CS425: Algorithms for Web Scale Data

Lecture 6: MapReduce Complexity

Analysis and Efficient Algorithms

Most of the slides are from the Mining of Massive Datasets book.
These slides have been modified for CS425. The original slides can be accessed at:




Complexity Analysis of MapReduce Algorithms




Communication Cost Model

0 The model we will use:
Communication cost = sum of input sizes to each stage

0 Output sizes are ignored

O If the output is large, it’s likely that it will be input to another stage

O The real outputs are typically small, e.g. some summary statistics, etc.
0 Reading from disk is part of the communication cost

O e.g. The input to the map stage can be from the disk of a reduce task at a different node
o Analysis 1s independent of scheduling decisions

O e.g. Map and reduce tasks may or may not be assigned to the same node.

v
v
v

Input —{ Map Reduce Map Reduce — Output
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Definitions: Replication Rate & Reducer Size

5 |
0 Replication rate: Avg# of key-value pairs generated by Map tasks per input

o The communication cost between Map and Reduce is determined by this
o Donated as r
0 Reducer size: Upper bound for the size of the value list corresponding to a single key

o Donated as q
o Choose q small enough such that:
1. there are many reducers for high levels of parallelism
2. the data for a reducer fits into the main memory of a node

0 Typically q and r inversely proportional
o Tradeoff between communication cost and parallelism/memory requirements.
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Example: Join with MapReduce

0 Map:
o For each input tuple R(a, b):
Generate <key = b, value = (‘R’, a)>
o For each input tuple S(b, ¢):
Generate <key = b, value = (‘S’, ¢)>

0 Reduce:
O Input: <b, value list>
O In the value list:
m Pair each entry of the form (‘R’, a) with each entry (‘S’, ¢),
and output:
<a,b, c>

Replication rate:
r=1

Communication cost;

2(IR[+[S])

Reducer size (worst case):
q=[R| +[S]

CS 425 — Lecture 6 Mustafa Ozdal, Bilkent University



Example: Single-Step Matrix-Matrix Multiplication

o Map(input):
for each my; entry from matrix M:
for k=1 ton

Assume both M and N have size nxn

Replication rate:

generate <key = (i, k), value = (M, j, my;) > r=n

for each ny entry from matrix N:

fori=1ton

generate <key = (i, k), value = (*N’, j, ny) >

o0 Reduce(key, value_list)

sum «— (

Communication cost;

2n2 + 2n3

Reducer size:

for each pair (M, j, m;j) and (N, j, ny) in value list q=2n

sum += mij . njk

output (key, sum)
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A Graph Model for MapReduce Algorithms

Inputs

Outputs

o Define a vertex for each input and output
o Define edges reflecting which inputs each output needs

o Every MapReduce algorithm has a schema that assigns
outputs to reducers.

0 Assume that max reducer size is q.
0 Assignment Requirements:
1. No reducer can be assigned more than q inputs.

2. Each output is assigned to at least one reducer that
receives all inputs needed for that output.
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Example: Single-Step Matrix-Matrix Multiplication
.5 |
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We have assigned each output to a single reducer.

The replication rate r = n 8 ]

The reducer size q = 2n h
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Application: Naive Similarity Join




Naive Similarity Join

0 Objective: Given a large set of elements X and a similarity measure s(x;, X,), output
the pairs that have similarity above a given threshold.

O Locality sensitive hashing is not used for the sake of this example.

0 Example:
o Each element i1s an image of 1M bytes
o There are 1M images in the set
o About 5x10'! (500B)image comparisons to make
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Similarity Join with MapReduce (First Try)
N

0 Let n be the # of pictures in the set.

0 Map:

for each picture P; do: Replication rate r = n-1

) o S Reducer size q = 2
or each j=1 to n (except i) Communication cost = n + n(n-1)

generate <key = (ij), value = P;> # of reducers = n(n-1)/2

0 Reduce (key, value list)
compute sim(P;, P;)
output (i,j) if similarity is above threshold
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Example: 1M pictures with 1MByte size each
.5 |

0 Communication cost:
n(n-1) pictures communicated from Map to Reduce
total # bytes transferred = 10'®

0 Assume gigabit ethernet:
time to transfer 108 bytes = 10! seconds (~300 years)

o Replicationrate r = n-1
o Reducersize g = 2
o Communication cost = n + n(n-1)

o # of reducers = n(n-1)/2
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Graph Model

I
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Our MapReduce algorithm:

One reducer per output.

P; must be sent to each output.
Replicationrate r = n-1
Reducersize g = 2

What if a reducer covers multiple outputs?

P4}

P4}
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Graph Model: Multiple Outputs per Reducer

~
p—
v

: Replication rate & communication
{Py,P3} cost reduced.

I I How to do the grouping?

1 {Py,P4}]
I
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e

CS 425 — Lecture 6 Mustafa Ozdal, Bilkent University



Grouping Outputs
[ 1]

o Define g intervals between 1 and n.

o Reducer (u,v) will be responsible for comparing all inputs in range u with all inputs in range v.
interval 3

Example: T l ........... n

Reducer (2, 3) will compare all entries in
interval 2 with all entries in interval 3.

interval 2 ——>
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Similarity Join with Grouping

0 Let n be the number of inputs, and g be the number of groups.
0o Map:
for each P; in the input

let u be the group to which i belongs
forv=1tog

generate < key=(u, v), value=(i, P;) > Froblem:
P; will be sent to (g;, g))
P; will be sentto (g;, 9i)

0 Reduce(key=(u,v), value_list)
for each i that belongs to group u in value_list
for each j that belongs to group v in value_list
compute sim(P;, P;), and output (i, j) if it is above threshold.
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Similarity Join with Grouping

0 Let n be the number of inputs, and g be the number of groups.
0o Map:
for each P; in the input
let u be the group to which i belongs
forv=1tog
generate < key=[min(u, v), max(u,v)], value=(i, P;) >

Single key generated for (u,v) and (v,u)

0 Reduce(key=(u,v), value_list)
for each i that belongs to group u in value_list
for each j that belongs to group v in value_list
compute sim(P;, P;), and output (i, j) if it is above threshold.
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Example

Example: If g = 4, the highlighted comparisons will be performed.

There will be a reducer for each key (u, v),
where u s v
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Example

Which reducers will receive and use P; in group 27

Reducers: (1, 2), (2, 2), (2, 3), (2, 4)
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Complexity Analysis
.5 |

0 Replication rate:
r=g

0 Reducer size:
q=2n/g

0 Communication cost:
n+ng

0 # of reducers:

g(g+1)/2
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Example: 1M pictures with IMByte size each

-1 |
oLetg=1000

0 Reducer size q =2n/g
memory needed for one node: ~2GB (reasonable)
0 Communication cost =n + ng
total # bytes transferred =~10'5 (still a lot, but 1000x less than before)
0 # ofreducers = g(g+1)/2
there are ~S00K reducers (enough parallelism for 1000s of nodes)
0 What if g =100?
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Tradeoff Between Replication Rate and Reducer Size

Replication rate r = g

— [9=2n/r| —— |qr=2n

Reducer size q =2n/g

0 Replication rate and reducer size are inversely proportional.

0 Reducing replication rate will reduce communication, but will increase reducer size.

O Extreme case: r = 1 and q = 2n. There is a single reducer doing all the comparisons.
O Extreme case: r = n and q = 2. There is a reducer for each pair of inputs.

0 Need to choose r small enough such that the data fits into local DRAM and there’s
enough parallelism.
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Application: Matrix-Matrix Multiplication

with 1D Decomposition




Reminder: Matrix-Matrix Multiplication without Grouping

1]
J k < k >
| | |
| I
| I i |= = — DPik -
X : - Pik = Zmijnjk
| i =1
M N P

Each m;; needs to be sent to each reducer (i, k) for all k
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Reminder: Matrix-Matrix Multiplication without Grouping

]
j k k
] 1 \ T
I I I
= ——— - mij | il—-- P "
X ' - Pik = Zmijnjk
t-6
M N P

Each nj, needs to be sent to each reducer (i, k) for all i

Replicationrate r = n
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Multiple Outputs per Reducer

Notation:

<+— g stripes —>

K

j: row/column index of an individual matrix entry
J: set of indices that belong to the Jt" interval.

P

Let reducer (I,K) be responsible
for computing all p;x where:
ielandk € K
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Multiple Outputs per Reducer
]

<+— g stripes —>

Which reducers need m;;?
Reducers (I, K) for all1 s K <g Replicationrate r = g
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Multiple Outputs per Reducer
]

<+— g stripes —>

K

|

|

|

2| @)
-—-—-—x

M

Which reducers need nj,?

Reducers (I, K) for all1 sl <g Replicationrate r = g
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1D Matrix Decomposition

<+— g stripes —>

K K

M N P

Which matrix elements will reducer (I, K) receive?
I'" row stripe of M and Kt column stripe of N
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MapReduce Formulation

o Map:
for each element my; from matrix M
forK=1tog
generate <key=(I, K), value = (‘M’, i, j, m;;)>
for each element ny, from matrix N Replication rate:
forI=1to g r=g
generate <key=(I, K), value = (‘N’, j, k, n;,)>
Communication cost:
0 Reduce(key=(I,K), value _list) 2n2 + 2gn?
foreachi € I and foreachk € K
Pi =0 Reducer size:
. = 2n2
forj=1ton 9= 2n‘/g
Pik T= m;j . Ny # of reducers:
output <key=(i, k), value = p;> g2
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Communication Cost vs. Reducer Size

Replicationrate vs. reducer size
q=2n%/g =» q=2n%r=>qr=2n?

Replication rate:

Communication cost vs. reducer size r=g
cost=2n?+2gn?
=2n2+4n*/q Communication cost:
2n? + 2gn?
Inverse relation between communication cost and reducer size. Reducer size:
Reminder: g value chosen should be small enough such that: q = 2n?/g

Local memory is sufficient
# of reducers:

92

There’s enough parallelism

CS 425 — Lecture 6 Mustafa Ozdal, Bilkent University 31



Application: Matrix-Matrix Multiplication

with 2D Decomposition




Two Stage MapReduce Algorithm
-1 |

0 What are we trying to achieve?
A better tradeoff between replication rate r and reducer size q
The previous algorithm: qr = 2n?
We will show that we can achieve qr? =2n?
For the same reducer size, the replication rate will be smaller

o Reminder: Two-stage MapReduce without grouping:
o Stage 1: “Join” matrix entries that need to be multiplied together
o Stage 2: Sum up products to compute final results

0 Use a similar idea, but for sub-blocks of matrices instead of individual elements
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2D Matrix Decomposition

<+— g stripes —>

K K

Assume that M and N are partitioned to g horizontal and g vertical stripes.

CS 425 — Lecture 6 Mustafa Ozdal, Bilkent University 34



Computing the Product at Stripe (I, K)

<+— g stripes —>

K K

P =

J=g

J=1

MI]xN]K

Note: M;; x N 4 is multiplication of two sub-matrices
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How to Define Reducers?

<+— g stripes —>

J K K

M N P

M,, needs to be multiplied with N,k and will produce the partial sum P{K.

What if we define a reducer for each (I, K)?
It would be identical to the 1D decomposition
What if we define a reducer for each J?
Exercise: Derive the communication cost as a function of n and q
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How to Define Reducers?

<+— g stripes —>

J K K

M N P

M,, needs to be multiplied with N jx and will produce the partial sum P{K.

What if we define a reducer for each (I, J, K)?
Smaller reducer size

Reducer (I, J, K) will be responsible for computing the J partial sum for block Pk

CS 425 — Lecture 6 Mustafa Ozdal, Bilkent University 7



First MapReduce Step

A
0 Map:
for each my; in M
forK=1tog
generate <key = (I, J, K), value = (‘M, i, j, my)
for each n;, in N
forI=1to g
generate <key = (I, J, K), value = (*N’, j, k, ny)

0 Reduce(key = (I, J, K), value_list)

foreachi €E Tandk € K J K K
Compute x{k = Z]E]mqnjk I J — I
output <key = (i, k), value = x{k>

from M from N  Jy, partial sum
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MapReduce Step 1: Map
5 |

<+— g stripes —>

J

M N P

Block M,; will be sent to the reducers (I, J, K) for all K

Reminder: Reducer (I, J, K) is responsible for computing the J* partial sum for block P
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MapReduce Step 1: Map
5 |

<+— g stripes —>

K K

M N P

Block Nk will be sent to the reducers (I, J, K) for all

Reminder: Reducer (I, J, K) is responsible for computing the J* partial sum for block P
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MapReduce Step 1: Reduce
-1 |

+— g stripes —>

J K K

M N P

Reducer (I, J, K) will receive M,; and N ;k blocks and will compute
the J partial sum for block Pk
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MapReduce Step 1: Reducer Output
5 |

<+— g stripes —>

K K

J=g
X = g stripes Py = Z M x Ny
J=1

M N P

For each pix € Pk, there are g reducers that compute a partial sum (each with key=(l, J, K))

The reduce outputs corresponding to p;.: <key = (i, k), value = x;,>
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MapReduce Step 2

A
0 Map:
for each input <key = (i, k), value = x7;,>
generate <key = (i, k), value = x’;;>

0 Reduce(key = (i, k), value_list)
pik=10
for each x7;, in value_list
Pic = X'ik
output <key = (i, k), value = p;;>
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Complexity Analysis: Step 1
.5 |

0 Map:
for each my; in M Replication rate:
for K=1to g rn=g
generate <key = (I, J, K), value = (*M, i, j, m;j)
for each ny, in N Communication cost:
forI=1to g 2n? + 2gn?

generate <key = (I, J, K), value = (‘N’, j, k, my) :
Reducer size:

4= 2n?%/g?
0 Reduce(key = (I, J, K), value_list)
foreachi €E Tandk € K

Compute x{k = Z]E]ml]n]k

# of reducers:
gd

output <key = (i, k), value = x},>
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Complexity Analysis: MapReduce Step 2
5 |

0 Map:
for each input <key = (i, k), value = x7;,> Replication rate:
generate <key = (i, k), value = x’;;> r; =1
- - Communication cost:
0 Reduce(key = (i, k), value_list) gn?
pik=0
for each x7;, in value_list Reducer size:
Pix = X'ik 9= 9
output <key = (i, k), value = p;> # of reducers:
n2
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Complexity Analysis

0 Total communication cost:
2n2 + 3gn?

0 Which reducer size 1s the bottleneck?
o Typical case: q; =q, (when g3 <2n?)

o What if this is not the case? (see next slide)

o Communication cost as function of q;:

2n? V2n

= — = ———

ql g2 g \/q_l
3v2n3

comm.cost = 2n% +
Va1

o Communication cost as function of q:
comm. cost = 2n® + 3n%q,

Step 1 Step 2
Replication rate: Replication rate:
rn=g rp =1

Communication cost:
2n2 + 2gn?

Reducer size:
q1= 2n?/g?

# of reducers:
g3

Communication cost:
gn?

Reducer size:
Jq2=9J

# of reducers:
n2
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Tradeoff Between Communication Cost and Reducer Size

o To decrease communication cost:

Choose g small enough 2

0 To decrease reducer size: q1 = 72 q, = 9

Choose g large enough to reduce q,
comm.cost = 2n? + 3gn?

3v/2n3
Va1

comm. cost = 2n* + 3n%q,

Size of q; 1s less of a concern. Why?

The reduce operation in step 2:

Simply accumulate the values comm.cost = 2n® +
The same value is used only once

The value list doesn’t have to fit into local memory

o Conclusion: Use the communication cost formula as a function of
q; to determine the right tradeoff.
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Matrix-Matrix Multiplication

1D Decomposition vs. 2D Decomposition




Comparison: Parallelism

1D Decomposition 2D Decomposition
# of reducers = g% # of reducers = g3, (step 1)
n? (step 2)

For the same # of groups, 2D decomposition has better parallelism
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Comparison: Reducer Size

1D Decomposition 2D Decomposition
an an
91ip = —— _
dip 12p g% D

For the same reducer size:
We need a larger g value for 2D decomposition

9dip = H%D

However, larger g leads to better parallelism:
# of reducers for 1D: g%, = g3p

# of reducers for 2D: g3, (step 1)

n? (step 2)
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Comparison: Communication Costs

1D Decomposition 2D Decomposition

costyp = 2n* + 2n*g,, cost,p = 2n + 3n%g,,

If the g values are the same:
1D decomposition has lower communication cost
Why would we want to have g, = g,p ?
No reason...

More realistically, if the reducer sizes are equal: Note: We have control over how to choose the g

9dip = g% p (previous slide) values for 1D and 2D decompositions. However,
— 2 2 o S .

cost,p = 2n° + 2n°g5, the max q value ls_llm/ted by the available local

memory size. So, it makes more sense to use

the same q value for 1D and 2D decompositions.

cost,p, = 2n? + 3n2g,,
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Comparison: Communication Costs (when reducer sizes are equal)

1D Decomposition 2D Decomposition
costyp = 2n* + 2n*g,, cost,p = 2n + 3n’g,, dip = 95p

o When does 1D decomposition have less communication cost?

Only when g, = g,p = 1 (i.e. the serial reduce execution)

o Compare the communication costs for the largest g, value
gip =nandgyp = Vn
costyp = 2n?* + 2n3
cost,p = 2n? + 3n%\/n

For large # of groups, communication cost of 2D algorithm lower almost by a factor of \/n
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Conclusions

-1 |
o Complexity analysis:
O Replication rate: Typically determines the communication cost
O Reducer size: Determines the available parallelism and the requirements for local memory sizes
o Typically tradeoff between communication cost and reducer size
o We ignored computation costs assuming that the total amount of computation does not change
me.g. n3 multiply-and-add operations for matrix-matrix multiplication

m However, this is not always the case: There can be parallel implementations that are not work efficient.

o We reduced communication costs by assigning multiple outputs to each reducer. Why?
o Replication rates reduced (each input needs to be sent to less # of reducers)
o Grouping may not help algorithms with replication rate = 1
me.g. the 2" step of matrix matrix multiplication with 2D decomposition
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