CS425: Algorithms for Web Scale Data

Lecture 1: PageRank Formulation

Lecture Overview

- Graph data overview
- Problems with early search engines
- PageRank Model
- Flow Formulation
- Matrix Interpretation
- Random Walk Interpretation
- Google's Formulation
- How to Compute PageRank

Graph Data: Social Networks

Facebook social graph 4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]

Graph Data: Communication Nets

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart
- Second try: Web Search
- Information Retrieval investigates:

Find relevant docs in a small and trusted set

- Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
- Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
" No single right answer
- Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Early Search Engines

\square Inverted index

- Data structure that return pointers to all pages a term occurs
\square Which page to return first?
- Where do the search terms appear in the page?
- How many occurrences of the search terms in the page?
\square What if a spammer tries to fool the search engine?

Fooling Early Search Engines

\square Example: A spammer wants his page to be in the top search results for the term "movies".

- Approach 1:
- Add thousands of copies of the term "movies" to your page.
- Make them invisible.
- Approach 2:
- Search the term "movies".
- Copy the contents of the top page to your page.
- Make it invisible.
\square Problem: Ranking only based on page contents
\square Early search engines almost useless because of spam.

Google's Innovations

\square Basic idea: Search engine believes what other pages say about you instead of what you say about yourself.
\square Main innovations:

1. Define the importance of a page based on:

- How many pages point to it?
- How important are those pages?

2. Judge the contents of a page based on:

- Which terms appear in the page?
- Which terms are used to link to the page?

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
- Page Rank
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms

PageRank:
The "Flow" Formulation

Links as Votes

- Think of in-links as votes:
- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
- Links from important pages count more
- Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page \boldsymbol{j} with importance $\boldsymbol{r}_{\boldsymbol{j}}$ has \boldsymbol{n} out-links, each link gets r_{j} / n votes
- Page j's own importance is the sum of the votes on its in-links

$$
r_{j}=r_{i} / 3+r_{k} / 4
$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_{j} for page j

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

"Flow" equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

$d_{i} \ldots$ out-degree of node \boldsymbol{i}

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
- No unique solution

Flow equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
${ }^{-} r_{y}+r_{a}+r_{m}=1$
- Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank:
The Matrix Formulation

PageRank: Matrix Formulation

- Adjacency matrix \boldsymbol{M}
- Let page i have d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- Rank vector r : vector with an entry per page
- r_{i} is the importance score of page i
- $\sum_{i} r_{i}=1$
$\begin{array}{cc}\text { - The flow equations can be written } & r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}} \\ \boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r} & \end{array}$

Example: Flow Equations \& M

$r_{y}=r_{y} / 2+r_{a} / 2$
$r_{a}=r_{y} / 2+r_{m}$
$r_{m}=r_{a} / 2$

Example

- Remember the flow equation: $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}$

$$
M \cdot r=r
$$

- Suppose page i links to 3 pages, including j i

M

- $r=r$

Exercise: Matrix Formulation

Linear Algebra Reminders

\square A is a column stochastic matrix iff each of its columns add up to 1 and there are no negative entries.

- Our adjacency matrix M is column stochastic. Why?
\square If there exist a vector x and a scalar λ such that $\mathrm{Ax}=\lambda \mathrm{x}$, then:
- x is an eigenvector and λ is an eigenvalue of A
- The principal eigenvector is the one that corresponds to the largest eigenvalue.
\square The largest eigenvalue of a column stochastic matrix is 1 .
$A x=x$, where x is the principal eigenvector

Eigenvector Formulation

- PageRank flow formulation:

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

- So the rank vector r is an eigenvector of the stochastic web matrix \boldsymbol{M}
- In fact, its first or principal eigenvector, with corresponding eigenvalue 1

NOTE: x is an eigenvector with the corresponding eigenvalue $\boldsymbol{\lambda}$ if:
$A x=\lambda x$

- We can now efficiently solve for r ! The method is called Power iteration

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
- Suppose there are N web pages
- Initialize: $\mathrm{r}^{(0)}=[1 / \mathrm{N}, \ldots . .1 / \mathrm{N}]^{\top}$
- Iterate: $\mathbf{r}^{(t+1)}=\mathbf{M} \cdot \mathbf{r}^{(t)}$

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

$d_{i} \ldots$ out-degree of node i

- Stop when $\left|\mathbf{r}^{(t+1)}-\mathbf{r}^{(t)}\right|_{1}<\varepsilon$ $|\mathbf{x}|_{1}=\sum_{1 \text { SisN }}\left|x_{i}\right|$ is the L_{1} norm
Can use any other vector norm, e.g., Euclidean

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- 1: $r^{\prime}{ }_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1
- Example:

Iteration 0, 1, 2, ...

	y	a	
m			
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	$1 / 2$		
	0	$1 / 2$	0

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2 \\
& r_{a}=r_{y} / 2+r_{m} \\
& r_{m}=r_{a} / 2
\end{aligned}
$$

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- 1: $r^{\prime}{ }_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1
- Example:
\(\left(\begin{array}{l}r_{y}

r_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| $1 / 3$ | $1 / 3$ | $5 / 12$ | $9 / 24$ | | $6 / 15$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $3 / 6$ | $1 / 3$ | $11 / 24$ | \ldots | $6 / 15$ |
| $1 / 3$ | $1 / 6$ | $3 / 12$ | $1 / 6$ | | $3 / 15$ |

Iteration 0, 1, 2, ...

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

6/15
6/15
3/15

Power Iteration Convergence

- Power iteration:

A method for finding principal eigenvector (the vector corresponding to the largest eigenvalue)
${ }^{-} \boldsymbol{r}^{(1)}=\boldsymbol{M} \cdot \boldsymbol{r}^{(0)}$
${ }^{-} r^{(2)}=M \cdot r^{(1)}=M\left(M r^{(1)}\right)=M^{2} \cdot r^{(0)}$
${ }^{-} r^{(3)}=M \cdot r^{(2)}=M\left(M^{2} r^{(0)}\right)=M^{3} \cdot r^{(0)}$

- Claim:

Sequence $\boldsymbol{M} \cdot \boldsymbol{r}^{(\mathbf{0})}, \boldsymbol{M}^{\mathbf{2}} \cdot \boldsymbol{r}^{(\mathbf{0})}, \ldots \boldsymbol{M}^{\boldsymbol{k}} \cdot \boldsymbol{r}^{(\mathbf{0})}, \ldots$ approaches the dominant eigenvector of \boldsymbol{M}

PageRank:

Random Walk Interpretation

Random Walk Interpretation of PageRank

\square Consider a web surfer:

- He starts at a random page
- He follows a random link at every time step
- After a sufficiently long time:
$■$ What is the probability that he is at page j ?
$■$ This probability corresponds to the page rank of j .

Example: Random Walk

Time $t=0$: Assume the random surfer is at A .

Time $t=1$:

$$
\begin{array}{lc}
\mathrm{p}(\mathrm{~A}, 1)=? & 0 \\
\mathrm{p}(\mathrm{~B}, 1)=? & 1 / 3 \\
\mathrm{p}(\mathrm{C}, 1)=? & 1 / 3 \\
\mathrm{p}(\mathrm{D}, 1)=? & 1 / 3
\end{array}
$$

Example: Random Walk

Time $t=1$:

$$
\begin{aligned}
& p(B, 1)=1 / 3 \\
& p(C, 1)=1 / 3 \\
& p(D, 1)=1 / 3
\end{aligned}
$$

Time $\mathrm{t}=2$:

$$
\mathrm{p}(\mathrm{~A}, 2)=?
$$

$$
\begin{aligned}
p(A, 2) & =p(B, 1) \cdot p(B \rightarrow A)+p(C, 1) \cdot p(C \rightarrow A) \\
& =1 / 3 \cdot 1 / 2+1 / 3 \cdot 1=3 / 6
\end{aligned}
$$

Example: Transition Matrix

$$
\begin{aligned}
& p(A, t+1)=p(B, t) \cdot p(B \rightarrow A)+p(C, t) \cdot p(C \rightarrow A) \\
& p(C, t+1)=p(A, t) \cdot p(A \rightarrow C)+p(D, t) \cdot p(D \rightarrow C)
\end{aligned}
$$

Random Walk Interpretation

- Imagine a random web surfer:
- At any time \boldsymbol{t}, surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from \boldsymbol{i} uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}

- Process repeats indefinitely
- Let:
- $\boldsymbol{p}(\boldsymbol{t})$... vector whose $\boldsymbol{i}^{\text {th }}$ coordinate is the prob. that the surfer is at page \boldsymbol{i} at time \boldsymbol{t}
- So, $\boldsymbol{p}(\boldsymbol{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time $t+1$?
- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

- Suppose the random walk reaches a state $p(t+1)=M \cdot p(t)=p(t)$
then $\boldsymbol{p}(\boldsymbol{t})$ is stationary distribution of a random walk
- Our original rank vector \boldsymbol{r} satisfies $\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}$
- So, r is a stationary distribution for the random walk

Rank of page $j=$ Probability that the surfer is at page j after a long random walk

Existence and Uniqueness

- A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $\mathbf{t}=\mathbf{0}$

Summary So Far

- PageRank formula: $\quad r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{d_{\mathrm{i}}} \quad \mathrm{d}_{1}, \ldots$. out-degree of node i
- Iterative algorithm:

1. Initialize rank of each page to $1 / \mathrm{N}$ (where N is the number of pages)
2. Compute the next page rank values using the formula above
3. Repeat step 2 until the page rank values do not change much
\square Same algorithm, but different interpretations

Summary So Far (cont'd)

\square Eigenvector interpretation:

- Compute the principal eigenvector of stochastic adjacency matrix M

$$
r=M . r
$$

- Power iteration method
- Random walk interpretation:
- Rank of page i is the probability that a surfer is at i after random walk

$$
p(t+1)=M \cdot p(t)
$$

- Guaranteed to converge to a unique solution under certain conditions

Convergence Conditions

\square To guarantee convergence to a meaningful and unique solution, the transition matrix must be:

1. Column stochastic
2. Irreducible
3. Aperiodic

Column Stochastic

\square Column stochastic:

- All values in the matrix are non-negative
- Sum of each column is 1

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

What if we remove the edge $\mathrm{m} \rightarrow \mathrm{a}$?
No longer column stochastic

Irreducible

\square Irreducible: From any state, there is a non-zero probability of going to another.

- Equivalent to: Strongly connected graph

What if we remove the edge $\mathrm{C} \rightarrow \mathrm{A}$? No longer irreducible.

Irreducible graph

Aperiodic

\square State i has period k if any return to state i must occur in multiples of k time steps.
\square If $k=1$ for a state, it is called aperiodic.

- Returning to the state at irregular intervals
\square A Markov chain is aperiodic if all its states are aperiodic.
- If Markov chain is irreducible, one aperiodic state means all stated are aperiodic.

PageRank:
The Google Formulation

PageRank: Three Questions

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}} \underset{\text { equivalently }}{\text { or }} \quad \boldsymbol{r}=M \boldsymbol{M}
$$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Example:

Does it converge to what we want?

$$
\text { (a) } \longrightarrow \text { b } \quad r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Example:

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
- Random walk has "nowhere" to go to
- Such pages cause importance to "leak out"

- (2) Spider traps:
(all out-links are within the group)
" Random walk gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

- Power Iteration:
- Set $r_{j}=1 / N$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

m is a spider trap $\quad \mathrm{r}_{\mathrm{y}}=\mathrm{r}_{\mathrm{y}} / 2+\mathrm{r}_{\mathrm{a}} / 2$

$$
\mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2
$$

$$
r_{m}=r_{a} / 2+r_{m}
$$

- Example:

$$
\left(\begin{array}{c}
\mathrm{r}_{\mathrm{y}} \\
\mathrm{r}_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}\right)=\begin{array}{llllll}
1 / 3 & 2 / 6 & 3 / 12 & 5 / 24 & & 0 \\
1 / 3 & 1 / 6 & 2 / 12 & 3 / 24 & \ldots & 0 \\
1 / 3 & 3 / 6 & 7 / 12 & 16 / 24 & & 1 \\
& \begin{array}{l}
\text { Iteration } 0,1,2, \ldots
\end{array} & & &
\end{array}
$$

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. 1- β, jump to some random page
- Common values for $\boldsymbol{\beta}$ are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

- Power Iteration:
- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

y a m y $1 / 2$ $1 / 2$ a 0 m $1 / 2$ 0 m 0 0 $1 / 2$
$\mathrm{r}_{\mathrm{y}}=\mathrm{r}_{\mathrm{y}} / 2+\mathrm{r}_{\mathrm{a}} / 2$ $\mathrm{r}_{\mathrm{a}}=\mathrm{r}_{\mathrm{y}} / 2$ $\mathbf{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{a}} / 2$

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2 \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- Example:
\(\left(\begin{array}{c}r_{\mathrm{r}}

\mathrm{r}_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| $1 / 3$ | $2 / 6$ | $3 / 12$ | $5 / 24$ | | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $1 / 6$ | $2 / 12$ | $3 / 24$ | \ldots | 0 |
| $1 / 3$ | $1 / 6$ | $1 / 12$ | $2 / 24$ | | 0 |
| | | | | | |
| | Iteration $0,1,2, \ldots$ | | | | |

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	0

	y	a	m
y	$1 / 2$	$1 / 2$	$1 / 3$
a	$1 / 2$	0	$1 / 3$
m	0	$1 / 2$	$1 / 3$

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps: PageRank scores are not what we want
- Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
- The matrix is not column stochastic so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:

At each step, random surfer has two options:

- With probability β, follow a link at random
- With probability $\mathbf{1 - \beta}$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N} \quad \begin{gathered}
d_{1} \ldots . . \text { out-degree } \\
\text { of node } i
\end{gathered}
$$

This formulation assumes that \boldsymbol{M} has no dead ends. We can either preprocess matrix \boldsymbol{M} to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

- PageRank equation [Brin-Page, '98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

- The Google Matrix A:

$$
A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

- We have a recursive problem: $\boldsymbol{r}=\boldsymbol{A} \cdot \boldsymbol{r}$ And the Power method still works!
- What is β ?
- In practice $\beta=0.8,0.9$ (make 5 steps on avg., jump)

Random Teleports $(\beta=0.8)$

$\left.0.8$| $1 / 2$ | $1 / 2$ | 0 |
| :---: | :---: | :---: |
| $1 / 2$ | 0 | 0 |
| 0 | $1 / 2$ | 1 | \right\rvert\,$\quad+0.2$

$[1 / \mathrm{N}]_{\mathrm{NxN}}$
$\begin{array}{lll}1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}$

y	$7 / 15$	$7 / 15$	$1 / 15$
a	$7 / 15$	$1 / 15$	$1 / 15$
m	$1 / 15$	$7 / 15$	$13 / 15$

A

y	1/3	0.33	0.24	0.26	7/33
a	1/3	0.20	0.20	0.18	5/33
m	1/3	0.46	0.52	0.56	21/33

Matrix Formulation

- Suppose there are \boldsymbol{N} pages
- Consider page \boldsymbol{i}, with $\mathbf{d}_{\boldsymbol{i}}$ out-links
- We have $\boldsymbol{M}_{j i}=\mathbf{1} /\left|\boldsymbol{d}_{i}\right|$ when $\boldsymbol{i} \rightarrow \boldsymbol{j}$
and $\boldsymbol{M}_{j i}=\mathbf{0}$ otherwise
- The random teleport is equivalent to:
- Adding a teleport link from \boldsymbol{i} to every other page and setting transition probability to $(1-\beta) / N$
- Reducing the probability of following each out-link from $1 /\left|d_{i}\right|$ to $\beta /\left|d_{i}\right|$
- Equivalent: Tax each page a fraction (1- β) of its score and redistribute evenly

How do we actually compute the PageRank?

Computing Page Rank

- Key step is matrix-vector multiplication
${ }^{-1} \boldsymbol{r}^{\text {new }}=\boldsymbol{A} \cdot \boldsymbol{r}^{\text {old }}$
- Easy if we have enough main memory to hold A, rold, rnew
- Say N = 1 billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N^{2} entries
- 10^{18} is a large number!

$$
\begin{array}{r}
\mathbf{A}=\beta \cdot \mathbf{M}+(1-\beta)[1 / \mathrm{N}]_{\mathrm{NXN}} \\
\left.\mathbf{A}=0.8 \begin{array}{|ccc|}
\hline 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]+0.2 \begin{array}{|ccc|}
\hline 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array} \\
\\
=\begin{array}{cccc}
7 / 15 & 7 / 15 & 1 / 15 \\
7 / 15 & 1 / 15 & 1 / 15 \\
1 / 15 & 7 / 15 & 13 / 15
\end{array}
\end{array}
$$

Matrix Sparseness

\square Reminder: Our original matrix was sparse.

- On average: ~ 10 out-links per vertex

ㅁ \# of non-zero values in matrix M: $\sim 10 \mathrm{~N}$
\square Teleport links make matrix M dense.
\square Can we convert it back to the sparse form?

Original matrix without teleports

0	$1 / 2$	1	0
$1 / 3$	0	0	$1 / 2$
$1 / 3$	0	0	$1 / 2$
$1 / 3$	$1 / 2$	0	0

Rearranging the Equation

- r $=A \cdot r, \quad$ where $A_{j i}=\beta M_{j i}+\frac{1-\beta}{N}$
- $r_{j}=\sum_{i=1}^{N} A_{j i} \cdot r_{i}$
- $r_{j}=\sum_{i=1}^{N}\left[\beta M_{j i}+\frac{1-\beta}{N}\right] \cdot r_{i}$
$=\sum_{\mathrm{i}=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \sum_{\mathrm{i}=1}^{N} r_{i}$
$=\sum_{i=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \quad$ since $\sum r_{i}=1$
- So we get: $\boldsymbol{r}=\boldsymbol{\beta} \boldsymbol{M} \cdot \boldsymbol{r}+\left[\frac{1-\beta}{N}\right]_{N}$

Note: Here we assumed M has no dead-ends
$[x]_{N} \ldots$ a vector of length N with all entries x

Example: Equation with Teleports

Note: Here we assumed M has no dead-ends

Sparse Matrix Formulation

- We just rearranged the PageRank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / \mathbf{N}]_{N}$ is a vector with all N entries $(1-\beta) / \mathbf{N}$
- \boldsymbol{M} is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries
- So in each iteration, we need to:
- Compute $\boldsymbol{r}^{\text {new }}=\beta \boldsymbol{M} \cdot \boldsymbol{r}^{\text {old }}$
- Add a constant value (1- $\boldsymbol{\beta}) / \mathbf{N}$ to each entry in $\boldsymbol{r}^{\text {new }}$
- Note if M contains dead-ends then $\sum_{j} r_{j}^{\text {new }}<1$ and we also have to renormalize $r^{\text {new }}$ so that it sums to 1

PageRank: Without Dead Ends

- Input: Graph G and parameter β
- Directed graph \boldsymbol{G} (cannot have dead ends)
- Parameter $\boldsymbol{\beta}$
- Output: PageRank vector $r^{\text {new }}$
- Set: $r_{j}^{o l d}=\frac{1}{N}$
- repeat until convergence: $\sum_{j}\left|r_{j}^{\text {new }}-r_{j}^{\text {old }}\right|>\varepsilon$
- $\forall j: \boldsymbol{r}_{j}^{\text {new }}=\sum_{i \rightarrow j} \boldsymbol{\beta} \frac{r_{i}^{o l d}}{d_{i}}$
$\boldsymbol{r}_{\boldsymbol{j}}^{\text {new }}=\mathbf{0}$ if in-degree of \boldsymbol{j} is $\mathbf{0}$
- Add constant terms:

$$
\begin{aligned}
& \forall j: r_{j}^{n e w}=r_{j}^{n e w}+\frac{1-\beta}{N} \\
& r^{\text {old }}=r^{n e w}
\end{aligned}
$$

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
- Directed graph \boldsymbol{G} (can have spider traps and dead ends)
- Parameter $\boldsymbol{\beta}$
- Output: PageRank vector $\boldsymbol{r}^{\text {new }}$
- Set: $r_{j}^{o l d}=\frac{1}{N}$
- repeat until convergence: $\sum_{j}\left|r_{j}^{\text {new }}-r_{j}^{\text {old }}\right|>\varepsilon$
$-\forall j: \boldsymbol{r}_{j}^{\text {new }}=\sum_{i \rightarrow j} \boldsymbol{\beta} \frac{r_{i}^{\text {old }}}{d_{i}}$
$\boldsymbol{r}_{\boldsymbol{j}}^{\text {mew }}=\mathbf{0}$ if in-degree of \boldsymbol{j} is $\mathbf{0}$
- Now re-insert the leaked PageRank:

$$
\begin{aligned}
& \forall \boldsymbol{j}: \boldsymbol{r}_{j}^{\text {new }}=\boldsymbol{r}_{\boldsymbol{j}}^{\boldsymbol{n} e w}+\frac{\mathbf{1 - S}}{N} \text { where: } S=\sum_{j} r_{j}^{\text {new }} \\
& \boldsymbol{r}^{\text {old }}=\boldsymbol{r}^{\text {new }}
\end{aligned}
$$

If the graph has no dead-ends then the amount of leaked PageRank is 1- β. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing \mathbf{S}.

Sparse Matrix Encoding: First Try

Store a triplet for each nonzero entry: (row, column, weight)

0	$1 / 2$	1	0
$1 / 3$	0	0	$1 / 2$
$1 / 3$	0	0	$1 / 2$
$1 / 3$	$1 / 2$	0	0

$(2,1,1 / 3) ;(3,1,1 / 3) ;(4,1,1 / 3) ;(1,2,1 / 2) ;(4,2,1 / 2) ;(1,3,1) ; \ldots$

Assume 4 bytes per integer and 8 bytes per float: 16 bytes per entry
Inefficient: Repeating the column index and weight multiple times

Sparse Matrix Encoding

- Store entries per source node
- Source index and degree stored once per node
- Space proportional roughly to number of links
- Say 10N, or 4*10*1 billion = 40GB
- Still won't fit in memory, but will fit on disk source

 node	degree	destination nodes
0	3	$1,5,7$
1	5	$17,64,113,117,245$
2	2	13,23

Basic Algorithm: Update Step

- Assume enough RAM to fit $r^{\text {new }}$ into memory
- Store $r^{\text {old }}$ and matrix M on disk
- 1 step of power-iteration is:

Initialize all entries of $\mathbf{r}^{\text {new }}=(1-\beta) / \mathbf{N}$
For each page \boldsymbol{i} (of out-degree $\boldsymbol{d}_{\boldsymbol{i}}$):
Read into memory: $\boldsymbol{i}, \boldsymbol{d}_{\boldsymbol{i}}$, dest $_{\boldsymbol{1}}, \ldots$, dest $_{\boldsymbol{d} \boldsymbol{d}},{ }^{\text {rold }}(\boldsymbol{i})$
For $\mathbf{j}=\mathbf{1} \ldots \mathbf{d}_{\mathbf{i}}$
$r^{\text {new }}\left(\right.$ dest $\left._{j}\right)+=\beta r^{\text {old }}(\mathbf{i}) / d_{i}$

Analysis

- Assume enough RAM to fit $r^{\text {new }}$ into memory
- Store $\boldsymbol{r}^{\text {old }}$ and matrix \boldsymbol{M} on disk
- In each iteration, we have to:
- Read $\boldsymbol{r}^{\text {old }}$ and \boldsymbol{M}
- Write $r^{\text {new }}$ back to disk
- Cost per iteration of Power method:
$=2|r|+|M|$
- Question:
- What if we could not even fit $\boldsymbol{r}^{\text {new }}$ in memory?

Block-based Update Algorithm

$4 \square$

- Break $\boldsymbol{r}^{\text {new }}$ into \boldsymbol{k} blocks that fit in memory
- Scan \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$ once for each block

Block-based Update Algorithm

$\mathrm{r}^{\text {new }}$	src		destination	rold
-	0	4	0, 1, 3, 5	
	1	2	0,5	
2	2	2	3, 4	
	M			

$4 \square$

- Break $\boldsymbol{r}^{\text {new }}$ into \boldsymbol{k} blocks that fit in memory
- Scan \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$ once for each block

Block-based Update Algorithm

- Break $\boldsymbol{r}^{\text {new }}$ into \boldsymbol{k} blocks that fit in memory
- Scan \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$ once for each block

Analysis of Block Update

- Similar to nested-loop join in databases
- Break $\boldsymbol{r}^{\text {new }}$ into \boldsymbol{k} blocks that fit in memory
- Scan \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$ once for each block
- Total cost:
- \boldsymbol{k} scans of \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$
- Cost per iteration of Power method: $k(|\boldsymbol{M}|+|r|)+|r|=k|M|+(k+1)|r|$
- Can we do better?
- Hint: \boldsymbol{M} is much bigger than r (approx 10-20x), so we must avoid reading it \boldsymbol{k} times per iteration

Block-Stripe Update Algorithm

src	degree	destination
0	4	0,1
1	3	0
2	2	1

0	4	3
2	2	3

0	4	5
1	3	5
2	2	4

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of \boldsymbol{r} new

Block-Stripe Update Algorithm

src	degree	destination
0	4	0,1
1	3	0
2	2	1

0	4	3
2	2	3

0	4	5
1	3	5
2	2	4

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of \boldsymbol{r} new

Block-Stripe Update Algorithm

src	degree	destination
0	4	0,1
1	3	0
2	2	1

0	4	3
2	2	3

4
4

5 \quad| 0 | 4 | 5 |
| :--- | :--- | :--- |
| 1 | 3 | 5 |
| 2 | 2 | 4 |

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of \boldsymbol{r} new

Block-Stripe Analysis

- Break M into stripes
- Each stripe contains only destination nodes in the corresponding block of $\boldsymbol{r}^{\text {new }}$
- Some additional overhead per stripe
- But it is usually worth it
- Cost per iteration of Power method:
$=|M|(1+\varepsilon)+(k+1)|r|$

Some Problems with Page Rank

- Measures generic popularity of a page
- Biased against topic-specific authorities
- Solution: Topic-Specific PageRank (next)
- Susceptible to Link spam
- Artificial link topographies created in order to boost page rank
- Solution: TrustRank
- Uses a single measure of importance
- Other models of importance
- Solution: Hubs-and-Authorities

