
2: Application Layer 1

Chapter 2: Application Layer
Our goals:

conceptual,
implementation
aspects of network
application protocols
o transport-layer

service models
o client-server

paradigm
o peer-to-peer

paradigm

learn about protocols
by examining popular
application-level
protocols

o HTTP
o FTP
o SMTP / POP3 / IMAP
o DNS

programming network
applications

o socket API

2: Application Layer 2

Some network apps

E-mail
Web
Instant messaging
Remote login
P2P file sharing
Multi-user network
games
Streaming stored
video clips

Internet telephone
Real-time video
conference
Massive parallel
computing

2: Application Layer 3

Creating a network app
Write programs that

o run on different end
systems and

o communicate over a
network.

o e.g., Web: Web server
software communicates
with browser software

No software written for
devices in network core

o Network core devices do
not function at app layer

o This design allows for
rapid app development

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 4

Application architectures

Client-server
Peer-to-peer (P2P)
Hybrid of client-server and P2P

2: Application Layer 5

Client-server archicture
server:

o always-on host
o permanent IP address
o server farms for scaling

clients:
o communicate with

server
o may be intermittently

connected
o may have dynamic IP

addresses
o do not communicate

directly with each other

2: Application Layer 6

Pure P2P architecture

no always on server
arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses
example: Gnutella

Highly scalable

But difficult to manage

2: Application Layer 7

Hybrid of client-server and P2P
Skype

o voice-over-IP P2P application
o centralized server: finding address of remote

party:
o client-client connection: direct (not through

server)
Instant messaging

o Chatting between two users is P2P
o Presence detection/location centralized:

• User registers its IP address with central server
when it comes online

• User contacts central server to find IP addresses of
friends

2: Application Layer 8

Network applications: some jargon

Process: program running
within a host.
within same host, two
processes communicate
using interprocess
communication (defined
by OS).
processes running in
different hosts
communicate with an
application-layer
protocol

user agent: interfaces
with user “above” and
network “below”.
implements user
interface &
application-level
protocol

o Web: browser
o E-mail: mail reader
o streaming audio/video:

media player

2: Application Layer 9

Applications and application-layer protocols

Application: communicating,
distributed processes

o e.g., e-mail, Web, P2P file
sharing, instant messaging

o running in end systems
(hosts)

o exchange messages to
implement application

Application-layer protocols
o one “piece” of an app
o define messages

exchanged by apps and
actions taken

o use communication services
provided by lower layer
protocols (TCP, UDP)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 10

App-layer protocol defines
Types of messages
exchanged, eg, request
& response messages
Syntax of message
types: what fields in
messages & how fields
are delineated
Semantics of the
fields, ie, meaning of
information in fields
Rules for when and
how processes send &
respond to messages

Public-domain protocols:
defined in RFCs
allows for
interoperability
eg, HTTP, SMTP

Proprietary protocols:
eg, KaZaA, Skype

2: Application Layer 11

Processes communicating across network

process sends/receives
messages to/from its
socket
socket analogous to door

o sending process shoves
message out door

o sending process asssumes
transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

2: Application Layer 12

Addressing processes:
For a process to
receive messages, it
must have an identifier
Every host has a unique
32-bit IP address
Q: does the IP address
of the host on which
the process runs
suffice for identifying
the process?
Answer: No, many
processes can be
running on same host

Identifier includes
both the IP address
and port numbers
associated with the
process on the host.
Example port numbers:

o HTTP server: 80
o Mail server: 25

2: Application Layer 13

What transport service does an app need?

Data loss
some apps (e.g., audio) can
tolerate some loss
other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer

Timing
some apps (e.g.,
Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth
some apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“effective”
other apps (“elastic
apps”) make use of
whatever bandwidth
they get

2: Application Layer 14

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

real-time audio/video

stored audio/video
interactive games
instant messaging

2: Application Layer 15

Internet transport protocols services

TCP service:
connection-oriented: setup
required between client and
server processes
reliable transport between
sending and receiving process
flow control: sender won’t
overwhelm receiver
congestion control: throttle
sender when network
overloaded
does not providing: timing,
minimum bandwidth
guarantees

UDP service:
unreliable data transfer
between sending and
receiving process
does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

2: Application Layer 16

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

2: Application Layer 17

Web and HTTP

First some jargon
Web page consists of objects
Object can be HTML file, JPEG image, Java
applet, audio file,…
Web page consists of base HTML-file which
includes several referenced objects
Each object is addressable by a URL
Example URL:

www.cs.bilkent.edu.tr/bilkent/academic/main_logo.gif

host name path name

2: Application Layer 18

HTTP overview

HTTP: hypertext
transfer protocol
Web’s application layer
protocol
client/server model

o client: browser that
requests, receives,
“displays” Web objects

o server: Web server
sends objects in
response to requests

HTTP 1.0: RFC 1945
HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

2: Application Layer 19

HTTP overview (continued)

Uses TCP:
client initiates TCP
connection (creates socket)
to server, port 80
server accepts TCP
connection from client
HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)
TCP connection closed

HTTP is “stateless”
server maintains no
information about
past client requests

Protocols that maintain
“state” are complex!
past history (state) must
be maintained
if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

2: Application Layer 20

HTTP connections

Nonpersistent HTTP
At most one object is
sent over a TCP
connection.
HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
Multiple objects can
be sent over single
TCP connection
between client and
server.
HTTP/1.1 uses
persistent connections
in default mode

2: Application Layer 21

Nonpersistent HTTP
Suppose user enters URL

www.bilkent.edu.tr/someDepartment/

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.bilkent.edu.tr
on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/

1b. HTTP server at host
www.bilkent.edu.tr waiting for
TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

2: Application Layer 22

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

2: Application Layer 23

Response time modeling
Definition of RRT: time to

send a small packet to
travel from client to
server and back.

Response time:
one RTT to initiate TCP
connection
one RTT for HTTP
request and first few
bytes of HTTP response
to return
file transmission time

total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

2: Application Layer 24

Persistent HTTP

Nonpersistent HTTP issues:
requires 2 RTTs per object
OS must work and allocate
host resources for each TCP
connection
but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP
server leaves connection
open after sending response
subsequent HTTP messages
between same client/server
are sent over connection

Persistent without pipelining:
client issues new request
only when previous
response has been received
one RTT for each
referenced object

Persistent with pipelining:
default in HTTP/1.1
client sends requests as
soon as it encounters a
referenced object
as little as one RTT for all
the referenced objects

2: Application Layer 25

HTTP request message

two types of HTTP messages: request, response
HTTP request message:

o ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.bilkent.edu.tr
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 26

HTTP request message: general format

2: Application Layer 27

Method types

HTTP/1.0
GET
POST
HEAD

o asks server to leave
requested object out of
response

HTTP/1.1
GET, POST, HEAD
PUT

o uploads file in entity
body to path specified
in URL field

DELETE
o deletes file specified in

the URL field

2: Application Layer 28

Uploading form input
Post method:

Web page often
includes form input
Input is uploaded to
server in entity body

URL method:
Uses GET method
Input is uploaded in
URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 29

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

2: Application Layer 30

HTTP response status codes

200 OK
o request succeeded, requested object later in this message

301 Moved Permanently
o requested object moved, new location specified later in

this message (Location:)
400 Bad Request

o request message not understood by server
404 Not Found

o requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 31

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at
www.ee.bilkent.edu.tr.
Anything typed in sent
to port 80 at www.ee.bilkent.edu.tr

telnet www.ee.bilkent.edu.tr 80

2. Type in a GET HTTP request:
By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

GET /~ezhan/index.html HTTP/1.0

3. Look at response message sent by HTTP server!

2: Application Layer 32

User-server interaction: authorization
Authorization : control access to

server content
authorization credentials:
typically name, password
stateless: client must present
authorization in each request

o authorization: header line in
each request

o if no authorization: header,
server refuses access,
sends
WWW authenticate:

header line in response

client server
usual http request msg
401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

2: Application Layer 33

Cookies: keeping “state”

Many major Web sites
use cookies

Four components:
1) cookie header line in

the HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on
user’s host and managed
by user’s browser

4) back-end database at
Web site

Example:
o Susan access Internet

always from same PC
o She visits a specific e-

commerce site for first
time

o When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for
ID

2: Application Layer 34

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

entry in backend

database

access

acc
ess

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

2: Application Layer 35

Cookies (continued)
What cookies can bring:

authorization
shopping carts
recommendations
user session state
(Web e-mail)

Cookies and privacy:
cookies permit sites to
learn a lot about you
you may supply name
and e-mail to sites
search engines use
redirection & cookies
to learn yet more
advertising companies
obtain info across
sites

2: Application Layer 36

Set-Cookie HTTP Response
Header

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH;
domain=DOMAIN_NAME; secure

o NAME=VALUE
• sequence of characters excluding semi-colon, comma and

white space (the only required field)
o expires=DATE

Format: Wdy, DD-Mon-YYYY HH:MM:SS GMT
o domain=DOMAIN_NAME

• Browser performs “tail matching” searching through cookies
file

• Default domain is the host name of the server which
generated the cookie response

o path=PATH
• the subset of URLs in a domain for which the cookie is valid

o Secure: if secure cookie will only be transmitted if the
communications channel with the host is secure, e.g.,
HTTPS

2: Application Layer 37

Cookies File
Netscape keeps all cookies in a single file
~username/.netscape/cookies whereas IE keeps each cookie in
separate files in the folder C:\Documents and Settings\user\Cookies

Netscape HTTP Cookie File
http://www.netscape.com/newsref/std/cookie_spec.html
This is a generated file! Do not edit.

.netscape.com TRUE / FALSE 1128258721 sampler 1097500321

.edge.ru4.com TRUE / FALSE 2074142135 ru4.uid 2|3|0#12740302632086421#1917818738

.edge.ru4.com TRUE / FALSE 1133246135 ru4.1188.gts :2

.netscape.com TRUE / FALSE 1128065747 RWHAT set|1128065747300

.nytimes.com TRUE / FALSE 1159598159 RMID 833ff0b33a03433cdccf603e

.netscape.com TRUE / FALSE 1128148560 adsNetPopup0 1128062159725
servedby.advertising.com TRUE / FALSE 1130654161 1812261973 _433cdcd1,,695214^76559_
.advertising.com TRUE / FALSE 1285742161 ACID bb640011280621610000!
.bluestreak.com TRUE / FALSE 1443407766 id 33167285258566120 bb=141A11twQw_"4totrKoAA| adv=
.mediaplex.com TRUE / FALSE 1245628800 svid 80016269101
.nytdigital.com TRUE / FALSE 1625726176 TID 0e0pcsb11jpn70
.nytdigital.com TRUE / FALSE 1625726176 TData
.nytimes.com TRUE / FALSE 1625726176 TID 0e0pcsb11jpn70
.nytimes.com TRUE / FALSE 1625726176 TData
.doubleclick.net TRUE / FALSE 1222670215 id 8000006195fbc8b
servedby.advertising.com TRUE / FALSE 1130654216 5907528 _433cdd08,,707769^243007_
www.yahoo.com TRUE / FALSE 1149188401 FPB fc1hmqbqc11jpnci

2: Application Layer 38

Cookies File Format

Domain Accessible
by all
hosts

Path Secure Expiration
(Unix time)

Name Value

edge.ru4.com TRUE / FALSE 2074142135 ru4.uid 2|3|0#1274…

nytimes.com TRUE / FALSE 1625726176 TID 0e0pcsb11jpn70

Thu, 8 Jul 2021 06:36:16 UTCSun, 23 Sep 2035 06:35:35 UTC

2: Application Layer 39

Conditional GET: client-side caching

Goal: don’t send object if
client has up-to-date cached
version
client: specify date of
cached copy in HTTP request
If-modified-since:

<date>

server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not

Modified

client server
HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

2: Application Layer 40

FTP: the file transfer protocol

transfer file to/from remote host
client/server model

o client: side that initiates transfer (either to/from
remote)

o server: remote host
ftp: RFC 959
ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

2: Application Layer 41

FTP: separate control, data connections

FTP client contacts FTP
server at port 21, specifying
TCP as transport protocol
Client obtains authorization
over control connection
Client browses remote
directory by sending
commands over control
connection.
When server receives a
command for a file transfer,
the server opens a TCP data
connection to client
After transferring one file,
server closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Server opens a second TCP
data connection to transfer
another file.
Control connection: “out of
band”
FTP server maintains “state”:
current directory, earlier
authentication

2: Application Layer 42

FTP commands, responses

Sample commands:
sent as ASCII text over
control channel
USER username

PASS password

LIST return list of file in
current directory
RETR filename retrieves
(gets) file
STOR filename stores
(puts) file onto remote
host

Sample return codes
status code and phrase (as
in HTTP)
331 Username OK,
password required

125 data connection
already open;
transfer starting

425 Can’t open data
connection

452 Error writing
file

2: Application Layer 43

Electronic Mail

Three major components:
user agents
mail servers
simple mail transfer
protocol: SMTP

User Agent
a.k.a. “mail reader”
composing, editing, reading
mail messages
e.g., Eudora, Outlook, elm,
Netscape Messenger
outgoing, incoming messages
stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 44

Electronic Mail: mail servers

Mail Servers
mailbox contains incoming
messages for user
message queue of outgoing
(to be sent) mail messages
SMTP protocol between mail
servers to send email
messages

o client: sending mail
server

o “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 45

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from client
to server, port 25
direct transfer: sending server to receiving server
three phases of transfer

o handshaking (greeting)
o transfer of messages
o closure

command/response interaction
o commands: ASCII text
o response: status code and phrase

messages must be in 7-bit ASCII

2: Application Layer 46

Scenario: Ayşe sends message to Ali
1) Ayşe uses UA to compose

message and “to”
ali@bilkent.edu.tr

2) Ayşe’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Ali’s
mail server

4) SMTP client sends Ayşe’s
message over the TCP
connection

5) Ali’s mail server places the
message in Ali’s mailbox

6) Ali invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Ayşe Ali

2: Application Layer 47

SMTP interaction for yourself
telnet cs.bilkent.edu.tr 25
220 gordion.cs.bilkent.edu.tr ESMTP Sendmail 8.12.9/8.12.9;
Wed, 3 Mar 2004 11:17:52 +0200 (EET)

HELO cs.bilkent.edu.tr
250 gordion.cs.bilkent.edu.tr Hello nemrut.ee.bilkent.edu.
tr [139.179.12.28], pleased to meet you

MAIL FROM: <somebody@somewhere.net>
250 2.1.0 <somebody@somewhere.net>... Sender ok

RCPT TO: <ezhan@ee.bilkent.edu.tr>
250 2.1.5 <ezhan@ee.bilkent.edu.tr>... Recipient ok

DATA
354 Enter mail, end with "." on a line by itself

hello
.
250 2.0.0 Message accepted for delivery

QUIT
221 2.0.0 gordion.cs.bilkent.edu.tr closing connection

2: Application Layer 48

SMTP: final words

SMTP uses persistent
connections
SMTP requires message
(header & body) to be in 7-
bit ASCII
SMTP server uses
CRLF.CRLF to determine
end of message

Comparison with HTTP:
HTTP: pull
SMTP: push

both have ASCII
command/response
interaction, status codes

HTTP: each object
encapsulated in its own
response msg
SMTP: multiple objects
sent in multipart msg

2: Application Layer 49

Mail access protocols

SMTP: delivery/storage to receiver’s server
Mail access protocol: retrieval from server

o POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

o IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

o HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

2: Application Layer 50

DNS: Domain Name System

People: many identifiers:
o SSN, name, passport #

Internet hosts, routers:
o IP address (32 bit) -

used for addressing
datagrams

o “name”, e.g.,
www.cs.bilkent.edu.tr -
used by humans

Q: map between IP
addresses and name ?

Domain Name System:
distributed database
implemented in hierarchy of
many name servers
application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

o note: core Internet
function, implemented as
application-layer protocol

o complexity at network’s
“edge”

2: Application Layer 51

DNS
Why not centralize DNS?

single point of failure
traffic volume
distant centralized
database
maintenance

doesn’t scale!

DNS services
Hostname to IP
address translation
Host aliasing

o Canonical and alias
names

Mail server aliasing
Load distribution

o Replicated Web
servers: set of IP
addresses for one
canonical name

2: Application Layer 52

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
Client queries a root server to find com DNS
server
Client queries com DNS server to get amazon.com
DNS server
Client queries amazon.com DNS server to get IP
address for www.amazon.com

2: Application Layer 53

DNS: Root name servers
contacted by local name server that can not resolve name
root name server:

o contacts authoritative name server if name mapping not known
o gets mapping
o returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 17 other locations)

i Autonomica, Stockholm (plus 3
other locations)

k RIPE London (also Amsterdam,
Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (11 locations)

2: Application Layer 54

TLD and Authoritative Servers

Top-level domain (TLD) servers: responsible
for com, org, net, edu, etc, and all top-level
country domains uk, fr, ca, jp.
o Network solutions maintains servers for com TLD
o Educause for edu TLD

Authoritative DNS servers: organization’s
DNS servers, providing authoritative
hostname to IP mappings for organization’s
servers (e.g., Web and mail).
o Can be maintained by organization or service

provider

2: Application Layer 55

Local Name Server

Does not strictly belong to hierarchy
Each ISP (residential ISP, company,
university) has one.
o Also called “default name server”

When a host makes a DNS query, query is
sent to its local DNS server
o Acts as a proxy, forwards query into hierarchy.

2: Application Layer 56

root DNS server

requesting host
Firat.bilkent.edu.tr

gaia.cs.umass.edu

local DNS server
dns.bilkent.edu.tr

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

Example

Host at
firat.bilkent.edu.tr
wants IP address for
gaia.cs.umass.edu

2: Application Layer 57

requesting host
Firat.bilkent.edu.tr

gaia.cs.umass.edu

root DNS server

local DNS server
dns.bilkent.edu.tr

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS serve

3

Recursive queries
recursive query:

puts burden of name
resolution on
contacted name
server
heavy load?

iterated query:
contacted server
replies with name of
server to contact
“I don’t know this
name, but ask this
server”

2: Application Layer 58

DNS: caching and updating records

once (any) name server learns mapping, it caches
mapping
o cache entries timeout (disappear) after some

time
o TLD servers typically cached in local name

servers
• Thus root name servers not often visited

update/notify mechanisms under design by IETF
o RFC 2136
o http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 59

DNS records
DNS: distributed db storing resource records (RR)

Type=NS
o name is domain (e.g.

foo.com)
o value is IP address of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

Type=A
o name is hostname
o value is IP address

Type=CNAME
o name is alias name for some

“cannonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

o value is cannonical name

Type=MX
o value is name of mailserver

associated with name

2: Application Layer 60

DNS protocol, messages
DNS protocol : query and reply messages, both with same

message format

msg header
identification: 16 bit #
for query, reply to query
uses same #
flags:

o query or reply
o recursion desired
o recursion available
o reply is authoritative

2: Application Layer 61

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 62

Inserting records into DNS

Example: just created startup “Network Utopia”
Register name networkuptopia.com at a registrar
(e.g., Network Solutions)

o Need to provide registrar with names and IP addresses of
your authoritative name server (primary and secondary)

o Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

Put in authoritative server Type A record for
www.networkutopia.com and Type MX record for
mail.networkutopia.com

2: Application Layer 63

How do people connect to Web server?

local DNS server
dns.bilkent.edu.tr

1

2

4

7: requesting host
firat.bilkent.edu.tr

6

com TLD DNS
server

contains type A
and NS RRs for
Network Utopia

3: reply contains IP
address for auth.
name server for
Network Utopia
(212.212.212.1) authoritative name

server for Network
Utopia
IP: 212.212.212.15: reply contains IP

address for Web
server for
Network Utopia
(212.212.212.178) Web server for

Network Utopia
IP: 212.212.212.178TCP connection

2: Application Layer 64

Socket programming

Socket API
introduced in BSD4.1 UNIX,
1981
explicitly created, used,
released by apps
client/server paradigm
two types of transport
service via socket API:

o unreliable datagram
o reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2: Application Layer 65

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2: Application Layer 66

Socket programming with TCP
Client must contact server

server process must first
be running
server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:
creating client-local TCP
socket
specifying IP address, port
number of server process
When client creates
socket: client TCP
establishes connection to
server TCP

When contacted by client,
server TCP creates new
socket for server process to
communicate with client

o allows server to talk with
multiple clients

o source port numbers
used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 67

Stream jargon

A stream is a sequence of
characters that flow into
or out of a process.
An input stream is
attached to some input
source for the process, eg,
keyboard or socket.
An output stream is
attached to an output
source, eg, monitor or
socket.

2: Application Layer 68

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

2: Application Layer 69

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2: Application Layer 70

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 71

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2: Application Layer 72

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2: Application Layer 73

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

2: Application Layer 74

Socket programming with UDP

UDP: no “connection” between
client and server
no handshaking
sender explicitly attaches
IP address and port of
destination to each packet
server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

2: Application Layer 75

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

2: Application Layer 76

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (TCP sent
“byte stream”)

Input: receives
packet (TCP
received “byte
stream”)

Client
process

client UDP
socket

2: Application Layer 77

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

2: Application Layer 78

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

2: Application Layer 79

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 80

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

2: Application Layer 81

Socket programming: references

Java-tutorials:
“All About Sockets” (Sun tutorial),
http://www.javaworld.com/javaworld/jw-12-
1996/jw-12-sockets.html
“Socket Programming in Java: a tutorial,”
http://www.javaworld.com/javaworld/jw-12-
1996/jw-12-sockets.html

2: Application Layer 82

Web caches (proxy server)

user sets browser: Web
accesses via cache
browser sends all HTTP
requests to cache

o object in cache: cache
returns object

o else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

2: Application Layer 83

More about Web caching

Cache acts as both client
and server
Cache can do up-to-date
check using If-modified-
since HTTP header

o Issue: should cache take
risk and deliver cached
object without checking?

o Heuristics are used.
Typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?
Reduce response time for
client request.
Reduce traffic on an
institution’s access link.
Internet dense with caches
enables “poor” content
providers to effectively
deliver content

2: Application Layer 84

Caching example (1)
Assumptions

average object size = 100,000
bits
avg. request rate from
institution’s browser to origin
serves = 15/sec
delay from institutional router
to any origin server and back
to router = 2 sec

Consequences
utilization on LAN = 15%
utilization on access link = 100%
total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps
access link

2: Application Layer 85

Caching example (2)
Possible solution

increase bandwidth of access
link to, say, 10 Mbps

Consequences
utilization on LAN = 15%
utilization on access link = 15%
Total delay = Internet delay +
access delay + LAN delay

= 2 sec + msecs + msecs
often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

10 Mbps
access link

2: Application Layer 86

Caching example (3)

Install cache
suppose hit rate is .4

Consequence
40% requests will be
satisfied almost immediately
60% requests satisfied by
origin server
utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec)

origin
servers

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps
access link

2: Application Layer 87

Content distribution networks (CDNs)

The content providers are
the CDN customers.

Content replication
CDN company installs
hundreds of CDN servers
throughout Internet

o in lower-tier ISPs, close
to users

CDN replicates its customers’
content in CDN servers.
When provider updates
content, CDN updates
servers

origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

2: Application Layer 88

CDN example

origin server
www.foo.com
distributes HTML
Replaces:
http://www.foo.com/sports.ruth.gif

with
http://www.cdn.com/www.foo.com/sports/ruth.gif

HTTP request for
www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for
www.cdn.com/www.foo.com/sports/ruth.gif

1

2

3

Origin server

CDNs authoritative
DNS server

Nearby
CDN server

CDN company
cdn.com
distributes gif files
uses its authoritative
DNS server to route
redirect requests

2: Application Layer 89

More about CDNs
routing requests

CDN creates a “map”,
indicating distances
from leaf ISPs and
CDN nodes
when query arrives at
authoritative DNS
server:

o server determines ISP
from which query
originates

o uses “map” to determine
best CDN server

not just Web pages
streaming stored
audio/video
streaming real-time
audio/video

o CDN nodes create
application-layer
overlay network

2: Application Layer 902: Application Layer 90

Pure P2P architecture

no always-on server
arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses

peer-peer

2: Application Layer 912: Application Layer 91

File Distribution: Server-Client vs P2P
Question : How much time to distribute file

from one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

2: Application Layer 922: Application Layer 92

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver sequentially
sends N copies:
o NF/us time

client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

2: Application Layer 932: Application Layer 93

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver must send one
copy: F/us time
client i takes F/di time
to download
NF bits must be
downloaded (aggregate)

fastest possible upload rate: us + Σui

dP2P = max { F/us, F/mini di) , NF/(us + Σui) }

2: Application Layer 942: Application Layer 94

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Server-client vs. P2P: example
Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

2: Application Layer 95

Searching for Information-
Query flooding: Gnutella

fully distributed
o no central server

public domain protocol
many Gnutella clients
implementing protocol

overlay network: graph
edge between peer X
and Y if there’s a TCP
connection
all active peers and
edges is overlay net
Edge is not a physical
link
Given peer will
typically be connected
with < 10 overlay
neighbors

2: Application Layer 96

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTPQuery message

sent over existing TCP
connections

peers forward
Query message

QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2: Application Layer 97

Gnutella: Peer joining

1. Joining peer X must find some other peer in
Gnutella network: use list of candidate peers

2. X sequentially attempts to make TCP with peers
on list until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping
message.

4. All peers receiving Ping message respond with
Pong message

5. X receives many Pong messages. It can then
setup additional TCP connections

2: Application Layer 98

Exploiting heterogeneity: KaZaA

Each peer is either a
group leader or assigned
to a group leader.

o TCP connection between
peer and its group leader.

o TCP connections between
some pairs of group
leaders.

Group leader tracks the
content in all its
children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2: Application Layer 99

KaZaA: Querying

Each file has a hash and a descriptor
Client sends keyword query to its group
leader
Group leader responds with matches:
o For each match: metadata, hash, IP address

If group leader forwards query to other
group leaders, they respond with matches
Client then selects files for downloading
o HTTP requests using hash as identifier sent to

peers holding desired file

2: Application Layer 100

Kazaa tricks

Limitations on simultaneous uploads
Request queuing
Incentive priorities
Parallel downloading

2: Application Layer 1012: Application Layer 101

P2P Case Study: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

2: Application Layer 1022: Application Layer 102

BitTorrent (1)
file divided into 256KB chunks.
peer joining torrent:
o has no chunks, but will accumulate them over time
o registers with tracker to get list of peers,

connects to subset of peers (“neighbors”)
while downloading, peer uploads chunks to other
peers.
peers may come and go
once peer has entire file, it may (selfishly) leave or
(altruistically) remain

2: Application Layer 1032: Application Layer 103

BitTorrent (2)
Pulling Chunks

at any given time,
different peers have
different subsets of
file chunks
periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.
Alice sends requests
for her missing chunks
o rarest first

Sending Chunks: tit-for-tat
r Alice sends chunks to four

neighbors currently
sending her chunks at the
highest rate

re-evaluate top 4 every
10 secs

r every 30 secs: randomly
select another peer,
starts sending chunks

newly chosen peer may
join top 4
“optimistically unchoke”

2: Application Layer 1042: Application Layer 104

P2P Case study: Skype

inherently P2P: pairs
of users communicate.
proprietary
application-layer
protocol (inferred via
reverse engineering)
hierarchical overlay
with SNs
Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

2: Application Layer 105

Skype: making a call

User starts Skype

Skype
login server

SC registers with SN
o list of bootstrap SNs

SC logs in
(authenticate)
Call: SC contacts SN with
callee ID

o SN contacts other SNs
(unknown protocol, maybe
flooding) to find addr of
callee; returns addr to SC

SC directly contacts callee

2: Application Layer 1062: Application Layer 106

Peers as relays

Problem when both
Alice and Bob are
behind “NATs”.

o NAT prevents an outside
peer from initiating a call
to insider peer

Solution:
o Using Alice’s and Bob’s

SNs, Relay is chosen
o Each peer initiates

session with relay.
o Peers can now

communicate through
NATs via relay

	Chapter 2: Application Layer
	Some network apps
	Creating a network app
	Application architectures
	Client-server archicture
	Pure P2P architecture
	Hybrid of client-server and P2P
	Network applications: some jargon
	Applications and application-layer protocols
	App-layer protocol defines
	Processes communicating across network
	Addressing processes:
	What transport service does an app need?
	Transport service requirements of common apps
	Internet transport protocols services
	Internet apps: application, transport protocols
	Web and HTTP
	HTTP overview
	HTTP overview (continued)
	HTTP connections
	Nonpersistent HTTP
	Nonpersistent HTTP (cont.)
	Response time modeling
	Persistent HTTP
	HTTP request message
	HTTP request message: general format
	Method types
	Uploading form input
	HTTP response message
	HTTP response status codes
	Trying out HTTP (client side) for yourself
	User-server interaction: authorization
	Cookies: keeping “state”
	Cookies: keeping “state” (cont.)
	Cookies (continued)
	Set-Cookie HTTP Response Header�
	Cookies File
	Cookies File Format
	Conditional GET: client-side caching
	FTP: the file transfer protocol
	FTP: separate control, data connections
	FTP commands, responses
	Electronic Mail
	Electronic Mail: mail servers
	Electronic Mail: SMTP [RFC 2821]
	Scenario: Ayşe sends message to Ali
	SMTP interaction for yourself
	SMTP: final words
	Mail access protocols
	DNS: Domain Name System
	DNS
	Distributed, Hierarchical Database
	DNS: Root name servers
	TLD and Authoritative Servers
	Local Name Server
	Example
	Recursive queries
	DNS: caching and updating records
	DNS records
	DNS protocol, messages
	DNS protocol, messages
	Inserting records into DNS
	How do people connect to Web server?
	Socket programming
	Socket-programming using TCP
	Socket programming with TCP
	Stream jargon
	Socket programming with TCP
	Client/server socket interaction: TCP
	Example: Java client (TCP)
	Example: Java client (TCP), cont.
	Example: Java server (TCP)
	Example: Java server (TCP), cont
	Socket programming with UDP
	Client/server socket interaction: UDP
	Example: Java client (UDP)
	Example: Java client (UDP)
	Example: Java client (UDP), cont.
	Example: Java server (UDP)
	Example: Java server (UDP), cont
	Socket programming: references
	Web caches (proxy server)
	More about Web caching
	Caching example (1)
	Caching example (2)
	Caching example (3)
	Content distribution networks (CDNs)
	CDN example
	More about CDNs
	Pure P2P architecture
	File Distribution: Server-Client vs P2P
	File distribution time: server-client
	File distribution time: P2P
	Searching for Information-�Query flooding: Gnutella
	Gnutella: protocol
	Gnutella: Peer joining
	Exploiting heterogeneity: KaZaA
	KaZaA: Querying
	Kazaa tricks
	P2P Case Study: BitTorrent
	BitTorrent (1)
	BitTorrent (2)
	P2P Case study: Skype
	Skype: making a call
	Peers as relays

