
CS425:	
 Algorithms	
 for	
 Web	
 Scale	
 Data

Most of the slides are from the Mining of Massive Datasets book.
These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

3CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Distance Measure

¨ A distance measure d(x,y) must have the following properties:
1. d(x,y) ≥ 0
2. d(x,y) = 0 iff x = y
3. d(x,y) = d(y,x)
4. d(x,y) ≤ d(x,z) + d(z,y)

4CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Euclidean Distance

¨ Consider two items x and y with n numeric attributes

¨ Euclidean distance in n-dimensions:

𝑑 𝑥#, 𝑥%, … , 𝑥' , 𝑦# , 𝑦%, … , 𝑦' = 	
 ∑ 𝑥, 	
 − 	
 𝑦, %'
,.#

¨ Useful when you want to penalize larger differences more than smaller ones

5CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Lr- Norm

¨ Definition of Lr-norm:
𝑑 𝑥#, 𝑥%, … , 𝑥' , 𝑦#, 𝑦% ,… , 𝑦' = 	
 ∑ 𝑥, − 𝑦, /'

,.#
#//

¨ Special cases:
¤ L1-norm: Manhattan distance

n Useful when you want to penalize differences in a linear way (e.g. a difference
of 10 for one attribute is equivalent to difference of 1 for 10 attributes)

¤ L2-norm: Euclidean distance
¤ L∞-norm: Maximum distance among all attributes

n Useful when you want to penalize the largest difference in an attribute

6CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Jaccard Distance

¨ Given two sets x and y:

𝑑 𝑥, 𝑦 = 1 − |3∩5|
|3∪5|

¨ Useful for set representations
¤ i.e. An element either exists or does not exist

¨ What if the attributes are weighted?
¤ e.g. Term frequency in a document

7CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Cosine Distance

¨ Consider x and y represented as vectors in an n-dimensional space

cos 𝜃 = 3.5
3 .| 5 |

¨ The cosine distance is defined as the θ value
¤ Or, cosine similarity is defined as cos(θ)

¨ Only direction of vectors considered, not the magnitudes
¨ Useful when we are dealing with vector spaces

θ

x
y

8CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Cosine Distance: Example

cos 𝜃 =
𝑥. 𝑦
𝑥 . | 𝑦 |

= 	

0.2 + 0.2	
 − 0.1

0.01 + 0.04 + 0.01	
 . 4 + 1 + 1

= 	
 @.A
@.AB

= 0.5 è θ = 600

Note: The distance is independent of vector magnitudes

θ
x = [0.1, 0.2, -­0.1]

y = [2.0, 1.0, 1.0]

9CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Edit Distance

¨ What happens if you search for “Blkent” in Google?
¤ “Showing results for Bilkent.”

¨ Edit distance between x and y: Smallest number of insertions, deletions,
or mutations needed to go from x to y.

¨ What is the edit distance between “BILKENT” and “BLANKET”?
B I L K E N T B I L K E N T
B L A N K E T B L A N K E T

dist(BILKENT, BLANKET) = 4
¨ Efficient dynamic-programming algorithms exist to compute edit distance (CS473)

10CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Distance Metrics Summary

¨ Important to choose the right distance metric for your application
¤ Set representation?
¤ Vector space?
¤ Strings?

¨ Distance metric chosen also affects complexity of algorithms
¤ Sometimes more efficient to optimize L1 norm than L2 norm.
¤ Computing edit distance for long sequences may be expensive

¨ Many other distance metrics exist.

13CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Entity Resolution

¨ Many records exist for the same person with slight variations
¤ Name: “Robert W. Carson” vs. “Bob Carson Jr.”
¤ Date of birth: “Jan 15, 1957” vs. “1957” vs none
¤ Address: Old vs. new, incomplete, typo, etc.
¤ Phone number: Cell vs. home vs. work, with or without country code, area code

¨ Objective: Match the same people in different databases

14CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Locality Sensitive Hashing (LSH)

¨ Simple implementation of LSH:
¤ Hash each field separately
¤ If two people hash to the same bucket for any field, add them as a candidate pair

y.name

x.name

y.address

x.address

y.phone

x.phone

15CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Candidate Pair Evaluation

¨ Define a scoring metric and evaluate candidate pairs
¨ Example:

¤ Assign a score of 100 for each field. Perfect match gets 100, no match gets 0.
¤ Which distance metric for names?

n Edit distance, but with quadratic penalty
¤ How to evaluate phone numbers?

n Only exact matches allowed, but need to take care of missing area codes.
¤ Pick a score threshold empirically and accept the ones above that

n Depends on the application and importance of false positives vs. negatives
n Typically need cross validation

17CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Fingerprint Matching

¨ Many-to-many matching: Find out all pairs with the same fingerprints
¤ Example: You want to find out if the same person appeared in multiple crime

scenes

¨ One-to-many matching: Find out whose fingerprint is on the gun
¤ Too expensive to compare even one fingerprint with the whole database
¤ Need to use LSH even for one-to-many problem

¨ Preprocessing:
¤ Different sizes, different orientations, different lighting, etc.
¤ Need some normalization in preprocessing (not our focus here)

18CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Fingerprint Features

¨ Minutia: Major features of a fingerprint

Ridge ending Bifurcation Short ridge

…

Image Source: Wikimedia Commons

19CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Fingerprint Grid Representation

¨ Overlay a grid and identify points with minutia

X

X

X

X

X
X

X
X

20CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Special Hash Function

• Choose 3 grid points

• If a fingerprint has minutia in
all 3 points, add it to the bucket

• Otherwise, ignore the fingerprint.

21CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Locality Sensitive Hashing

¨ Define 1024 hash functions
¤ i.e. Each hash function is defined as 3 grid points

¨ Add fingerprints to the buckets hash functions

¨ If multiple fingerprints are in the same bucket, add them as a candidate
pair.

22CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Example

¨ Assume:
¤ Probability of finding a minutia at a random grid point = 20%
¤ If two fingerprints belong to the same finger:

n Probability of finding a minutia at the same grid point = 80%
¨ For two different fingerprints:

¤ Probability that they have minutia at point (x, y)?
0.2 * 0.2 = 0.04

¤ Probability that they hash to the same bucket for a given hash function?
0.043 = 0.000064

¨ For two fingerprints from the same finger:
¤ Probability that they have minutia at point (x, y)?

0.2 * 0.8 = 0.16
¤ Probability that they hash to the same bucket for a given hash function?

0.163 = 0.004096

23CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Example (cont’d)

¨ For two different fingerprints and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.043)1024 = 0.063

¨ For two fingerprints from the same finger and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.163)1024 = 0.985

¨ False positive rate?
6.3%

¨ False negative rate?
1.5%

24CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Example (cont’d)

¨ How to reduce the false positive rate?
¨ Try: Increase the number grid points from 3 to 6

¨ For two different fingerprints and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.046)1024 = 0.0000042

¨ For two fingerprints from the same finger and 1024 hash functions:
¤ Probability that they hash to the same bucket at least once?

1 – (1-0.166)1024 = 0.017

¨ False negative rate increased to 98.3%!

25CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Example (cont’d)

¨ Second try: Add another AND function to the original setting
1. Define 2048 hash functions

Each hash function is based on 3 grid points as before

2. Define two groups each with 1024 hash functions
3. For each group, apply LSH as before

Find fingerprints that share a bucket for at least one hash function

4. If two fingerprints share at least one bucket in both groups, add them as a
candidate pair

26CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Example (cont’d)

¨ Reminder:
¤ Probability that two fingerprints hash to the same bucket at least once for 1024 hash functions:

n If two different fingerprints: 1 – (1-0.043)1024 = 0.063
n If from the same finger: 1 – (1-0.163)1024 = 0.985

¨ With the AND function at the end:
¤ Probability that two fingerprints are chosen as candidate pair:

n If two different fingerprints:
0.063 x 0.063 = 0.004

n If from the same finger:
0.985 x 0.985 = 0.97

¨ Reduced false positives to 0.4%, but increased false negatives to 3%
¨ What if we add another OR function at the end?

28CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Similar News Articles

¨ Typically, news articles come from an agency and distributed to multiple newspapers

¨ A newspaper can modify the article a little, shorten it, add its own name, add
advertisement, etc.

¨ How to identify the same news articles?
¤ Shingling + Min-Hashing + LSH

¨ Potential problem: What if ~40% of the page is advertisement? How to distinguish
the real article?
¤ Special shingling

29CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Shingling for News Articles

¨ Observation: Articles use stop words (the, a, and, for, …) much for frequently than ads.
¨ Shingle definition: Two words followed by a stop word.

¨ Example:
¤ Advertisement: “Buy XYZ”

n No shingles
¤ Article: “A spokesperson for the XYZ Corporation revealed today that studies have shown it is good for

people to buy XYZ products.”
n Shingles: “A spokesperson for”, “for the XYZ”, “the XYZ Corporation”, “that studies have”, “have

shown it”, “it is good”, “is good for”, “for people to”, “to buy XYZ”.

¨ The content from the real article represented much more in the shingles.

30CS 425 – Lecture 4 Mustafa Ozdal, Bilkent University

Identifying Similar News Articles

¨ High level methodology:
1. Special shingling for news articles
2. Min-hashing (as before)
3. Locality sensitive hashing (as before)

