
CS425: Algorithms for Web Scale Data

Most of the slides are from the Mining of Massive Datasets book.

These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

http://www.mmds.org/


 Graph data overview
 Problems with early search engines
 PageRank Model

▪ Flow Formulation

▪ Matrix Interpretation

▪ Random Walk Interpretation

▪ Google’s Formulation

 How to Compute PageRank
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Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Citation networks and Maps of science
[Börner et al., 2012]
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 How to organize the Web?
 First try: Human curated

Web directories

▪ Yahoo, DMOZ, LookSmart

 Second try: Web Search

▪ Information Retrieval investigates:
Find relevant docs in a small 
and trusted set

▪ Newspaper articles, Patents, etc.

▪ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

▪ No single right answer

▪ Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers
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Early Search Engines

 Inverted index

 Data structure that return pointers to all pages a term occurs

 Which page to return first?

 Where do the search terms appear in the page?

 How many occurrences of the search terms in the page?

 What if a spammer tries to fool the search engine?
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Fooling Early Search Engines

 Example: A spammer wants his page to be in the top search 

results for the term “movies”.

 Approach 1: 

 Add thousands of copies of the term “movies” to your page. 

 Make them invisible.

 Approach 2: 

 Search the term “movies”. 

 Copy the contents of the top page to your page.

 Make it invisible.

 Problem: Ranking only based on page contents

 Early search engines almost useless because of spam.
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Google’s Innovations

 Basic idea: Search engine believes what other pages say 

about you instead of what you say about yourself.

 Main innovations:

1. Define the importance of a page based on:

 How many pages point to it?

 How important are those pages?

2. Judge the contents of a page based on:

 Which terms appear in the page?

 Which terms are used to link to the page?



 All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

 There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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http://www.joe-schmoe.com/
http://www.stanford.edu/


 We will cover the following Link Analysis 
approaches for computing importances
of nodes in a graph:

▪ Page Rank

▪ Topic-Specific (Personalized) Page Rank

▪ Web Spam Detection Algorithms
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 Think of in-links as votes:
▪ www.stanford.edu has 23,400 in-links

▪ www.joe-schmoe.com has 1 in-link

 Are all in-links are equal?

▪ Links from important pages count more

▪ Recursive question! 
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http://www.stanford.edu/
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 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4



 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for page j
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“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊



 3 equations, 3 unknowns, 
no constants
▪ No unique solution

▪ All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

▪ Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓
 Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

 We need a new formulation!
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ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:





 Adjacency matrix 𝑴
▪ Let page 𝑖 have 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑
𝑖

else   𝑀𝑗𝑖 = 0

 Rank vector 𝒓: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖

▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written 

𝒓 = 𝑴 ⋅ 𝒓
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r = M∙r

y       ½    ½    0     y

a   =  ½     0    1     a

m       0    ½    0    m
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y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j
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Exercise: Matrix Formulation

A B

C D

0
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1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

rA

rB

rC

rD

rA

rB

rC

rD

=

M r r

.
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Linear Algebra Reminders

 A is a column stochastic matrix iff each of its columns add up 

to 1 and there are no negative entries.

 Our adjacency matrix M is column stochastic. Why?

 If there exist a vector x and a scalar λ such that Ax = λx, then:

 x is an eigenvector and λ is an eigenvalue of A

 The principal eigenvector is the one that corresponds to the 

largest eigenvalue.

 The largest eigenvalue of a column stochastic matrix is 1.

Ax = x, where x is the principal eigenvector



 PageRank flow formulation:

𝒓 = 𝑴 ∙ 𝒓

 So the rank vector r is an eigenvector of the 
stochastic web matrix M

▪ In fact, its first or principal eigenvector, 
with corresponding eigenvalue 1

 We can now efficiently solve for r!
The method is called Power iteration
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NOTE: x is an 

eigenvector with 

the corresponding 

eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙



 Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks

 Power iteration: a simple iterative scheme

▪ Suppose there are N web pages

▪ Initialize: r(0) = [1/N,….,1/N]T

▪ Iterate: r(t+1) = M ∙ r(t)

▪ Stop when |r(t+1) – r(t)|1 < 
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|x|1 = 1≤i≤N|xi| is the L1 norm 

Can use any other vector norm, e.g., Euclidean



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15
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y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15
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y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Power iteration: 
A method for finding principal eigenvector (the 
vector corresponding to the largest eigenvalue)

▪ 𝒓(𝟏) = 𝑴 ⋅ 𝒓(𝟎)

▪ 𝒓(𝟐) = 𝑴 ⋅ 𝒓 𝟏 = 𝑴 𝑴𝒓 𝟏 = 𝑴𝟐 ⋅ 𝒓 𝟎

▪ 𝒓(𝟑) = 𝑴 ⋅ 𝒓 𝟐 = 𝑴 𝑴𝟐𝒓 𝟎 = 𝑴𝟑 ⋅ 𝒓 𝟎

 Claim:

Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴
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Random Walk Interpretation of PageRank

 Consider a web surfer:

 He starts at a random page

 He follows a random link at every time step

 After a sufficiently long time:

 What is the probability that he is at page j?

 This probability corresponds to the page rank of j.
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Example: Random Walk

A B

C D

Time t = 0: Assume the random surfer is at A.

Time t = 1:

p(A, 1) = ?

p(B, 1) = ?

p(C, 1) = ?

p(D, 1) = ?

0

1/3

1/3

1/3
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Example: Random Walk

A B

C D Time t=2:

p(A, 2) = ?

p(A, 2) = p(B, 1) . p(B→A) + p(C, 1) . p(C→A)

= 1/3 . 1/2 + 1/3 . 1 = 3/6 

Time t = 1:

p(B, 1) = 1/3

p(C, 1) = 1/3

p(D, 1) = 1/3
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Example: Transition Matrix

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

pA

pB

pC

pD

pA

pB

pC

pD

=

M p(t) p(t+1)

.

p(A, t+1) = p(B, t) . p(B→A) + p(C, t) . p(C→A)

p(C, t+1) = p(A, t) . p(A→C) + p(D, t) . p(D→C)



 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages
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 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓

▪ So, 𝒓 is a stationary distribution for 
the random walk

)(M)1( tptp 

j

i1 i2 i3
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Rank of page j = Probability that the surfer is at page j after a long random walk 



 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0
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Summary So Far

 PageRank formula: 

 Iterative algorithm: 

1. Initialize rank of each page to 1/N (where N is the number of pages)

2. Compute the next page rank values using the formula above

3. Repeat step 2 until the page rank values do not change much

 Same algorithm, but different interpretations
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Summary So Far (cont’d)

 Eigenvector interpretation: 

 Compute the principal eigenvector of stochastic adjacency matrix M

r = M . r

 Power iteration method

 Random walk interpretation:

 Rank of page i is the probability that a surfer is at i after random walk

p(t+1) = M . p(t)

 Guaranteed to converge to a unique solution under certain 

conditions
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Convergence Conditions

 To guarantee convergence to a meaningful and unique 

solution, the transition matrix must be:

1. Column stochastic

2. Irreducible

3. Aperiodic
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Column Stochastic

 Column stochastic:

 All values in the matrix are non-negative

 Sum of each column is 1

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

What if we remove the edge m → a ?

No longer column stochastic
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Irreducible

 Irreducible: From any state, there is a non-zero 

probability of going to another.

 Equivalent to: Strongly connected graph

A B

C D

Irreducible graph

What if we remove the edge C → A ?

No longer irreducible.
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Aperiodic

 State i has period k if any return to state i must occur in 

multiples of k time steps.

 If k = 1 for a state, it is called aperiodic.

 Returning to the state at irregular intervals

 A Markov chain is aperiodic if all its states are aperiodic.

 If Markov chain is irreducible, one aperiodic state means all stated are 

aperiodic.

A DB C

t0
t0 + 4

t0 + 8

k= 4
How to make this aperiodic?

Add any self edge





 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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 Example:
ra 1 0 1 0

rb 0 1 0 1
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Iteration 0, 1, 2, …
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 Example:
ra 1 0 0 0

rb 0 1 0 0
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=
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Iteration 0, 1, 2, …
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2 problems:
 (1) Some pages are 

dead ends (have no out-links)

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

▪ Random walk gets “stuck” in a trap

▪ And eventually spider traps absorb all importance
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Dead end



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.



 The Google solution for spider traps: At each 
time step, the random surfer has two options

▪ With prob. , follow a link at random

▪ With prob. 1-, jump to some random page

▪ Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps
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y

a m

y

a m



 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 53

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

▪ Adjust matrix accordingly
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y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m



Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
 Spider-traps: PageRank scores are not what we 

want

▪ Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a problem

▪ The matrix is not column stochastic so our initial 
assumptions are not met

▪ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability ,  follow a link at random

▪ With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁

 We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓
And the Power method still works!

 What is  ?

▪ In practice  =0.8,0.9 (make 5 steps on avg., jump)
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[1/N]NxN…N by N matrix

where all entries are 1/N



y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .
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y

a
m

13/15

7/15

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A



 Suppose there are N pages
 Consider page i, with di out-links
 We have Mji = 1/|di| when i → j

and Mji = 0 otherwise
 The random teleport is equivalent to:
▪ Adding a teleport link from i to every other page 

and setting transition probability to (1-)/N

▪ Reducing the probability of following each 
out-link from 1/|di| to /|di|

▪ Equivalent: Tax each page a fraction (1-) of its 
score and redistribute evenly 
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 Key step is matrix-vector multiplication
▪ rnew = A ∙ rold

 Easy if we have enough main memory to 
hold A, rold, rnew

 Say N = 1 billion pages
▪ We need 4 bytes for 

each entry (say)

▪ 2 billion entries for 
vectors, approx 8GB

▪ Matrix A has N2 entries
▪ 1018 is a large number!
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½   ½   0

½   0   0

0    ½   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

7/15  1/15   1/15

1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =
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Matrix Sparseness

 Reminder: Our original matrix was sparse.

 On average: ~10 out-links per vertex

 # of non-zero values in matrix M: ~10N

 Teleport links make matrix M dense.

 Can we convert it back to the sparse form?

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

Original matrix without teleports



 𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

 𝑟𝑗 = σi=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

 𝑟𝑗 = σ𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
σi=1
𝑁 𝑟𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
since σ𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵
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[x]N … a vector  of length N with all entries x
Note: Here we assumed M

has no dead-ends
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Example: Equation with Teleports

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

rA

rB

rC

rD

=

M rold

.

rA

rB

rC

rD

rnew

+

1/4

1/4

1/4

1/4

β (1-β)

Note: Here we assumed M

has no dead-ends



 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

▪ where [(1-)/N]N is a vector with all N entries (1-)/N

 M is a sparse matrix! (with no dead-ends)

▪ 10 links per node, approx 10N entries
 So in each iteration, we need to:
▪ Compute rnew =  M ∙ rold

▪ Add a constant value (1-)/N to each entry in rnew

▪ Note if M contains dead-ends then σ𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1
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 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (cannot have dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

▪ ∀𝑗: 𝒓𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

𝒓𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

▪ Add constant terms:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓𝒋

𝒏𝒆𝒘 +
𝟏−𝜷

𝑵

▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘
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 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (can have spider traps and dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

▪ ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

▪ Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+

𝟏−𝑺

𝑵

▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

67

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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Sparse Matrix Encoding: First Try

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

Store a triplet for each nonzero entry: (row, column, weight)

(2, 1, 1/3); (3, 1, 1/3); (4, 1, 1/3); (1, 2, 1/2); (4, 2, 1/2); (1, 3, 1); …

Assume 4 bytes per integer and 8 bytes per float: 16 bytes per entry

Inefficient: Repeating the column index and weight multiple times



 Store entries per source node

▪ Source index and degree stored once per node

▪ Space proportional roughly to number of links

▪ Say 10N, or 4*10*1 billion = 40GB

▪ Still won’t fit in memory, but will fit on disk
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0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source

node degree destination nodes



 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 1 step of power-iteration is:
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0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1
2

3
4
5
6

0
1
2

3
4
5
6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

Read into memory: i, di, dest1, …, destdi, rold(i)

For j = 1…di

rnew(destj) +=  rold(i) / di



 Assume enough RAM to fit rnew into memory

▪ Store rold and matrix M on disk

 In each iteration, we have to:

▪ Read rold and M

▪ Write rnew back to disk

▪ Cost per iteration of Power method:
= 2|r| + |M|

 Question:

▪ What if we could not even fit rnew in memory?
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▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block
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0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew rold

M



▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block
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0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew rold

M



▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block
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0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew rold

M



 Similar to nested-loop join in databases

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

 Total cost:

▪ k scans of M and rold

▪ Cost per iteration of Power method:
k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?

▪ Hint: M is much bigger than r (approx 10-20x), so 
we must avoid reading it k times per iteration
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0 4 0, 1

1 3 0

2 2 1
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src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew

rold

0 4 5

1 3 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only 

destination nodes in the corresponding block of rnew



0 4 0, 1

1 3 0

2 2 1
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src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew

rold

0 4 5

1 3 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only 

destination nodes in the corresponding block of rnew



0 4 0, 1

1 3 0

2 2 1
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src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew

rold

0 4 5

1 3 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only 

destination nodes in the corresponding block of rnew



 Break M into stripes

▪ Each stripe contains only destination nodes 
in the corresponding block of rnew

 Some additional overhead per stripe

▪ But it is usually worth it

 Cost per iteration of Power method:
=|M|(1+) + (k+1)|r|
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 Measures generic popularity of a page

▪ Biased against topic-specific authorities

▪ Solution: Topic-Specific PageRank (next)

 Susceptible to Link spam

▪ Artificial link topographies created in order to 
boost page rank

▪ Solution: TrustRank

 Uses a single measure of importance

▪ Other models of importance

▪ Solution: Hubs-and-Authorities
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