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ABSTRACT

MEMORY-EFFICIENT CONSTRAINED DELAUNAY
TETRAHEDRALIZATION OF LARGE

THREE-DIMENSIONAL TRIANGULAR MESHES

Ziya Erkoç

M.S. in Computer Engineering

Advisor: Uğur Güdükbay

July 2022

We propose a divide-and-conquer algorithm that can solve the Constrained De-

launay Tetrahedralization (CDT) problem. It consists of three stages: Input

Partitioning, Surface Closure, and Merge. We first partition the input into sev-

eral pieces to reduce the problem size. We apply 2D Triangulation to close the

open boundaries to make new pieces watertight. Each piece is then sent to Tet-

Gen [Hang Si, “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator”,

ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article No. 11,

36 pages, January 2015] for processing. We finally merge each tetrahedral mesh

to calculate the final solution. In addition, we apply post-processing to remove

vertices we introduced during the input partitioning stage to preserve the in-

put triangles. An alternative approach that does not insert new vertices and

eliminates the need for post-processing is also possible but not robust. The ben-

efit of our method is that it can reduce memory usage or increase the speed of

the process. It can even tetrahedralize meshes that TetGen cannot do due to the

memory’s insufficiency. We also observe that this method can increase the overall

tetrahedral mesh quality.

Keywords: Constrained Delaunay Triangulation (CDT), tetrahedralization, par-

allelization, three-dimensional triangular mesh, divide-and-conquer, Principal

Component Analysis (PCA).
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ÖZET

BÜYÜK ÜÇ BOYUTLU ÜÇGENSEL MODELLERİN
BELLEK VERİMLİ, KISITLI DELAUNAY

DÖRTYÜZLEMESİ

Ziya Erkoç

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Uğur Güdükbay

Temmuz 2022

Kısıtlı Delaunay Üçgenleme (KDÜ) problemini çözebilen bir böl-ve-yönet algorit-

ması öneriyoruz. Algoritmamız üç aşamadan oluşmaktadır: Girdi Bölme, Yüzey

Kapatma, ve Birleştirme. Problemin boyutunu küçültmek için önce girdiyi birkaç

parçaya bölüyoruz. Yeni parçaları su geçirmez hale getirmek adına açık yüzeyleri

kapatmak için 2D Üçgenleme uyguluyoruz. Her parça daha sonra işlenmek üzere

TetGen [Hang Si, “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Gen-

erator”, ACM Transactions on Mathematical Software, Cilt 41, Sayı 2, Makale

No. 11, 36 sayfa, Ocak 2015] programına gönderiyoruz. Sonunda, nihai çözümü

hesaplamak için her bir dörtyüzlü ağı birleştiriyoruz. Ek olarak, girdi üçgenlerini

korumak için girdi bölme aşamasında eklediğimiz köşeleri kaldırma işlemi uygu-

luyoruz. Yeni köşe eklemeyen ve de köşeleri geri silme işlemini ortadan kaldıran

alternatif bir yaklaşım da mümkündür; ancak, bu yaklaşım her zaman doğru

bir şekilde çalışmamaktadır. Yöntemimizin yararı, bellek kullanımını azalta-

bilmesi ya da işlemin hızının artırabilmesidir. Yöntemimiz TetGen’in bellek yeter-

sizliğinden dolayı yapamadığı girdileri başarı ile işleyebilmektedir. Ayrıca, bu

yöntemin dörtyüzlü ağ kalitesini artırabildiğini de gözlemledik.

Anahtar sözcükler : Kısıtlı Delaunay Üçgenleme (KDÜ), dörtyüzlüleştirme, para-

lelleştirme, üç boyutlu üçgensel model, böl-ve-yönet, Temel Bileşenler Analizi.
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Chapter 1

Introduction

Tetrahedral meshes are widely used in many areas, including bioengineering [1],

biomechanics [2, 3], Computational Fluid Dynamics [4], computer graphics, and

animation, especially the simulation of deformable bodies, including fracture and

incision simulations [5, 6, 7], mechanical simulations such as turbomachinery

flow [8], medical applications, such as medical device design [9, 10], medical

image analysis [11], and soft tissue simulations [12]. Tetrahedral meshes are

mainly used for the discretization of continuous materials and objects for Fi-

nite Element (FEM) Simulations [13] because they fit well for complex geome-

try [14]. Tetrahedralization algorithms in the literature solve various problems

associated with tetrahedral meshes, such as preventing self-intersections and el-

ement inversion [15], reducing sliver tetrahedra for mesh optimization [16, 17],

and approximations using point insertion to overcome the problems preventing

constrainedness [18].

In the Computational Geometry domain, two-dimensional (2D) triangulation

means forming triangles out of a co-planar vertex set. On the other hand, three-

dimensional (3D) triangulation algorithms take inputs in 3D space and create

a tetrahedral mesh. Delaunay triangulation algorithms form triangles that are

close to an equilateral triangle. Such algorithms ensure that each triangle is

approximate to an equilateral triangle and complies with the Delaunay criterion.
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Our focus is 3D Constrained Delaunay Triangulation (CDT); i.e., Constrained

Delaunay Tetrahedralization. These algorithms input a 3D point cloud and a

triangulated surface mesh around the point cloud, and they generate tetrahedral

meshes for the 3D point cloud whose boundary is the given 3D triangular mesh.

We observe that recent 3D CDT algorithms may suffer from that sufficiency

of memory or may run slow [19, 20, 21]. When the memory is limited, these al-

gorithms may fail to tetrahedralize an object because of excessive memory usage.

We want to develop a tetrahedralization framework that would allow either small

memory usage or fast execution. In this way, we could tetrahedralize substantial

objects that other algorithms cannot do. In addition, we aim to speed up the

process using parallelization structures. To this end, we introduce a divide-and-

conquer algorithm.

Our divide-and-conquer algorithm is composed of three stages: Input Parti-

tioning, Surface Closure, and Merge. To divide the input into smaller subprob-

lems, we partition the input into pieces using parallel planes. We apply Principal

Component Analysis (PCA) to find the most dominant axis to divide the in-

put into as many pieces as possible. To create a watertight mesh, which TetGen

requires, we triangulate open boundaries during Surface Closure. With the water-

tight meshes ready, we can execute TetGen for each piece. After the executions

are complete, we merge the tetrahedral meshes and remove the extra vertices

introduced during the input partitioning stage.

Our method has memory optimization and parallel processing modes. In mem-

ory optimization mode, we sequentially process the inputs in the former to reduce

the memory footprint. In addition, we save intermediate files to disk to reduce

memory consumption. In the parallel processing mode, we apply multi-threading

to process pieces in a parallel fashion. Our results suggest that we can increase

the speed or reduce the memory usage but not both simultaneously. We can

increase the tetrahedral mesh quality by refining the triangles generated during

the surface closure stage.

We also experimented with an alternative approach that does not introduce
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new vertices at the beginning. However, this approach is not robust because of the

following reasons. Projecting a 3D polyline onto the 2D plane required for closing

the open boundary of the parts obtained by partitioning is problematic because

this projection is not bijective and cannot ensure that the triangles generated

during this process will not self-intersect in 3D. Additionally, self-intersection

tests to detect such self-intersections are not reliable.

The contributions of this thesis are as follows.

• a divide-and-conquer algorithm to reduce memory usage and speed up the

process,

• a parallelization scheme to run tetrahedralization in a multi-threaded fash-

ion, and

• a straightforward PCA-based partitioning to allow for balanced partitioning

of the input mesh in terms of the number of vertices.

The thesis is organized as follows. Chapter 2 discusses related work on tri-

angulation and tetrahedralization algorithms. Chapter 3 describes our approach

by explaining how we divide the input mesh, triangulate the open boundary of

each part by a surface closure algorithm, and merge the sub-problems. Chapter 4

talks about the two modes of our algorithm in detail. Chapter 5 presents the

experimental evaluation of the proposed approach in terms of execution time,

memory usage, and mesh quality. We introduce an alternative approach that

we experienced in Chapter 6. Finally, Chapter 7 gives conclusions and future

research directions.
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Chapter 2

Related Works

2.1 Constrained Delaunay Triangulation

Si put forth a CDT algorithm called TetGen, which generates high-quality tetra-

hedra, and his algorithm works quite fast [19]. Because the algorithm does not

apply problem partitioning, it may not scale to large objects due to large memory

requirements. Our algorithm is a memory-efficient, divide-and-conquer extension

of TetGen.

Hu et al. [20] developed a robust CDT mesh generator called TetWild. TetWild

is quite powerful because it can tetrahedralize a wide range of objects. It does

not make input assumptions and can even process non-manifold objects with

self-intersections. Because our algorithm uses TetGen at the base, the input

models that we can handle are watertight non-self-intersecting meshes. TetWild

algorithm is an approximate constrained algorithm; it might not preserve the

input perfectly. Still, it controls the input preservation level with a parameter.

Chew proposes a two-dimensional sequential, high-quality constrained tetra-

hedralization algorithm [22]. The algorithm ensures that angles of the triangles

are between 30 and 120 degree and edges are between h and 2h where h is a

4



user-defined value. These properties are guaranteed to make sure triangulation

contains near-equilateral triangles. The algorithm constantly computes triangu-

lation and finds a Delaunay circle, a circumcircle of a Delaunay triangle, whose

radius is greater than h. It then inserts the circle’s center as the new point and

recomputes the triangulation. TetGen also uses a similar approach by adding a

circumcenter of the poor-quality tetrahedra to increase the mesh quality [19].

2.2 Parallel Delaunay Triangulation

Although there are various studies on parallel two-dimensional Constrained De-

launay Triangulation (CDT) or parallel three-dimensional (3D) Delaunay trian-

gulation (DT), we did not come across any parallel 3D CDT algorithms.

Chernikov and Chrisochoides’s parallel 2D CDT algorithm uses a domain de-

composition method called Medial Axis Domain Decomposition (MADD). After

the decomposition, each subdomain is tetrahedralized in parallel independently.

The number of sub-domains created is much higher than the number of proces-

sors, and they use the Load Balancing library to assign sub-domains to processors

in the most flexible way possible. In addition, they solve a Graph Partition prob-

lem to distribute sub-domains to processors so that each processor has a nearly

equal amount of work. They use the message-passing model as their paralleliza-

tion scheme instead of a shared-memory structure, and their implementation is

based on Message-Passing-Interface (MPI) library [23]. The domain decompo-

sition algorithm presented here may work well in the 2D case, but in 3D, the

existence of faces would make the problem more complicated. Hence, we used

mesh cutting to decompose the domain [24, 25].

Coll and Guerrieri propose a 2D CDT algorithm that is parallelized using

GPUs. Their algorithm comprises Location, Insertion, Marking, and Flipping

stages. During the Walking phase, they identify triangles containing an unin-

serted point. They insert points in the Insertion stage. During the Marking

5



stage, the segments are marked either as valid or to-be-flipped (i.e., to eradi-

cate non-Delaunayness or intersection). In the Flipping stage, they flip the edges

marked so. The algorithm is an iterative one that continues to run these four

stages as long as some PSLG elements (i.e., edges and points) are missing in the

triangulation. These four stages are run one after another; they applied paral-

lelization within each stage. In their implementation, the threads coordinate to

avoid race conditions. For instance, when a thread is about to do a point insertion

or edge-flip to a triangle, it informs the neighbor threads of that operation and

who will be their new neighbor. It would be possible to extend this algorithm

to be a 3D algorithm. We adopted a more straightforward approach by creat-

ing independent parts and processing them individually. That way, we ensure

no race condition, synchronization issue, or thread communication, helping to

reduce parallelization overhead [26].

Blandford et al. [27] propose a parallel tetrahedralization algorithm that can

be extended to an out-of-core algorithm. However, it is not a constrained tetra-

hedralization algorithm. They suggest that developing an out-of-core algorithm

would allow large meshes to be tetrahedralized. Their parallel algorithm is based

on the sequential incremental insertion algorithm. They use multi-threading and

lock mechanisms to insert multiple vertices into the tetrahedral mesh simultane-

ously. Our algorithm differs from theirs because we use the divide-and-conquer

paradigm to tetrahedralize. Their algorithm does not divide the input as in

our case but works on a single mesh with multiple threads. Chernikov and

Chrisochoides also generated quality tetrahedral meshes using the circumradius-

to-shortest-edge ratio as the quality measure [28]. Their algorithm leverages

multi-core processors through parallelization. Specifically, they focused on paral-

lelizing the Delaunay refinement step to speed up the overall process.

Cignoni et al. [29] put forward a divide-and-conquer Delaunay triangulation

algorithm, DeWall, that can triangulate meshes of any dimension. Although it is

not implemented as a parallel algorithm, it is amenable to a parallel implemen-

tation. However, it is not a constrained tetrahedralization algorithm.

Our divide-and-conquer algorithm differs from DeWall in the non-recursive

6



part. DeWall applies a merge step before the recursive step. This early-merge

step uses a dividing plane and selects the vertices at either side of this plane to

create an initial tetrahedralization. It chooses these vertices so that the gener-

ated tetrahedra have the smallest circumsphere radius to satisfy the Delaunay

criterion. At this early merge step, the generated tetrahedra intersect the di-

viding plane. Then, it applies the same procedure recursively for the parts on

either side of the dividing plane. We do not allocate buffer regions; we divide

the mesh into parts and process them. Specifically, DeWall tetrahedralizes three

pieces at each recursive step: the DeWall region around the dividing plane, left

and right parts. We apply tetrahedralization to each part and do not spare a

volume in the middle. The disadvantage of not reserving a middle region is that

we cannot guarantee the Delaunay property for the tetrahedra around the cut-

ting plane. Our rationale for not adopting this approach is not to slow down the

process. Further, they could do this wall generation as part of a non-constrained

triangulation algorithm but applying the same for a CDT algorithm might cause

difficulties because a CDT algorithm must preserve the surface faces.

Chen et al. [30] proposed a parallel non-constrained near Delaunay triangula-

tion algorithm. They divided the input into m blocks containing a nearly equal

number of vertices. They triangulate each block using a divide-and-conquer al-

gorithm. They call the area between these blocks as interface. These interfaces

are built incrementally, applying a similar algorithm as used in DeWall to create

the middle region. The middle-region creation is similar to DeWall and different

from our algorithm because we do not spare a middle region but divide the input

mesh into several pieces directly.

Marot et al. [31] came up with a parallel 3D Delaunay Triangulation algorithm.

Their Moore curve-based input partitioning allows different threads to work on

different sets of vertices. They allocated a buffer zone between partitions to fix

potential conflicts raised by multiple threads.

Hu et al. [21] later developed a faster version of TetWild, called fTetWild. It

is as robust as the TetWild but at the same time significantly faster. They used

parallelization structures to accelerate their algorithm.

7



2.3 Input Partitioning

We shall discuss input partitioning techniques for triangulation algorithms to

divide the problem into smaller subproblems. Joshi and Ourselind propose a

constrained tetrahedralization algorithm that uses 3D convex decomposition and

BSP trees [32]. They decompose the whole object into convex sub-polyhedra,

tetrahedralize each piece and merge the meshes at the end. They accelerate the

merge process using BSP trees. During the construction of the BSP tree, their al-

gorithm introduces new vertices on the boundary. The largest model they used to

conduct their experiments contains 26 vertices. We did not consider such an ap-

proach because we cannot control the number of convex sub-polyhedra generated

and might subdivide the problem redundantly. One problem with redundantly

subdividing is that the overhead of merging at each step might significantly slow

down the process. To this end, we divide the object into a user-defined number

of pieces.

Smolik and Skala suggest a 3D triangulation algorithm that divides the input

into a 3D Grid [33]. They extended their algorithm to be out-of-core so that the

memory usage is reduced and large scenes can be tetrahedralized. However, their

algorithm is not constrained. They accept a vertex cloud as input and embed

each vertex to a cell in the 3D grid. After that, they triangulate each cell and

merge them at the end cleverly to complete the algorithm. We could not apply

that approach as we cannot divide the input surface mesh into a regular 3D

grid. Triangles might be present in multiple grid cells, which makes it difficult

tetrahedralize each cell. Therefore, we separate the object into several pieces

instead of using a grid structure.

Erkoc et al. [34] developed a divide-and-conquer constrained Delaunay tetra-

hedralization algorithm. Like our algorithm, they recursively divide the initial

model into two pieces at each step and call the TetGen as the base case. Unlike

our algorithm, they do not introduce any parallelization structure. In addition,

they do not propose any plane selection algorithm and introduce costly repairing

and merging steps.

8



Chapter 3

Proposed Approach

3.1 Overview

We propose a divide-and-conquer CDT algorithm that is composed of three

stages: Input Partitioning, Surface Closure, and Merge (cf. Algorithm 1). In

the first stage, we divide the input into smaller pieces. Specifically, we select

parallel planes perpendicular to the most variant axis corresponding to the first

principal component. We intersect those planes with the input mesh and insert

new points at the intersection points so the mesh can be easily divided. Sec-

ondly, we apply 2D triangulation to close open surfaces to make the sub-pieces a

watertight mesh that TetGen requires. We process each sub-piece using TetGen

and finally merge the tetrahedral meshes. We also apply postprocessing to delete

vertices introduced earlier during this stage.

9



Algorithm 1 Proposed Algorithm

1: procedure Tetrahedralize(mesh, k, density factor)
2: meshes, planes = Input Partitioning(mesh, k)
3: for i = 0; i < meshes.size(); i++ do
4: Close Surface(meshes[i], meshes[i + 1],
5: planes[i], density factor)
6: end for
7: tetmeshes = []
8: for i = 0; i < meshes.size(); i++ do
9: tetmeshes[i] = TetGen(meshes[i])

10: end for
11: tetmesh = merge(tetmeshes)
12: return tetmesh
13: end procedure

3.2 Input Partitioning

The proposed algorithm begins by dividing the input mesh into several pieces

(see Algorithm 2). We aim to divide the input surface mesh into as many evenly-

sized pieces as possible. To this end, we need to find parallel planes that partition

the mesh into equal-sized parts. We find such planes with the help of Principal

Component Analysis (PCA). We apply PCA to the vertices of our input mesh

to calculate the first principal component (PC1). The PC1 allows us to partition

the input mesh into a maximum number of pieces. The PC1 vector is the normal

vector of these parallel planes. We then find a different point in each of these

planes to define their equations. To achieve that, we project the vertices of our

mesh onto the PC1. So, we end up with a one-dimensional projections array, and

we sort it. At this stage, we need an input parameter, the number of parts, k.

With that value in hand, we create a set of indices

I = {(i/k)× |V | | i ∈ {0, 1, . . . , k − 1}},

where V is the vertex set of the input and (k − 1) corresponds to the number of

planes we need to create k pieces. For instance, when k = 2, I will be I = {|V |/2},
which means we get the index of the median, and by letting the plane pass through

the median, we can ensure that the division is balanced. We know how to find the

projected elements and back-project them to world coordinates with the indices.

The resulting points, along with the PC1, will be used to construct the planes.

10



Each part will contain an approximately equal number of vertices and hence an

equal number of faces.

Algorithm 2 Input Partitioning

1: procedure Input Partitioning(mesh, K)
2: planes = Find Planes(mesh, K)
3: for each plane ∈ planes do
4: Intersect Insert Points(mesh, plane)
5: end for
6: meshes = redistribute faces(mesh, planes)
7: ▷ Distribute faces across different meshes
8: return meshes, planes
9: end procedure

We need to insert new points into the mesh where the planes and mesh inter-

secting with these planes are known. Point insertion is essential because we want

all points to be planar, simplifying the Surface Closure stage. The intersection

and point insertion algorithm begins with iterating over all of the edges in the

mesh. For each edge, we run a plane-segment intersection test. The intersection

result can be a segment, a point, or nothing. We split the edge if the intersection

is a point and the plane is not too close to the edge’s endpoints. Splitting the

edge will introduce a new point between the two endpoints of the edge. We set

the new point’s location as the location of the intersection point. If the intersec-

tion is a line segment, we do not split it because the line segment is on the plane,

eliminating the necessity for point insertion. We also skip an edge if the plane

almost intersects one of its endpoints. Omitting this step would introduce nearly

duplicate points and tiny triangles that might be considered a self-intersection

without sufficient floating-point precision. Figure 3.1 illustrates before and after

the insertion of new points. After the intersection points are inserted into the

mesh, we distribute the faces of the mesh into parts, ending up with k mesh

objects. We remove those vertices during the postprocessing stage to ensure all

input faces are present in the output.
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Figure 3.1: The illustration of intersection and point insertion. The top image
shows the input mesh before running the algorithm. The bottom image shows
the result after point insertion. Newly inserted points are shown in red.

3.3 Surface Closure

We apply a hole-filling operation on open boundaries. Although the state-of-the-

art offers various methods to close a surface that nicely follows the curvature of

the surface, they do not satisfy our needs [35, 36]. We aim to close the hole so

that it is guaranteed to be a planar, and filling that boundary reduces to the 2D

CDT problem.

Each part produced in the previous stage has open boundaries. We need

to fill the holes because TetGen can only work on closed meshes. We use 2D

Constrained Delaunay Triangulation to close the boundaries after finding them.

The straightforward method of finding each boundary and triangulating the space

inside might fail when the object has a genus of more than zero or a concavity in

the input.

To handle all kinds of inputs, we do the following. First, we detect all bound-

aries and store them in an array. Each boundary will be a simple polygon, not
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intersecting one another. Then, we sort the array of boundary polygons in de-

creasing order of the polygonal area. We also create an array to keep track of

potential parent polygons. We iterate over the sorted array and check if this

polygon is the child of any polygon in the parent polygons array. If this is the

case, we mark this polygon as the child of the parent polygon. Otherwise, we

insert that polygon into the parent polygons array. We run a 2D CDT for each

parent polygon where the constraint segments are the edges of all child polygons

and the polygon itself. This process can fill the holes that should not be filled. To

fix that, we run a breadth-first search on the triangulation to eliminate unneces-

sary triangles using the breadth-first search (BFS) implementation in CGAL [37].

This BFS implementation is similar to Shewchuck’s “triangle-eating virus” algo-

rithm [38]. Algorithm 3 gives the pseudo-code of the surface closure algorithm.

After we obtain the final CDT, we further refine the triangulation to increase

the quality of the triangles. The refinement stage subdivides the triangles by

considering a density control factor parameter [37]. Increasing the value of this

parameter leads to more uniform triangles, as illustrated in Figure 3.2. However,

this process also generates many new points and triangles, complicating the object

to be tetrahedralized. We then insert this triangulation to meshes on both sides of

the dividing plane, reversing the triangle vertex orders before adding them to the

second mesh to achieve a consistent geometry. In this way, we obtain two closed,

watertight, and intersection-free meshes, just as TetGen requires (see Figure 3.3).

Figures 3.4 and 3.5 illustrate four cases with different topologies for the surface

closure process. In each row, the leftmost image is the input mesh; the middle one

is the bottom piece of the mesh when cut in half; the last one is after triangulating

the boundaries. These four cases are as follows:

Case 1: This is the simplest case with a genus zero object.

Case 2: This is a genus one object. When we cut it in halves, we obtain two

nested boundary cycles. We apply CDT using the edges of both boundaries

but only keep the triangles between them eventually.

Case 3: It is similar to Case 2, but we put another object inside the hole.

After cut, we have three boundary cycles inter-bedded. Again, the CDT is

13



Algorithm 3 Surface Closure

1: procedure Close Surface(mesh left, mesh right,
plane, density factor)

2: boundaries = extract boundaries(mesh left)
3: sort(boundaries)
4: parent boundaries = []
5: for i = 0; i < len(boundaries); i++ do
6: boundary = boundaries[i]
7: parent index = -1
8: for j = 0; j < parent boundaries.size(); j++ do
9: if boundary ∈ parent boundaries[i] then

10: parent index = j
11: break
12: end if
13: end for
14: if parent index == -1 then
15: parent boundaries.add(Pair(i, [i]))
16: else
17: parent boundaries[parent index].second.add(i)
18: end if
19: end for
20: # CDT Begins
21: cdt = CDT(plane.normal)
22: for each parent boundary ∈ parent boundaries do
23: for each boundaries ∈ parent boundary.second do
24: cdt.add constraints(boundaries)
25: end for
26: end for
27: triangles = cdt.get triangles()
28: triangles = refine(triangles, density factor)
29: triangles = BFS(triangles)
30: mesh left.insert triangles(triangles)
31: triangles = triangles.reverse order()
32: mesh right.insert triangles(triangles)
33: end procedure
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Figure 3.2: The illustration of the refinement stage on the Armadillo model. The
top-left image shows the mesh without refinement (only CDT is applied). We use
refinement to the others with the density factor 0.1, 0.2, and 0.4 for the top-right,
bottom-left, and bottom-right images, respectively.
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Figure 3.3: The illustration of the parts after undergoing the surface closure stage.
The hole is filled using triangulation. The resulting triangulation is inserted into
both left and right meshes.
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Figure 3.4: The illustration of handling inputs with various topological structures
during input partitioning (first part). First row: the simplest case with a genus
zero object (Case 1). Second row: a genus one object (Case 2). When we cut it
in halves, we obtain two nested boundary cycles. We apply CDT using the edges
of both boundaries but only keep the triangles between them eventually.

applied to all edges, but only necessary ones are kept.

Case 4: This is the combination of previous cases.

We illustrate the surface closure process for the boundary polygons shown in

Figure 3.6. In this figure, the white regions in the image correspond to holes, while

the purple areas correspond to our input domain. As a result of the parent finding

algorithm, we can conclude that there are two-parent polygons here, shown in

the black border. We then run CDT on all edges of the parent polygon and all

the polygons inside it. There are three polygons inside the left parent polygon,

whereas the parent polygon on the right is alone. We aim to form triangles in

only purple regions. However, CDT will form triangles in the white areas as
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Figure 3.5: The illustration of handling inputs with various topological structures
during input partitioning (second part). First row: similar to Case 2, but we put
another object inside the hole (Case 3). After cut, we have three boundary cycles
inter-bedded. Again, the CDT is applied to all edges, but only necessary ones
are kept. Second row: the combination of the previous cases (Case 4).

well. We run a BFS algorithm to eliminate them. Figure 3.7 illustrates the input

partitioning and surface closure processes for Bunny and Armadillo objects.

3.4 Merge

We merge several tetrahedral mesh (tetmesh) files in the merging stage and create

one final tetmesh. One difficulty with the merge step is finding correspondence

between tetrahedra around the cut region. Because each part is tetrahedralized

independently, the neighboring tetrahedra at different parts will not be aware of
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Figure 3.6: The 2D view of example boundary polygons generated after surface
partitioning.

Figure 3.7: The input partitioning and surface closure stages are illustrated on
Bunny (top row) and Armadillo objects (bottom row). The first column is the
input mesh; the second column is the mesh after point insertion; the third column
is the object’s bottom half; the last column is the bottom half after the surface
closure algorithm.
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one another. To find these missing neighbor relations, we store the neighborhood

information during the Surface Closure stage, as we create triangles to close the

boundary and use it in the merge stage. Figure 3.8 shows tetrahedral meshes

generated from the merge stage. Since we know that TetGen will preserve the

triangles, eventually, the triangles around the cut region will perfectly fit after

the tetrahedral mesh is created.

During the merge step, we apply postprocessing to remove vertices introduced

while partitioning the input. We keep track of such vertices and remove them

from the tetrahedral mesh, which would create a cavity in the tetrahedral mesh.

Then, we tetrahedralize the cavity using TetGen. We ensure that the input mesh’s

original faces stay intact thanks to this operation. Figure 3.9 shows example

tetrahedral meshes with and without the postprocessing stage and the TetGen

output.
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Figure 3.8: Example tetrahedral meshes generated with our implementation.
Tetrahedral mesh with edges and faces (left). The cut mesh to show tetrahe-
dra inside the model (right).
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Figure 3.9: Example tetrahedral mesh outputs illustrating the result of the post-
processing step. Postprocessing is enabled in the middle image but not in the
left image. The right image is the result of TetGen. All extra vertices on the
boundary are removed, and the constrained faces are faithful to the input mesh.
Our result with postprocessing enabled is identical to TetGen’s output, which is
the right image.
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Chapter 4

Modes of the Algorithm

Thanks to its divide-and-conquer nature, our algorithm can be used for two pur-

poses: Memory Requirement Reduction and Parallel Processing. When the Mem-

ory Requirement Reduction mode is activated, we use single-threaded program-

ming and intermediate files to reduce memory usage. When Parallel Processing

mode is enabled, we use parallelization to speed up the process.

4.1 Memory Requirement Reduction

The benefit of reducing memory usage is two-fold. First, it allows the tetrahedral-

ization of objects that would be impossible due to a memory shortage. Secondly,

it will enable multiple objects that require high memory to be tetrahedralize si-

multaneously. For example, if we have a computer with 64 GB of RAM and two

objects requiring 64 and 60 GB of memory, a sequential algorithm could only

process either in that machine. However, our implementation can process both

simultaneously by dividing each mesh at least once.

We have taken several precautions to minimize memory footprint when it

comes to implementation. More specifically, we aimed to reduce the peak mem-

ory usage of our implementation. If the computer does not have enough memory
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to accommodate the peak memory needed for execution, it will terminate with-

out processing the input. For such cases, we disable multi-threading and opt

for single-threaded execution. Simultaneously processing multiple pieces requires

memory to be available to hold the data for all parts. Eventually, the memory

footprint will be no less than TetGen. Instead of keeping the meshes in memory,

we store the file handles. When a part is needed, we read it from the file, and

when we update it, we write the changes to the corresponding file.

4.2 Parallel Processing

Because our framework allows input mesh to be divided into several pieces, we

can apply multi-threaded processing. Each piece, after division, can be tetrahe-

dralized entirely independent of each other. If we process them simultaneously,

no racing condition will occur. Hence, we parallelize the for-loop at the 8th line

of Algorithm 1. The mesh object is an instance of the Surface Mesh class be-

longing to the CGAL library, which states that the object is vulnerable to race

conditions [37]. This vulnerability of mesh objects prevented us from paralleliz-

ing some methods due to the high costs incurred by critical sections. Moreover,

we decided not to apply a multi-threading scheme to the Merge stage because

it is already fast and includes File I/O, which needs to be synchronized, dimin-

ishing the benefits of parallelism. To parallelize code segments, we have used

OpenMP 2.0 [39].
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Chapter 5

Experimental Results

We have conducted experiments on mesh quality, parallel processing performance,

and memory requirements. The statistics about the meshes used in the experi-

ments are given in Table 5.1.

Table 5.1: Vertex and face counts of the objects used in the experiments. Nefer-
titi2 is the high resolution version of the Nefertiti model.

# Vertices # Faces

Spot 2,930 5,856

Bob 5,344 10,688

Blub 7,106 14,208

Bunny 72,027 144,046

Pitt Brdg 75,081 150,170

Armadillo 172,971 345,938

Nefertiti 1,009,118 2,018,232

Neptune 2,003,932 4,007,872

Nefertiti2 6,054,698 12,109,392

5.1 Mesh Quality

We performed experiments on the quality of the resulting tetrahedral meshes. We

used slim energy as the quality measure, also used in TetWild [20]. The smaller
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the energy is, the higher the quality is. The final quality value for a tetrahedral

mesh is the average slim energy across all tetrahedra. Table 5.2 depicts the effect

of the density control parameter on the mesh quality experiments. The results

show that the quality improves as we increase the density parameter. After all,

when we merge the partial tetrahedral meshes, the triangles we newly created

for Surface Closure stage will be the faces of internal tetrahedra. Hence, it is

expected to observe an increase in quality. Even for the same cases, we could

get higher quality meshes than TetGen, thanks to the large density parameter.

Hence, the non-Delaunay triangles we introduce do not seem to create many

problems.

We also investigated the effect of the post-processing/vertex removal step

on the tetrahedral mesh quality. As shown in Table 5.3, removing extra ver-

tices and tetrahedralizing the cavity increases the tetrahedral mesh quality. The

quality difference between our meshes and TetGen’s become quite similar with

post-processing enabled. Hence, although our algorithm may create some non-

Delaunay triangles, the quality difference appears slim compared to the gain

achieved by reducing the memory footprint and computation time.

Table 5.2: Experiments on tetrahedral mesh quality. The quality metric is the
average slim energy. The first column is the results for the standalone TetGen
execution. Other columns show the values for the corresponding density control
parameter. The smallest value at each row is in bold.

Density control parameter

Model TetGen 0.1 0.2 0.4 0.8 1.6

Spot 6.26 7.26 6.72 6.15 6.23 6.33

Bob 5.99 7.74 6.82 6.41 6.16 6.27

Blub 7.84 8.79 8.25 7.89 7.74 7.46

Pitt Brdg 7.27 7.72 7.36 7.26 7.317 7.14

Armadillo 6.65 6.82 6.76 6.71 6.681 6.61

5.2 Parallel Processing

We conducted experiments to see how our parallelization scheme performs. We

used a PC having two eight-core processors, equivalent to 16-core processor power.
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Figure 5.1: Execution time dissection for Armadillo, Bunny, and Nefertiti objects.
Single-threaded execution corresponds to sequential TetGen.
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Table 5.3: Experiments on the effects of post-processing (i.e., vertex removal)
step on tetrahedral mesh quality. The quality metric is average slim energy; the
lower it is, the better. The density control parameter is selected as 0.1.

without with
Model TetGen postprocessing postprocessing

Spot 6.26 9.59 7.26

Bob 5.99 9.91 7.74

Blub 7.84 10.84 8.79

Pitt Brdg 7.27 8.21 7.72

Armadillo 6.65 7.09 6.82

The graphs show that TetGen execution time increases as the number of

threads increases. The reason may be the imbalanced data partition. If the

processing of the whole mesh by TetGen on a single thread takes T time, each

thread should ideally complete the execution in T/X time, where X is the num-

ber of threads. However, this ideal case does not always occur. Some threads

run faster and some slower due to imbalanced input partitioning. We ensure that

each part has an equal number of vertices and faces, but the execution time of

each thread might be different due to topological differences. In addition, we are

inserting new faces during the Surface Closure stage, and each part might get a

different number of vertices and faces appended to it depending on the boundary

polygons. All these factors lead to data imbalance. As we increase the number

of pieces, this issue becomes crucial, slowing down the process. Moreover, the

spike at 14 threads for Armadillo input shows that sometimes the partitioning

might be imbalanced unluckily, and we may end up with a sudden increase in the

execution time.

The choice of the density control parameter used in the refinement stage af-

fects the execution time of our algorithm. Incrementing that value increases

the number of triangles used to fill the holes and the quality of the triangles

(cf. Section 5.1). Higher quality triangles require TetGen spend less time doing

optimization on the mesh. Table 5.4 shows that the value of 0.4 seems reasonable

for this parameter considering the trade-off between the computational cost and

mesh quality.
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Some of the cases failed because of the precision issues that occurred while

inserting new points to the mesh. We used an inexact construction kernel of the

CGAL [37]; this is why such failures might occur. In addition, TetGen rarely

inserts Steiner points on the input triangle, preventing the merge process from

running correctly. The merge fails if the triangles at both sides do not match due

to new Steiner points. We count this as a failure case too.

Table 5.4: The effect of density control parameter on the execution time. The
execution time is in milliseconds.

Density control parameter

TetGen 0.1 0.2 0.4 0.8 1.6

Spot 120 139 115 108 123 174

Bob 283 475 214 225 212 354

Blub 413 307 289 318 338 467

Pitt Brdg 4502 3642 3557 3309 3533 3822

Armadillo 14793 9203 9542 9484 11131 22492

Table 5.5: Memory usage (in MB) and processing times (in seconds) for various
models with post-processing enabled. When the part count is one, TetGen is
directly used. Our implementation failed for some input-part count pairs due to
the floating-point errors; these are shown with “-”. The inputs that TetGen could
not process are marked with an “x”. Nefertiti2 is the high-resolution version of
the Nefertiti model.

Part counts

1 2 4 8 16

Model Mem. Time Mem. Time Mem. Time Mem. Time Mem. Time

Armadillo 923 12 542 22 336 34 268 60 360 109

Nefertiti 5200 85 3700 166 2500 248 2200 475 3000 726

Neptune 11800 250 6700 344 4400 500 - - - -

Nefertiti2 x x 23500 1552 - - - - - -

5.3 Memory Requirements

We tested our algorithm with several objects and observed the peak memory usage

and execution times by enabling the memory reduction mode of our algorithm.

We limited the available memory to 36 GB (16 GB Physical RAM + 20 GB
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Table 5.6: The effect of density control parameter on the memory usage. The
memory usage is in Megabytes.

Density control parameter

TetGen 0.1 0.2 0.4 0.8 1.6

Spot 21 16 16 14 16 20

Bob 33 25 23 24 25 30

Blub 43 30 28 28 36 39

Pitt Brdg 388 227 228 256 237 262

Armadillo 930 547 582 565 623 944

Virtual Memory). Table 5.5 shows the results for various input-part count pairs.

We excluded reading and writing times from the execution time.

As we increase the number of pieces, we see a significant decrease in peak

memory usage despite increasing execution time. Moreover, TetGen could not

process the “Nefertiti2” model due to high memory usage, whereas our method

could tetrahedralize it. The execution time of the memory-efficient version of our

algorithm appears to be reasonable compared to the original TetGen. Still, there

is a continuous increase in the execution time as we increase the number of parts.

Our profiling analysis shows that it should be caused by the file I/O operations

that we do the save intermediate files to save the memory consumption. For the

Armadillo object, approximately 75 seconds is spent during intermediate file I/O

with 16 parts, corresponding to a significant portion of the execution time.

We also investigated the relation between memory usage and the density con-

trol parameter. Table 5.6 shows that increasing the density parameter increases

memory usage. Although it is often less than the standalone TetGen execution,

the memory usage can even exceed that in some cases if the density control pa-

rameter is too high. We expect this result because the density parameter controls

the number of triangles, and its increase leads to more triangles. Creating more

triangles means tetrahedralizing objects with more vertex and triangles counts,

which increases memory usage.
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Chapter 6

Alternative Approach

6.1 Overview

To achieve Constrained Tetrahedralization, we need to ensure that input triangles

stay intact in the tetrahedral output mesh and should be at the boundary of

the mesh. Our approach involves inserting points during the input partitioning

stage to simplify the surface closure operation. That is, 2D triangulation works

smoothly with plane surfaces. As a final step, we remove those extra vertices to

ensure the triangles are preserved. An alternative to that approach is trying to do

input partitioning without inserting new vertices. In this method, we partition

the objects using planes again, but this time instead of inserting new points, we

divide the input triangle set into disjoint sets. To close the open surfaces, we

project the boundaries into the 2D plane, apply convex decomposition, put a

vertex at the center of each convex sub-polygon and connect it to the rest of the

vertices in the convex sub-polygon. We then project the triangulation back to

3D. Since this stage may introduce self-intersecting triangles, we locate and fix

them during the repairing stage. Finally, we merge all of the pieces.

31



Figure 6.1: Illustration of partitioning algorithm applied on Torus Knot object
(top-left). The top-right image shows the two pieces together after the partition-
ing. In the bottom-left and bottom-right are the cross-section views of the left
and right pieces, respectively.

6.2 Partitioning Stage

The partitioning algorithm accepts an input mesh file and a 2D Plane as input

and outputs the left and right mesh files. The mesh file corresponds to the name

of that file on the disk. We separate the input mesh into two pieces: we put

the faces whose all vertices are to the left of the dividing plane to the left piece

and the rest of the faces to the right piece. This process naturally creates two

meshes with open boundaries. In the next stage, we close these open boundaries.

Figure 6.1 depicts an example partitioning.
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Algorithm 4 Partitioning Procedure

procedure PARTITIONING(input mesh, plane)
left mesh = {face f ∈ input mesh |

∀ vertex v ∈ f, v is to the left of the plane}
right mesh = input mesh - left mesh
return left mesh, right mesh

end procedure

6.3 Surface Closure Stage

At this stage, we have two meshes with open surfaces. Because TetGen can run

constrained tetrahedralization on closed meshes, we need to close the open sur-

faces. To this end, we have devised a 2D-convex-decomposition-based algorithm.

Our surface closure algorithm does not add a new point on the surface and is

faithful to existing mesh geometry.

In our surface closure algorithm, we mainly operate on the left piece where we

find a 2D triangulation, through 2D convex decomposition, that closes the left

surface, and we copy this triangulation to the right so that it is closed as well. We

need the same triangulation on both sides because, eventually, the tetrahedra at

each piece’s boundaries must strictly match for the tetrahedral mesh to be valid.

The algorithm begins with finding the polygons at the boundary. Figure 6.2

shows the boundary polygons in orange color. There may be several polygons; we

capture and process them one by one. After we extract the polygons, we project

them on the 2D plane, dividing the object. We then end up with a 2D polygon

for each boundary. Now, we run the steps illustrated in Figure 6.3 for each of

them. First, we call a convex decomposition procedure to generate convex sub-

polygons out of the projected polygon. The decomposition need not be optimal;

approximate solutions are acceptable for our algorithm. With the sub-polygons

in hand, we can insert new points at their centroid and then connect this centroid

with all the other vertices in the sub-polygon. One should note that we insert

the new points inside the object, not on the surface. There may be a degenerate

case where the sub-polygon is a triangle. We handle these cases during the next -

Repairing- stage. Overall, this process has the effect of closing the surface through
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triangulation. We, finally, copy this triangulation to the right piece so that it is

closed too. Figure 6.4 shows the result of applying that algorithm to the left

mesh in Figure 6.2. The right piece also has the same triangulation pasted on it.

Although this stage seems to close the surface, it is prone to generating self-

intersection problems. We shall discuss our approach to solving them in the next

section.

Algorithm 5 Surface Closure Algorithm

1: procedure close surfaces(left vertices, left triangles,
right vertices, right triangles, plane)

2: left boundary = find boundary(left vertices, left triangles)
3: left boundary proj = plane projection(left boundary, plane)
4: decomp = 2d convex decomp(left boundary proj )
5: left vertices, left triangles =

add new triangles(decomp, left vertices, left triangles)
6: copy triangulation(left vertices, left triangles,

right vertices, right triangles)
7: return left vertices, left triangles, right vertices, right triangles
8: end procedure

6.4 Repairing Stage

Our repairing stage consists of two steps: finding intersections and resolving

intersections. To find the intersections, we run TetGen in diagnostic mode and

feed the left and right pieces into it. TetGen locates and reports the intersecting

faces in the left and right parts closed by our surface closure algorithm. We receive

the intersecting faces from TetGen and run our repairing algorithm to attempt

to resolve the problems. TetGen’s diagnostic mode tries to find intersections over

the whole object, but we know the intersections will be around the separation

region. Using this information, we modified TetGen’s diagnosis procedure to only

check the triangles around the cut plane for an intersection. We dictate TetGen

to only look at triangles whose vertices are at most D distance away from the

separation plane. This restriction provides a significant speed-up. We calculate

D as D = a + b where a is the longest edge in the input mesh, and b is the
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Figure 6.2: Illustration of the left mesh with its boundary polygons marked in
orange.
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Figure 6.3: Illustration of the surface closure algorithm: from left to right: pro-
jected boundary polygon; Planar Straight Line Graph (PSLG) after convex de-
composition where red edges are newly added; centroids calculated for each con-
vex polygon; and sub-polygon vertices and centroids of each convex polygon con-
nected with blue edges.

distance between the plane and the farthest boundary point from that plane. We

know the intersections generated by our Surface Closure algorithm will only affect

triangles that have vertices on the boundary. Therefore, all triangle points with

self-intersection will be at most D away from the plane. Figure 6.5 illustrates the

a and b values where the longest edge in the input mesh is assumed to be near

the boundary.

With the self-intersecting faces located, we can move on to repair the problem-

atic regions. The edge-face intersection is a major problem that emerges through

the surface closure stage. As illustrated in Figure 6.7 (a), ABCDEF region con-

tains such a problematic case. The BF edge in the graph intersects with the faces

of the input mesh. The shape created by the vertices B, C, D, E, and F contains

some edge-face intersections. We remove all edges and vertices formed by our

surface closure procedure within the ABCDEF region to remedy this problem.

We have a cavity where ABCDEF is the boundary polygon as in Figure 6.7 (b).

After that, we connect vertex A with every other vertex in the polygon to effec-

tively form the triangles ABC, ACD, ADE, and AEF. Figure 6.7 (c) depicts the

final configuration of the triangles.

We also handle degenerate cases where a convex sub-polygon is a triangle.
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Figure 6.4: Illustration of the left mesh with its boundaries closed.
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Figure 6.5: Illustration of the TetGen’s diagnosis speed-up process: orange line is
a portion of the boundary, the red line corresponds to a value, whereas the blue
line to b.
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Figure 6.6 illustrates such a case. This case is problematic because it introduces

a vertex on the triangle that causes vertex-face intersection. Our approach here

is to connect all the vertices to a previously calculated centroid point K, which is

not visible in the figure. We calculate point K by finding the vertex connected to

both A and C. We also remove the point at the centroid of triangle ABC. Even if

we did not process that case, TetGen could still process the mesh. Nevertheless,

we handled that, to be sure.

This repairing procedure works under some assumptions, which we shall discuss

in the Limitations section.

Figure 6.6: Handling the degenerate case. A, B, and C are the vertices of the
triangle. (a) before handling. (c) after handling.

Algorithm 6 Repairing Algorithm

1: procedure Repair(left vertices, left triangles, right vertices, right triangles)
2: intersections = tetgen diagnose(left vertices, left triangles,

right vertices, right triangles)
3: for each polygon ∈ intersections do
4: remove vertices edges(left vertices, left triangles,

right vertices, right triangles, polygon)
5: add new triangles(left vertices, left triangles,

right vertices, right triangles, polygon)
6: end for
7: return left vertices, left triangles, right vertices, right triangles
8: end procedure
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Figure 6.7: Handling edge-face intersections. (a) the problematic case where the
edge BF intersects with the object. (b) the problematic edges and vertices are
removed. (c) new triangles are created.

6.5 Limitations of the Alternative Approach

Although this approach removes the need to insert extra vertices, it comes with

its limitations, which prevented us from using it in the first place. The biggest

problem with this approach is that it relies too much on floating-point precision.

The repairing stage depends on TetGen’s intersection test to find and repair

problematic cases. However, that stage is not guaranteed always to work correctly.

In addition, the repairing stage itself can insert new self-intersecting triangles. All

of these are caused by the fact that we project a polyline in 3D into 2D space,

which cannot guarantee that the non-self-intersecting triangles created in 2D will

not self-intersect in 3D. As a result, this approach cannot always succeed, so we

did not use it in the proposed algorithm.
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Chapter 7

Conclusion

We propose a divide-and-conquer algorithm that can be used to reduce memory

usage or speed up the constrained tetrahedral meshing process. Although our

algorithm may introduce some non-Delaunay triangles, it can increase the quality

of the tetrahedral mesh. Despite non-Delaunay triangles, the increase in quality

makes our method useful. We can even successfully tetrahedralize meshes that

TetGen cannot do due to lack of memory. Although our input partitioning stage

introduces new vertices, we remove them during merge to conserve the input

triangles.

We also experimented with an alternative approach that does not require the

creation of a middle region that must be tetrahedralized. However, it comes

with deficiencies, such as the 2D projection operation necessary for the surface

closure stage is not guaranteed to be bijective and unreliable self-intersection

tests required after triangulating the 2D surface to close the 2D surface. Besides,

near-degenerate configurations may easily make it fail due to rounding errors.

Hence, we did not adopt it in our proposed divide-and-conquer CDT algorithm.

We could extend the proposed divide-and-conquer 3D CDT algorithm in var-

ious ways. Firstly, we used PCA and parallel planes during input partitioning

to reduce the overhead. To set a trade-off between speed and more balanced
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decomposition, we could experiment with other approaches, such as convex de-

composition and recursive PCA. As convex decomposition is relatively slow, and

partitioning with non-parallel planes -as with recursive PCA- requires a compli-

cated merge step (i.e., BSP trees to keep track of neighboring pieces efficiently),

the overall process may be slower, but decomposition could be more balanced.

Secondly, we applied our framework to only TetGen. It can, however, be used

with other meshing tools such as TetWild. TetWild may also suffer from insuffi-

cient memory, so it would benefit from such an approach.

Currently, we manually determine the value of the density control parameter.

We would automatically determine that parameter based on the average area

of triangles in the mesh. That way, the mesh density would be similar to the

triangular input mesh, and we would prevent imbalance in the output where

triangles in the surface closure are more or less dense than the input.
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