accumulate the values

The same value is used only once

The value_list doesn't have to fit into local memory

$$q_1 = \frac{2n^2}{g^2} \qquad q_2 = g$$

$$comm. cost = 2n^2 + 3gn^2$$

$$comm. cost = 2n^2 + \frac{3\sqrt{2}n^3}{\sqrt{q_1}}$$

$$comm.cost = 2n^2 + 3n^2q_2$$

Conclusion: Use the communication cost formula as a function of
 q₁ to determine the right tradeoff.

Comparison: Parallelism

1D Decomposition

of reducers = g_{1D}^2

2D Decomposition

of reducers =
$$g_{2D}^3$$
 (step 1)
 n^2 (step 2)

For the same # of groups, 2D decomposition has better parallelism

Comparison: Reducer Size

1D Decomposition

$$q_{1D}=\frac{2n^2}{g_{1D}}$$

2D Decomposition

$$q_{2D}=\frac{2n^2}{g_{2D}^2}$$

For the same reducer size:

We need a larger g value for 2D decomposition

$$\boldsymbol{g_{1D}} = \boldsymbol{g_{2D}^2}$$

However, larger *g* leads to better parallelism:

of reducers for 1D: $g_{1D}^2 = g_{2D}^4$

of reducers for 2D: g_{2D}^3 (step 1) n^2 (step 2)

Comparison: Communication Costs

$\frac{1D \ Decomposition}{cost_{1D} = 2n^2 + 2n^2g_{1D}}$

$\frac{2D \ Decomposition}{cost_{2D}} = 2n^2 + 3n^2g_{2D}$

If the g values are the same:

1D decomposition has lower communication cost Why would we want to have $g_{1D} = g_{2D}$?

No reason...

More realistically, if the reducer sizes are equal:

$$g_{1D} = g_{2D}^2$$
 (previous slide)
 $cost_{1D} = 2n^2 + 2n^2g_{2D}^2$
 $cost_{2D} = 2n^2 + 3n^2g_{2D}$

Note: We have control over how to choose the g values for 1D and 2D decompositions. However, the max q value is limited by the available local memory size. So, it makes more sense to use the same q value for 1D and 2D decompositions.

Comparison: Communication Costs (when reducer sizes are equal)

$$\frac{1D \ Decomposition}{cost_{1D}} = 2n^2 + 2n^2g_{1D}$$

$$\frac{2D \ Decomposition}{cost_{2D}} = 2n^2 + 3n^2g_{2D}$$

$$g_{1D} = g_{2D}^2$$

□ When does 1D decomposition have less communication cost?

Only when $g_{1D} = g_{2D} = 1$ (i.e. the serial reduce execution)

 \Box Compare the communication costs for the largest g_{1D} value

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

For large # of groups, communication cost of 2D algorithm lower almost by a factor of \sqrt{n}

Conclusions

- □ Complexity analysis:
 - *Replication rate*: Typically determines the communication cost
 - *Reducer size*: Determines the available parallelism and the requirements for local memory sizes
 - Typically tradeoff between communication cost and reducer size
 - We ignored computation costs assuming that the total amount of computation does not change
 - \blacksquare e.g. n^3 multiply-and-add operations for matrix-matrix multiplication
 - However, this is not always the case: There can be parallel implementations that are not work efficient.
- □ We reduced communication costs by assigning multiple outputs to each reducer. Why?
 - Replication rates reduced (each input needs to be sent to less # of reducers)
 - Grouping may not help algorithms with replication rate = 1
 - e.g. the 2nd step of matrix multiplication with 2D decomposition