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Distance Measure

¨ A distance measure d(x,y) must have the following properties:
1. d(x,y) ≥ 0
2. d(x,y) = 0 iff x = y
3. d(x,y) = d(y,x)
4. d(x,y) ≤ d(x,z) + d(z,y) 
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Euclidean Distance

¨ Consider two items x and y with n numeric attributes

¨ Euclidean distance in n-dimensions:

𝑑 𝑥#, 𝑥%, … , 𝑥' , 𝑦# , 𝑦%, … , 𝑦' = 	
   ∑ 𝑥, 	
  − 	
   𝑦, %'
,.#

¨ Useful when you want to penalize larger differences more than smaller ones



5CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Lr- Norm

¨ Definition of Lr-norm:
𝑑 𝑥#, 𝑥%, … , 𝑥' , 𝑦#, 𝑦% ,… , 𝑦' = 	
   ∑ 𝑥, − 𝑦, /'

,.#
#//

¨ Special cases:
¤ L1-norm: Manhattan distance

n Useful when you want to penalize differences in a linear way (e.g. a difference 
of 10 for one attribute is equivalent to difference of 1 for 10 attributes)

¤ L2-norm: Euclidean distance
¤ L∞-norm: Maximum distance among all attributes

n Useful when you want to penalize the largest difference in an attribute
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Jaccard Distance

¨ Given two sets x and y:

𝑑 𝑥, 𝑦 = 1 − |3∩5|
|3∪5|

¨ Useful for set representations
¤ i.e. An element either exists or does not exist

¨ What if the attributes are weighted?
¤ e.g. Term frequency in a document 
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Cosine Distance

¨ Consider x and y represented as vectors in an n-dimensional space

cos 𝜃 = 3.5
3 .| 5 |

¨ The cosine distance is defined as the θ value
¤ Or, cosine similarity is defined as cos(θ)

¨ Only direction of vectors considered, not the magnitudes
¨ Useful when we are dealing with vector spaces

θ

x
y



8CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Cosine Distance: Example

cos 𝜃 =
𝑥. 𝑦
𝑥 . | 𝑦 |

= 	
  
0.2 + 0.2	
   − 0.1

0.01 + 0.04 + 0.01	
  . 4 + 1 + 1

= 	
   @.A
@.AB

= 0.5 è θ = 600

Note: The distance is independent of vector magnitudes

θ
x  =  [0.1,  0.2,  -­0.1]

y  =  [2.0,  1.0,  1.0]
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Edit Distance

¨ What happens if you search for “Blkent” in Google?
¤ “Showing results for Bilkent.”

¨ Edit distance between x and y: Smallest number of insertions, deletions, 
or mutations needed to go from x to y.

¨ What is the edit distance between “BILKENT” and “BLANKET”?
B  I  L K E N T B  I L            K  E  N T
B  L A N K E     T B       L  A  N K  E       T

dist(BILKENT, BLANKET) = 4
¨ Efficient dynamic-programming algorithms exist to compute edit distance (CS473)
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Distance Metrics Summary

¨ Important to choose the right distance metric for your application
¤ Set representation?
¤ Vector space?
¤ Strings?

¨ Distance metric chosen also affects complexity of algorithms
¤ Sometimes more efficient to optimize L1 norm than L2 norm.
¤ Computing edit distance for long sequences may be expensive

¨ Many other distance metrics exist. 
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Entity Resolution

¨ Many records exist for the same person with slight variations
¤ Name: “Robert W. Carson” vs. “Bob Carson Jr.”
¤ Date of birth: “Jan 15, 1957” vs. “1957” vs none
¤ Address: Old vs. new, incomplete, typo, etc.
¤ Phone number: Cell vs. home vs. work, with or without country code, area code

¨ Objective: Match the same people in different databases



14CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Locality Sensitive Hashing (LSH)

¨ Simple implementation of LSH:
¤ Hash each field separately
¤ If two people hash to the same bucket for any field, add them as a candidate pair

y.name

x.name

y.address

x.address

y.phone

x.phone
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Candidate Pair Evaluation

¨ Define a scoring metric and evaluate candidate pairs
¨ Example: 

¤ Assign a score of 100 for each field. Perfect match gets 100, no match gets 0.
¤ Which distance metric for names? 

n Edit distance, but with quadratic penalty
¤ How to evaluate phone numbers?

n Only exact matches allowed, but need to take care of missing area codes.
¤ Pick a score threshold empirically and accept the ones above that

n Depends on the application and importance of false positives vs. negatives
n Typically need cross validation
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Fingerprint Matching

¨ Many-to-many matching: Find out all pairs with the same fingerprints
¤ Example: You want to find out if the same person appeared in multiple crime 

scenes

¨ One-to-many matching: Find out whose fingerprint is on the gun
¤ Too expensive to compare even one fingerprint with the whole database
¤ Need to use LSH even for one-to-many problem

¨ Preprocessing:
¤ Different sizes, different orientations, different lighting, etc.
¤ Need some normalization in preprocessing (not our focus here)
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Fingerprint Features

¨ Minutia: Major features of a fingerprint

Ridge  ending Bifurcation Short  ridge

…

Image  Source:  Wikimedia  Commons
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Fingerprint Grid Representation

¨ Overlay a grid and identify points with minutia

X

X

X

X

X
X

X
X
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Special Hash Function

• Choose  3  grid  points

• If  a  fingerprint  has  minutia  in  
all  3  points,  add  it  to  the  bucket

• Otherwise,  ignore  the  fingerprint.
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Locality Sensitive Hashing

¨ Define 1024 hash functions
¤ i.e. Each hash function is defined as 3 grid points

¨ Add fingerprints to the buckets hash functions

¨ If multiple fingerprints are in the same bucket, add them as a candidate 
pair.
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Example

¨ Assume: 
¤ Probability of finding a minutia at a random grid point = 20%
¤ If two fingerprints belong to the same finger: 

n Probability of finding a minutia at the same grid point = 80%
¨ For two different fingerprints:

¤ Probability that they have minutia at point (x, y)?
0.2 * 0.2 = 0.04

¤ Probability that they hash to the same bucket for a given hash function?
0.043 = 0.000064

¨ For two fingerprints from the same finger:
¤ Probability that they have minutia at point (x, y)?

0.2 * 0.8 = 0.16
¤ Probability that they hash to the same bucket for a given hash function?

0.163 = 0.004096
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Example (cont’d)

¨ For two different fingerprints and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.043)1024 = 0.063

¨ For two fingerprints from the same finger and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.163)1024 = 0.985

¨ False positive rate?
6.3%

¨ False negative rate?
1.5%
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Example (cont’d)

¨ How to reduce the false positive rate?
¨ Try: Increase the number grid points from 3 to 6

¨ For two different fingerprints and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.046)1024 = 0.0000042

¨ For two fingerprints from the same finger and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.166)1024 = 0.017

¨ False negative rate increased to 98.3%!
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Example (cont’d)

¨ Second try: Add another AND function to the original setting
1. Define 2048 hash functions 

Each hash function is based on 3 grid points as before

2. Define two groups each with 1024 hash functions
3. For each group, apply LSH as before

Find fingerprints that share a bucket for at least one hash function

4. If two fingerprints share at least one bucket in both groups, add them as a 
candidate pair



26CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Example (cont’d)

¨ Reminder:
¤ Probability that two fingerprints hash to the same bucket at least once for 1024 hash functions:

n If  two different fingerprints: 1 – (1-0.043)1024 = 0.063
n If from the same finger: 1 – (1-0.163)1024 = 0.985

¨ With the AND function at the end:
¤ Probability that two fingerprints are chosen as candidate pair:

n If two different fingerprints: 
0.063 x 0.063 = 0.004

n If from the same finger: 
0.985 x 0.985 = 0.97

¨ Reduced false positives to 0.4%, but increased false negatives to 3%
¨ What if we add another OR function at the end?
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Similar News Articles

¨ Typically, news articles come from an agency and distributed to multiple newspapers

¨ A newspaper can modify the article a little, shorten it, add its own name, add 
advertisement, etc.

¨ How to identify the same news articles?
¤ Shingling + Min-Hashing + LSH

¨ Potential problem: What if ~40% of the page is advertisement? How to distinguish 
the real article?
¤ Special shingling
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Shingling for News Articles

¨ Observation: Articles use stop words (the, a, and, for, …) much for frequently than ads.
¨ Shingle definition: Two words followed by a stop word.

¨ Example:
¤ Advertisement: “Buy XYZ”

n No shingles
¤ Article: “A spokesperson for the XYZ Corporation revealed today that studies have shown it is good for

people to buy XYZ products.”  
n Shingles: “A spokesperson for”, “for the XYZ”, “the XYZ Corporation”, “that studies have”, “have 

shown it”, “it is good”, “is good for”, “for people to”, “to buy XYZ”.

¨ The content from the real article represented much more in the shingles.
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Identifying Similar News Articles

¨ High level methodology:
1. Special shingling for news articles
2. Min-hashing (as before)
3. Locality sensitive hashing (as before)


