
RENDERING THREE-DIMENSIONAL
SCENES WITH TETRAHEDRAL MESHES

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

computer engineering

By

Aytek Aman

July 2022

RENDERING THREE-DIMENSIONAL SCENES WITH TETRA-

HEDRAL MESHES

By Aytek Aman

July 2022

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.

Uğur Güdükbay(Advisor)

Özgür Ulusoy

Özcan Özturk

Ahmet Oğuz Akyüz

Yusuf Sahillioğlu

Approved for the Graduate School of Engineering and Science:

Orhan Arıkan
Director of the Graduate School

ii

ABSTRACT

RENDERING THREE-DIMENSIONAL SCENES WITH
TETRAHEDRAL MESHES

Aytek Aman

Ph.D. in Computer Engineering

Advisor: Uğur Güdükbay

July 2022

We propose compact and efficient tetrahedral mesh representations to improve

the ray-tracing performance. We reorder tetrahedral mesh data using a space-

filling curve to improve cache locality. Most importantly, we propose efficient

ray traversal algorithms. We provide details of the regular ray tracing operations

on tetrahedral meshes and the Graphics Processing Unit (GPU) implementation

of our traversal method. We demonstrate our findings through a set of compre-

hensive experiments. Our method outperforms existing tetrahedral mesh-based

traversal methods and yields comparable results to the traversal methods based on

the state-of-the-art acceleration structures such as k -dimensional (k -d) tree and

Bounding Volume Hierarchy (BVH) in terms of speed. Storage-wise, our method

uses less memory than its tetrahedral mesh-based counterparts, thus allowing

larger scenes to be rendered on the GPU. We also describe additional applica-

tions of our technique specifically for volume rendering, two-level hybrid accel-

eration structures for animation purposes, and point queries in two-dimensional

(2-D) and three-dimensional (3-D) triangulations. Finally, we present a practical

method to tetrahedralize very large scenes.

Keywords: ray tracing, ray-surface intersection, acceleration structure, tetrahe-

dral mesh, Bounding Volume Hierarchy (BVH), k -dimensional (k -d) tree.

iii

ÖZET

ÜÇ BOYUTLU SAHNELERİN DÖRTYÜZLÜ
ÖRGÜLER İLE GÖRSELLEŞTİRİLMESİ

Aytek Aman

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Uğur Güdükbay

Temmuz 2022

Işın izleme performansını artırmak amacıyla etkin ve kompak dörtyüzlü örgü

yöntemleri öneriyoruz. Dörtyüzlü örgü bilgisini, önbellek verimini artırmak

amacıyla uzay eğrisi kullanarak sıralıyoruz. En önemlisi, çok hızlı çalışan

ışın takip yöntemleri sunuyoruz. Dörtyüzlü örgüleri ışın izleme işlemlerinde

kullanabilmek icin gerekli yöntemlerin detaylarını verip bu yöntemlerin grafik

işlemci birimlerinde nasıl kullanılacağını tarif ediyoruz. Bulguları ve sonuçları

kapsamlı deneylerle gösteriyoruz. Geliştirdiğimiz yöntemler, mevcut dörtyüzlü

gezim yöntemlerinden daha hızlı çalışmaktadır. Bu yöntemler, aynı zamanda

yaygın olarak kullanılan k -d ağacı ve sınırlayıcı hacim hiyerarşisi gibi ışın izleme

hızlandırıcı yapılarına yakın bir performans sergilemektedir. Geliştirdiğimiz

yöntemler, diğer dörtyüzlü tabanlı yöntemlere göre daha az bellek kullanmak-

tadır; böylelikle grafik işlemci ünitesi gibi belleğin kısıtlı olduğu yerlerde daha

büyük sahnelerin görselleştirilmesine olanak sağlamaktadır. Bunlarla birlikte,

yöntemlerimizin hacim görselleştirilmesi, animasyon uygulamaları için iki seviyeli

hibrit hızlandırıcı yapılarına uyarlanması ve iki ve üç boyutlu üçgenlemelerde

noktaların sorgularının yapılması gibi uygulamalarda nasıl kullanılabileceğini

anlatıyoruz. Son olarak, çok büyük sahnelerin dörtyüzlemesinin yapılmasını

sağlayan pratik bir yöntem sunuyoruz.

Anahtar sözcükler : Işın izleme, ışın-yüzey kesişimi, hızlandırma yapıları,

dörtyüzlü örgü, sınırlayıcı hacim hiyerarşisi, k -d ağacı.

iv

Acknowledgement

I would like to thank Prof. Dr. Uğur Güdükbay for his guidance throughout my

research.

I would also like to thank to the members of the jury, Prof. Dr. Özgür Ulusoy,

Prof. Dr. Özcan Öztürk, Prof. Dr. Ahmet Oğuz Akyüz, and Assoc. Prof. Dr.

Yusuf Sahillioğlu, for their insightful comments and valuable suggestions.

The tetrahedral mesh representations and the traversal methods described in

this thesis also form the basis for the research of other fellow graduate students,

Serkan Demirci, Alper Sahistan, and Ziya Erkoç. I express my gratitute to all of

them for their close collaboration and extending my research in various directions

for useful purposes.

I also would like to thank my family and friends for their support.

This research is supported by The Scientific and Technological Research Coun-

cil of Turkey (TÜBİTAK) under grant no. 117E881.

v

Contents

1 Introduction 1

1.1 Acceleration Structures for Ray Tracing 2

1.2 Tetrahedral Meshes as Acceleration Structures 2

1.3 Publications . 6

1.4 Organization of the Thesis . 7

2 Background and Related Work 8

2.1 Acceleration Structures . 10

2.1.1 Grids . 10

2.1.2 BVHs . 11

2.1.3 Octrees . 14

2.1.4 k -d trees . 14

2.1.5 Ray-specialized Acceleration Structures 15

2.1.6 Hybrid Structures . 15

2.1.7 Other approaches . 15

2.2 Tetrahedral Mesh Construction and Traversal 16

2.3 Ray-casting for Direct Volume Rendering 17

3 Compact Acceleration Structures for Ray-tracing 19

3.1 Tetrahedral Mesh Representation 19

3.2 Tetrahedron Traversal . 21

3.3 Tetrahedron Traversal for Tet20 and Tet16 Representations . . . 26

3.4 Point Projection Using Specialized Basis 27

3.5 Handling Common Ray-tracing Operations 29

3.6 Accelerator Construction . 31

vi

CONTENTS vii

3.6.1 Early Ray Termination . 32

3.6.2 Minimum Weight Triangulation 35

3.6.3 Intersecting Geometry . 37

3.6.4 Steiner Points . 37

3.6.5 Hidden-tetrahedra Removal 38

3.7 Reordering Tetrahedral Mesh Data 38

3.8 GPU Implementation . 40

3.9 Experimental Results . 41

4 Applications 51

4.1 Volume Rendering . 51

4.1.1 Method Overview . 52

4.2 Two-level Hybrid Acceleration Structures 52

4.2.1 BVH-Tetrahedralization Hybrid Structure 54

4.3 Point Location Queries in Two-dimensional (2-D) and Three-

dimensional (3-D) Space . 57

4.3.1 Point Location Queries in a Triangulation by Stabbing . . 57

4.3.2 Point Location Queries in a Triangulation Using Flattened

Tetrahedral Mesh . 58

4.4 Tetrahedralization of Very Large Meshes 60

5 Conclusions and Future Research Directions 62

Bibliography 64

Appendix 76

A Ray-tracing Toolkit 76

A.1 Editor . 76

A.2 Accelerator Interface . 77

A.3 Command-line Interface . 77

A.4 Third-party Libraries . 81

List of Figures

1.1 Images rendered using ray tracing (left) and radiosity (right). . . . 2

1.2 Tetrahedralization process. 3

1.3 Ray tracing using a triangulation (adapted from Lagae et al [1]). . 3

3.1 Typical tetrahedron representation in the memory. 19

3.2 Tet32 structure. 20

3.3 Constrained face structure. 21

3.4 Ray-tetrahedron intersection. 23

3.5 Tet20 structure. 25

3.6 Tet16 structure. 26

3.7 Shared face structure. 30

3.8 The types of rays in tetrahedral mesh-based ray tracing. 30

3.9 Steps during the construction of tetrahedral mesh based ray-

tracing accelerator. 32

3.10 Half-space-based early ray termination. 33

3.11 The effect of half-space-based early ray termination. 34

3.12 Portal-based early ray termination. 35

3.13 Tetrahedral mesh weight - tetrahedralization quality. 36

3.14 Resolving intersections for two meshes where tetrahedralization is

not possible. 37

3.15 Sorting tetrahedron data. 39

3.16 The rendering times for unsorted and sorted tetrahedral mesh data. 48

4.1 Volumetric images rendered on the GPU. 53

4.2 Two-level hierarchy to handle animated scenes. 56

4.3 Tri16 structure. 57

viii

LIST OF FIGURES ix

4.4 Tri12 structure. 58

4.5 Point location query using a flattened tetrahedral mesh. 60

A.1 Neptun Raytracing Toolkit editor user interface. 78

A.2 Unified Modeling Language (UML) diagram of the accelerator in-

terface. 79

List of Tables

3.1 The computational costs of different acceleration structures and

rendering times for traversal methods (part 1). 43

3.2 The computational costs of different acceleration structures and

rendering times for traversal methods (part 2). 44

3.3 The computational costs of acceleration structures and rendering

times for traversal methods (remeshed scenes). 45

3.4 The rendering times of tetrahedral mesh-based acceleration struc-

tures on the GPU. 46

3.5 The memory requirements of different acceleration structures. . . 48

3.6 The rendering times and visited node counts for different types of

accelerators as the camera gets closer to the mesh surface. 50

x

List of Algorithms

1 Exit face selection . 23

2 Tetrahedron traversal loop for Tet32 23

3 Next tetrahedron determination for Tet32 24

4 Tetrahedron traversal loop for Tet20 26

5 Next tetrahedron determination for Tet20 26

6 Tetrahedron traversal loop for Tet16 27

7 Next tetrahedron determination for Tet16 27

8 Triangle traversal loop for Tri16 58

9 Next triangle determination for Tri16 58

10 Triangle traversal loop for Tri12 59

11 Next triangle determination for Tri12 59

12 Exit edge selection . 59

xi

Chapter 1

Introduction

Rendering is the process of generating a synthetic image of a scene. The scene

refers to the collection of 3-D geometry, materials, light sources, and camera

parameters. A rendering task is typically performed using the following methods.

• Rasterization: Rasterization works by projecting the primitives to the

screen. The per-pixel depth buffer is used to determine the visibility of the

pixels. Rasterization is used in many real-time applications due to its low

computational cost. Rasterization is an object-space rendering method [2]

since all primitives (objects) are projected to the screen and then rendered

after visibility determination.

• Ray tracing: Ray tracing [3] works by tracing rays from the camera and

accumulating the color information from the objects that are hit by these

rays. When a ray hits a surface, other rays can be cast on the scene to

produce effects such as reflections, refractions, and shadows (both soft and

hard). Ray-tracing using only primary rays (rays originating from the cam-

era) is called ray casting [4]. In ray casting, recursive rays for reflection and

refraction are not used. Ray tracing is an image-space rendering method [2]

since color information is calculated for each pixel using rays.

1

Figure 1.1: Images rendered using ray tracing [5] (left) and radiosity [6] (right).

1.1 Acceleration Structures for Ray Tracing

The core operation in the ray tracing algorithm is finding the closest ray-surface

intersection. Ray-surface intersection calculations may take more than 95% of the

computation time [7]. For this reason, the run-time efficiency of the intersection

calculations dictates the ray-tracing algorithm’s run-time efficiency. In order to

speed up intersection calculations, the most common approach is to partition

the scene so that the triangles are enclosed in different volumes. During ray-

traversal, ray-triangle intersections tests can be avoided if the enclosing volume

for a triangle does not intersect with the ray. Regular grids, octrees, k -d trees,

and Bounding Volume Hierarchies (BVH) are commonly used for partitioning the

scene. k -d trees and BVHs are the most preferred space partitioning structures for

ray tracing, thanks to the recent advancements in the construction and traversal

methods. k -d trees and BVHs are considered state of the art for fast ray tracing.

1.2 Tetrahedral Meshes as Acceleration Struc-

tures

Unlike common approaches, Lagae et al. [1] use tetrahedral meshes to render

typical 3-D scenes. They tetrahedralize the space between objects in a constrained

2

manner where triangles in the scene geometry align with the triangles of the

tetrahedral mesh. Figure 1.2 illustrates this idea.

Figure 1.2: Tetrahedralization process: A torus knot (left). Tetrahedralization of
the torus knot and empty space around it (right).

Once the empty space between the objects is tetrahedralized, it is possible to

calculate ray-triangle intersections by traversing the tetrahedral mesh, where ray

traversal can be terminated if a ray passes through a constrained face (a face

that belongs to a scene geometry). Figure 1.3 illustrates this idea in 2-D inside a

triangulation.

Figure 1.3: Ray tracing using a triangulation (adapted from Lagae et al [1]).

3

This approach has the following advantages:

A unified data structure for global illumination: In constrained tetrahedral-

izations, scene geometry coincides with the acceleration structure. This

structure can improve the rendering performance since all related data to

compute illumination resides in one unified structure.

Handling deforming geometry: Tetrahedral meshes allow some deformations to

be applied without causing any changes in the topology. Therefore, the

structure does not need to be rebuilt for such deformations.

Level of detail: Level-of-detail systems use similar representations with tetra-

hedralizations. Therefore, implementing a level of detail system in the

tetrahedral mesh can be trivial.

Ray tracing on the GPU: Traversal algorithm for tetrahedral mesh does not

require a stack. Thus tetrahedral mesh traversal methods are GPU friendly.

Adaptive and non-hierarchical structure: Tetrahedral mesh-based accelerator

can adapt to scene geometry as in popular tree-based approaches, therefore

not suffering from a teapot in a stadium problem. Since the structure is not

hierarchical (merely a graph structure), traversal methods become simpler

and can be made more efficient.

We use tetrahedral meshes in new and efficient ways to improve the rendering

performance. We focus on the following topics.

Fast ray traversal: We propose a fast ray-traversal method where calculations

are performed on a new coordinate system defined by the ray. The resulting

implementation is efficient and requires only a few floating-point operations

per tetrahedron.

Preserving vertex attributes: When a tetrahedral mesh is constructed out of

scene geometry, triangles in the input mesh are directly embedded in the

tetrahedralization. Efficiently preserving vertex attributes such as normals

4

and texture coordinates is essential to performing typical rendering opera-

tions. We investigate the approaches to preserve such attributes efficiently.

Global illumination methods: We adapt global illumination methods to tetra-

hedral meshes to improve the run-time performance of these methods. For

this purpose, we will show how secondary rays can be traced efficiently

using this approach.

Handling dynamic scenes: Preserving the structure of the tetrahedral mesh is

essential to rendering animated scenes. When an object in the scene has

rigid-body motion, the tetrahedral mesh may need to be updated. We will

provide efficient methods to perform these updates in real-time.

Cache-efficient data structures: During traversal, a significant amount of time

is spent fetching new data from memory. In order to improve the run-

time performance of the ray traversal, we present new cache-efficient data

structures for tetrahedral meshes.

Parallelizations on the CPU and GPU: We implement the parallelized version

of these approaches on the CPU and GPU. For the GPU-based implemen-

tation, we present methods well-suited to GPU memory architectures.

Through experiments, we demonstrate that our compact structure and effi-

cient traversal methods can provide considerable speed-up compared to the other

tetrahedral mesh based traversal methods and comparable performance w.r.t the

popular hierarchical acceleration structures. We also show that our compact and

efficient structure could be adapted to other domains. We show that it can be

used to render volumetric data where input can be convex or non-convex. We

also adapt our method to the two-level accelerators, providing a way to render

a dynamic scene using a tetrahedralization-BVH hybrid structure. We then de-

scribe two techniques to handle point-in-triangulation queries using our compact

representation. Finally, we describe a practical approach to out-of-core tetrahe-

dralization of huge meshes.

5

1.3 Publications

The following papers are published based on the methods and data representa-

tions developed within the context of this thesis work.

• Fast Tetrahedral Mesh Traversal for Ray Tracing [8]: This work describes

the early work performed on compact tetrahedral mesh-based accelerators

for ray tracing. This work was presented in The Conference on High-

Performance Graphics (HPG ’17) in Los Angeles, CA, in 2017.

• Multi-level tetrahedralization-based accelerator for ray-tracing animated

scenes [9]: This work describes a two-level accelerator (tet-mesh and BVH

hybrid) suited for ray-tracing dynamic scenes. This work was published in

the journal Computer Animation and Virtual Worlds in 2021.

• Compact tetrahedralization-based acceleration structures for ray tracing [10]:

This work describes compact tetrahedral mesh-based accelerators and ef-

ficient traversal methods suited for ray-tracing. This work is accepted for

publication in Journal of Visualization in 2022.

• Ray-traced Shell Traversal of Tetrahedral Meshes for Direct Volume Visual-

ization [11]: This work describes a volume rendering method using our com-

pact tetrahedral mesh-based accelerators and efficient traversal methods.

This work is presented in IEEE Visualization Conference (IEEE VIS 21)

and appeared as a short paper in 2021.

• Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes [12]:

This work describes a practical approach to out-of-core tetrahedralizations

of huge meshes. This work was presented in Numerical Geometry, Grid

Generation and Scientific Computing (NUMGRID 2020) and appeared in

conference proceedings published in 2021.

6

1.4 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 gives a detailed summary

of the related work on ray tracing accelerators, tetrahedral mesh construction,

and traversal and volume rendering methods. Chapter 3 describes the proposed

approach, an efficient and compact tetrahedral mesh representation, and a fast

traversal method for this structure. We also describe tetrahedral mesh-based ac-

celerator construction in detail and provide valuable techniques and optimization

to adapt it to a typical ray-tracing pipeline. Chapter 4 describes the application

of our methods to the other domains. These are volume rendering, two-level

hybrid accelerators (tetrahedral mesh - BVH hybrid), and point location queries

in triangulation. This chapter also describes a practical out-of-core tetrahedral-

ization method for huge meshes. Chapter 5 illustrates the impact of the results,

highlights the limitation of our approach, and provides potential future work di-

rections. Appendix A describes the ray-tracing toolkit developed to support this

research work in detail.

7

Chapter 2

Background and Related Work

The most common approach to speed up ray-surface intersection calculations in

ray tracing is to use spatial subdivision structures that partition the scene to

enclose the polygons in different volumes. Ray tracing algorithms can avoid ray-

triangle intersection tests if the enclosing volume for a triangle does not intersect

with the ray. Popular acceleration structures are regular grids, octrees, Bounding

Volume Hierarchy (BVH), and k -dimensional (k -d) tree. BVH and k -d tree are

the most preferred acceleration structures for ray tracing, thanks to the recent

advancements in the construction and traversal methods.

A recent alternative to accelerate ray-surface intersection calculations is to use

tetrahedralizations. A tetrahedral mesh is a three-dimensional (3D) structure

that partitions the 3D space into tetrahedra. Constrained tetrahedralizations are

a special case of tetrahedralizations that consider the input geometry. In the re-

sulting mesh, the components of the input geometry, such as faces, line segments,

and points, are preserved. Similar to their two-dimensional (2D) counterparts,

tetrahedralizations can be constructed in such a way that they exhibit Delaunay

property; i.e., tetrahedra are close to regular. There are three types of constrained

tetrahedralizations: Conforming Delaunay Tetrahedralization, Constrained De-

launay Tetrahedralization, and Quality Delaunay Tetrahedralization [1].

8

Lagae and Dutré [1] use constrained tetrahedral meshes for rendering typi-

cal 3D scenes. They tetrahedralize the space between objects in a constrained

manner where the triangles in the scene geometry align with the triangles of the

tetrahedral mesh. Then, they calculate ray-triangle intersections by traversing

the tetrahedral mesh. Because a tetrahedral mesh is not a hierarchical structure,

ray-surface intersections are calculated mainly by traversing a few tetrahedra. Be-

sides, this approach has the advantages of providing a unified data structure for

global illumination, handling deforming geometry if the topology (connectivity)

of the mesh does not change, quickly applying level-of-detail approaches, and ray

tracing on the Graphics Processing Unit (GPU). Despite these advantages, the

state-of-the-art traversal methods for tetrahedral meshes, such as Scalar Triple

Product (ScTP), are still a magnitude or two slower than the k -d tree-based

traversal, as Lagae and Dutré [1] state. We aim to improve the performance of

the tetrahedral mesh-based traversal for ray-tracing as follows.

• We propose a compact tetrahedral mesh representation to improve cache

locality and utilize memory alignment.

• We sort tetrahedral mesh data (tetrahedra and points) using a space-filling

curve to improve cache locality.

• We propose an efficient tetrahedral mesh traversal algorithm using a mod-

ified basis that reduces the cost of point projection, frequently used during

traversal.

• We utilize the GPU to speed up the ray-surface intersection calculations.

We also propose a technique to associate vertex attributes, such as normals and

texture coordinates, with the tetrahedral mesh data. Through experiments, we

observe that our method performs better than the existing tetrahedral mesh-based

traversal methods in terms of computational cost. In certain scenes, especially

the scenes with challenging geometry where there are long, extended triangles,

we observe a better rendering performance than the k -d tree and BVH implemen-

tations of the pbrt-v3 [13]. Although this method cannot replace and improve

9

upon the state-of-the-art accelerators (such as BVH and k -d tree) because of

its disadvantages in its current form, its orthogonal strengths compared to the

alternatives make it valuable and promising. This is especially important for ag-

gregate structures where accelerators with different advantages can be combined

to have the best of both worlds.

2.1 Acceleration Structures

Acceleration structures reduce the number of ray-primitive intersection tests by

spatially organizing the primitives in the scene. The following sections summarize

the research on such structures as grids, k -d trees, and BVHs.

2.1.1 Grids

A regular grid, first proposed by Fujimoto et al. [14], partitions the 3D scene into

equally-sized boxes where each box keeps a list of triangles. During traversal,

some well-known algorithms, such as the three-dimensional digital differential

analyzer (3D DDA), can be used to determine the boxes that intersect with the ray

quickly. One major disadvantage of the regular grid is its non-adaptive structure.

Most grid cells may not contain any triangles, while some grid cells may have

many triangles, increasing the average traversal cost. The regular structure also

implies that empty space must be traversed rather inefficiently as many cells need

to be visited. Cohen and Zhi [15] apply a city-block-based distance transform to

the regular grid. Therefore, each grid cell is assigned a value that indicates the

distance to the closest non-empty grid cell. That way, during traversal, cells can

be skipped based on these distance values to speed up the grid traversal. Alphan

and Isler [16] employ direction-dependent distance transform and a GPU-friendly

traversal algorithm with minimal branching to speed up the regular grid-based

ray tracing and volume rendering. Lagae and Dutre [17] propose two grid-based

accelerators: The first one, compact grid, aims to minimize the memory usage by

having exactly one index for a cell and a primitive along with a linear time build

10

algorithm. The second one, hashed grid, further reduces the memory needed

by using a perfect hashing based on row displacement compression proposed

by Aho and Ullman [18]. Kalojanov et al. [19] use a two-level nested grid to

ray-trace dynamic scenes. They propose a massively parallel GPU-based build

algorithm. Two-level nested structure helps them tackle teapot in a stadium

problem by providing a more adaptive structure. Kalojanov et al. [20] propose

another structure, called Irregular Grids, which is a flat, non-hierarchical, grid-

like spatial subdivision structure. They optimize this structure by merging cells,

which increases the traversal performance. They optimize it further by decoupling

cell boundaries which allow them to extend cells over others with no geometry

inside. This structure enables the skipping of empty space more efficiently. They

also provide a very efficient parallel GPU-based build algorithm.

2.1.2 BVHs

One of the famous structures in the literature is BVHs. A BVH is a collection

of hierarchical bounding volumes enclosing the scene’s objects. BVHs improve

the ray tracing performance by culling the scene geometry using bounding vol-

ume intersection tests. Therefore, fewer triangle-ray intersection tests must be

performed compared to the brute force entire scene traversal.

Modern BVH construction techniques employ the Surface Area Heuristic

(SAH) [21] to construct high-performance acceleration structures. SAH is a

heuristic based on the probability of visiting a tree node and further descend-

ing from that tree node. By carefully optimizing a tree based on its SAH values,

it is possible to create faster accelerators. SAH assumes a uniform distribution of

the rays over the scene. Unlike that, Bittner and Havran use [22] Ray Distribu-

tion Heuristic (RDS), which uses the ray distribution in the scene to build better

performance BVHs. Aila et al. [23] use the end-point overlap heuristic (EPO),

which is proposed based on the fact that most rays originate on the surfaces.

They improve ray-tracing performance by penalizing overlapping surfaces inside

a bounding box.

11

In the presence of a SAH-like heuristic, at each tree level, a split position

should be selected to minimize the surface area of the tree. This process is

computationally quite costly as the start and end points of each primitive need

to be considered on the split axis. Wald et al. [24] use a technique called binning

to remedy this problem. Their approach divides the scene is divided into bins

that contain the primitives. Then, split values need to be considered only between

bins. This process accelerates the construction of the BVH while benefiting from

a good SAH-based structure. Ganestam et al. [25] propose a technique called

Bonsai where high-quality sub-trees are built by doing an extensive search for

good structure for tight clusters of geometry. Then, they build the full tree by

using these well-optimized treelets.

The state-of-the-art BVHs are constructed using a greedy top-down plane-

sweeping algorithm proposed by Goldsmith et al. [26], which is extended by Stitch

et al. [27] using spatial splits. Spatial splits work by aiming to reduce wasted space

and overlap in the BVH nodes by using more AABBs to enclose the primitives.

In this way, AABBs provide tighter bounding volumes. However, this approach

results in multiple nodes per primitive and increases the memory footprint for

the accelerator. It is also more expensive to build a BVH tree with spatial splits.

Karras and Aila [23] also proposed another spatial split-based method where

tighter AABBs enclose primitives before the tree construction. Popov et al. [28]

extend the SAH cost function by introducing the overlap penalty term, aiming

to reduce the node overlap. Wodniok et al. [29] use recursive SAH values of

temporarily constructed SAH-built BVHs to reduce ray traversal cost further.

Dynamic scenes are generally handled by using two-level BVHs. Wald [30]

uses a separate BVH for each object in the scene, and those per-object BVHs are

inserted into a top-level BVH. The top-level structure is usually called Top-level

Acceleration Structure (TLAS) while a per-object structure is called Bottom-

level Acceleration Structure (BLAS). Since objects are mostly expected to have

rigid body motion, animated scenes could be handled easily by rebuilding the

TLAS only as BLASes are not needed to be rebuilt. One problem with two-level

hierarchies is the overlap of BLASes, which reduces the efficiency of ray-tracing as

overlapping trees need to be traversed together. To alleviate this issue, Benthin

12

et al. [31] use a technique called re-braiding to exchange the portions of trees

aimed at minimizing overlap.

In most BVH-based methods, axis-aligned bounding boxes (AABB) are used

since they are very compact and fast to test. However, they can struggle with

long-thin and diagonal geometry as AABB can not tightly bounds such primitives.

Woop et al.[32] use oriented bounding boxes (OBB) to bound hair primitives to

have better fitting bounds. They also split hair segments into multiple parts to

reduce wasted space and overlap between nearby BVH nodes. Wald et al. [33]

exploit the hardware-accelerated ray transforms to speed up ray tracing long-

thin primitives. They use tighter OBBs and “trick” the GPU to use hardware-

accelerated OBB tests on these primitives. Lauterbach et al. [34] proposed a

parallelizable BVH construction called Linear BVH (LBVH) scheme where prim-

itives are sorted in Morton order [35] derived from their positions. Later, Panta-

leoni and Luebke [36] combine the SAH-based heuristic with the LBVH method,

which is called Hierarchical LVBH. Vinkler et al. [37] extend Morton codes so

that they can account for primitive size along with primitive position as well.

Extended Morton codes result in better-performing trees where primitive sizes

are not uniform in the scene.

In ray tracing, most of the time, the first hit is needed. However, in some

scenarios (e.g., volume rendering or the rendering of transparent geometry), mul-

tiple hit data could be needed. For that purpose, Wald et al. [38] use an iterative

method to find the multiple intersections by keeping track of the traversal state

between queries.

Wide BVHs, where tree nodes contain more than two children nodes, are also

commonly used. Wide BVHs generally make use of SIMD optimized instructions

to accelerate Ray-AABB tests. Wald et al. [39] use wide BVHs to accelerate

ray-tracing. Wide BVHs are generally more memory efficient than binary BVHs.

13

2.1.3 Octrees

The octree is another spatial indexing structure used to accelerate ray tracing [40].

It divides the space into eight subspaces in a recursive manner. During ray trac-

ing, the octree is used to index the scene into subspaces, and it helps determine

the sub-spaces that intersect with the rays. After an octree is constructed, trian-

gles that reside in these sub-spaces can be queried, and the closest intersection

with the rays can be found by performing a relatively small number of ray-surface

intersection tests compared to the brute force approach. Whang et al. [41] pro-

pose a more efficient octree variant. This structure, called octree-R, uses more

efficient split planes by considering the potential number of ray intersection tests

after the resulting subdivision. In modern ray-tracers, octrees are seldom used.

2.1.4 k-d trees

Similar to the octree, the k -d tree is also a space partitioning structure that

divides the space into two sub-spaces at each level by alternating the split axis. To

reduce the average ray traversal cost on a k -d tree, these split planes are selected

using the SAH proposed by [26]. SAH-based k -d tree construction approaches are

later improved by [42]. Wald et al. [43] propose a SAH-based k -d tree construction

scheme with O(N logN) computational complexity. The k -d trees constructed

using the SAH are adaptive to the scene geometry, which means that if a ray is not

in the proximity of any scene geometry, only a few tree nodes are traversed. This

approach reduces the computation cost of ray tracing on scenes where primitives

in the scene are not uniformly distributed, which is a common scenario for 3D

scenes. Choi et al. [44] propose a parallelized and SAH-based k -d tree construction

scheme to speed up the build times, which is one of the weaknesses of the k -d trees

for ray tracing. In modern ray-tracers, k -d trees are rarely used as BVH-based

accelerators mostly outperform them.

14

2.1.5 Ray-specialized Acceleration Structures

In many ray tracing applications, rays share a common point, such as rays origi-

nating from the camera or rays cast to the light sources after ray-surface intersec-

tions. The structures discussed above do not exploit the characteristics of such

rays in ray tracing. Better structures take advantage of rays that share a common

point in space and create indices accordingly. Light Buffer [45] is an approach

that partitions the scene according to one light source in the scene, which is then

used for shadow testing. Hunt et al. [46] propose the perspective tree, similar

to the Light Buffer that uses a 3D grid in a perspective space considering the

position of the light source or the camera as the root. They later improve the

perspective tree approach using an adaptive splitting scheme using SAH [47].

2.1.6 Hybrid Structures

Researchers also explored the idea of hybrid structures to a large extent to com-

bine the strengths of the different spatial subdivision schemes. Klimaszewski [48]

uses BVH and grids in a single acceleration structure to combine these two struc-

tures’ orthogonal strengths. Lin et al. [49] propose Dual Split Trees where BVH-

like nodes have k -d tree-like split planes to isolate and cull geometry more ef-

fectively. They later on provided the hardware-accelerated version [50] of this

approach.

2.1.7 Other approaches

Arvo [51] proposes the ray classification technique, where rays are treated as

5-D vectors (three values using ray origin and two values using ray direction

in the polar domain). These ray clusters define a convex region in the space

that encloses a certain number of primitives. Therefore, during ray traversal,

ray intersection tests are only performed against these primitives, which reduces

the total number of ray-intersection tests. Reshetov [52] describes a collective

15

ray-testing method, where a beam is tested against a kd-tree and then used to

accelerate ray testing for rays that belong to that beam. By doing so, they

reported an order of magnitude improvement in the traversal. Ize et al. [53]

propose an efficient Binary Space Partitioning (BSP) structure for ray-tracing. In

BSP, a split plane is not necessarily axis-aligned. While their approach is efficient

in terms of traversal speed, searching for an optimal split plane is very costly,

making this approach less popular among the alternatives. During traversal, some

primitives might be referenced from multiple nodes in a tree (or even by different

trees in multi-level approaches). The mailboxing technique is commonly used to

avoid redundant testing, proposed by Amanatides and Woo [54] and Arnaldi et

al. [55]. Each ray is given a unique identifier in their method, and each primitive

is associated with the ray identifier being checked during traversal. This scheme

can be used to avoid redundant intersection tests between ray and primitives by

doing a simple identifier check before the actual intersection test.

2.2 Tetrahedral Mesh Construction and Traver-

sal

Given an input geometry, a tetrahedral mesh can be constructed using well-

known algorithms in computational geometry. TetGen [56] is a commonly used

tool to generate tetrahedral meshes. TetGen uses Bowyer-Watson algorithm [57,

58] and the incremental flip [59] algorithms. Both methods have the worst-case

complexity of O(N2). If points are uniformly distributed in space, the expected

run-time complexity is O(N logN). Robust geometric predicates are used to

ensure numerical robustness [60].

There are tetrahedral mesh-based traversal methods used for accelerating ray-

surface intersection calculations. Lagae and Dutré [1] use ScTP to traverse the

tetrahedral mesh. Their method requires the computation of three to six ScTP

to determine the exit face. ScTP computation involves a cross product followed

by a dot product on 3D vectors. Maria et al. [61] propose a fast tetrahedral mesh

16

traversal method, which uses an efficient exit face determination algorithm based

on Plücker coordinates.

Our method uses an efficient traversal method that works in 2D, resulting in

very few floating-point operations per tetrahedron compared to these alterna-

tives. Our data structures are also compact and memory aligned. We also use a

space-filling curve to improve cache locality further. Maria et al. [62],[63]) also

propose a new acceleration structure for ray tracing, constrained convex space

partition (CCSP), as an alternative to tetrahedral mesh-based acceleration struc-

tures. CCSP is more suitable for architectural environments because such a scene

partitioning contains a smaller number of convex volumes than a large number

of tetrahedra.

2.3 Ray-casting for Direct Volume Rendering

Direct volume rendering methods for rendering irregular grids, mainly represented

as unstructured tetrahedral meshes, rely on ray-casting and the composition of

shades of samples along the rays throughout the volume to calculate pixel colors.

For example, Silva et al. [64], [65] use a sweeping plane first applied in the x-

z plane, and then a sweeping line applied on the z-axis. They process these

sweep lines further to render volumetric data stored as an irregular grid. Berk

et al. [66] focus on using hybrid methods to utilize the strengths of the image-

and object-space methods. They rely on a next-cell operation for determining

the next tetrahedron that the ray travels, as proposed by Koyamada et al. [67].

Garrity [68] uses a simple traversal method where the ray is intersected with

tetrahedra faces, and the closest intersection gives the exit face for the tetra-

hedron. Koyamada [67] uses two (on average) point-in-triangle tests in 2D to

determine the exit face. Riberio et al. [69] use a more compact data structure

for reduced memory usage during traversal. They also utilize ray coherence to

reduce run-time memory usage. Later on, they [70] improved this method by

providing a hardware implementation with additional arrangements of the data

17

structure for reduced memory usage. Marmitt and Slusallek [71] use a method

proposed by Platis and Theoharis [72], which employs Plücker Coordinates of the

ray and the tetrahedron edges to determine the exit face. They use the entry face

information to reduce the number of tests to determine the exit face. On average,

they find the exit face using 2.67 ray-line orientation tests per tetrahedron.

Alternatively, Cell trees (based on Bounding Interval Geometry) [73] and

Tetrahedral trees [74] provide efficient ways to answer point location queries in

tetrahedral meshes and thus can be used to speed up sampling operations in volu-

metric rendering. However, these techniques cannot be used efficiently to answer

ray-triangle intersection queries. Additionally, these structures are not designed

for consecutive tetrahedron traversal.

We provide a fast and compact acceleration structure to quickly find ray-

surface intersections for rendering 3D scenes composed of polygons (surface data).

As opposed to direct volume visualization methods, our acceleration structure can

handle queries for random rays scattered in different directions, given that their

origin is already located (ray connectivity). Direct volume rendering techniques

are geared towards rendering volumetric data from a specific camera position

and orientation. Recently, our tetrahedral ray traversal scheme has been adapted

to tetrahedron traversal (marching) consecutively for direct volume rendering

methods for better cache utilization and reduced computational cost [11].

18

Chapter 3

Compact Acceleration Structures

for Ray-tracing

3.1 Tetrahedral Mesh Representation

We use a compact tetrahedral mesh representation for good cache utilization. We

store tetrahedral mesh in two arrays as in [1]. The first array stores the point

data, and the second array stores the tetrahedron data. Figure 3.1 depicts the

tetrahedron data representation for typical scenarios.

V i
0 V i

1 V i
2 V i

3

N i
0 N i

1 N i
2 N i

3

Figure 3.1: Typical tetrahedron representation in the memory. V i
j represents the

index of the j’th vertex of the i’th tetrahedron. N i
j represents the neighboring

tetrahedron index, which is across the vertex V i
j . Each field is an integer and four

bytes long. Thus, the full tetrahedron data occupies 32 bytes of memory.

Instead of using this representation, we propose three tetrahedron storage

schemes that are more compact and better suited for efficient traversal: Tet32,

19

Tet20, and Tet16, which are 32, 20, and 16 bytes, respectively. We store a com-

mon field, exclusive-or sum (xor-sum), in all these structures, inspired by xor

linked list structures for reducing the memory requirements of linked lists [75].

Mebarki ([76]) uses a similar structure for compact 2D triangulations. VXi de-

notes the xor-sum of the vertex indices of the ith tetrahedron and V i
j denotes the

index of the jth vertex of the ith tetrahedron. We compute the xor-sum as follows.

V X i = V i
0 ⊕ V i

1 ⊕ V i
2 ⊕ V i

3

Tet32 structure contains the first three vertex indices, xor-sum of all vertex

indices, and four neighbor indices. Its memory layout is depicted in Figure 3.2.

V i
0 V i

1 V i
2 VXi

N i
0 N i

1 N i
2 N i

3

Figure 3.2: Tet32 structure. Each field is an integer and four bytes long. The
tetrahedron data occupies 32 bytes of memory.

With the Tet32 representation, we can use the xor operation to quickly retrieve

the vertex’s index that is not on a given face. We can get the index of the fourth

point V i
3 as follows.

V i
3 = V i

0 ⊕ V i
1 ⊕ V i

2 ⊕ VXi.

This follows from the fact that xor operation is associative, commutative, and

has the property X ⊕X = 0.

If the corresponding face is a part of the scene geometry, neighbor index data

points to a structure called constrained face. We use a single bit-mask to identify

such faces on the neighbor tetrahedron index field, where the remaining 31 bits are

used to reference either a neighboring tetrahedron or a constrained face depending

on the value of the bit-mask. Constrained face structure holds a reference to the

20

actual triangle geometry and stores references to the neighboring two tetrahedra

indices. These indices are used to recover and initialize the tetrahedron data when

scattering rays are traced. Figure 3.3 illustrates the constrained face structure

where Ntet and Nother tet are the indices of the two neighboring tetrahedra on that

face, and F is the face in the scene geometry.

Ntet Nother tet F

Figure 3.3: Constrained face structure. Each field is an integer and four bytes
long. Constrained face data occupies 12 bytes of memory.

It should be noted that multiple constrained faces can point to a single triangle

when we allow triangles to be subdivided during tetrahedralization to enable

high-quality tetrahedral meshes. This is analogous to having spatial-splits [27] in

BVHs.

The XOR-based storage scheme has the following advantages:

• XOR-based representations are compact and thus require less memory.

Hence, the cache memory can be utilized more efficiently to reduce the

rendering times. Additionally, more data can be fitted to the memory,

especially critical for GPU implementations.

• Fetching the subsequent tetrahedron data becomes straightforward. Thanks

to XOR representation, only one additional vertex needs to be fetched,

and it can be fetched easily by XORing all the vertex indices making the

traversal code more straightforward and efficient.

3.2 Tetrahedron Traversal

As the first step of tetrahedron traversal, we construct a 2D basis b = (u⃗, v⃗) from

the ray direction using the method described in [77]. Then, we define a new 2D

coordinate system C with basis b and origin o where ro is the ray origin. We

21

transform tetrahedron vertices to the coordinate system C to obtain four points

in 2D. We determine the exit face in the initial tetrahedron using at most four

points in triangle tests in 2D. The query point is at the origin because the ray

origin is the center of the new coordinate system C. Once we determine the

exit face, we keep the 2D coordinates and indices of the points of the exit face

as p0, p1, p2 and idx0, idx1, idx2, respectively. We also fetch the next tetrahedron

index using the neighbor data.

After the initialization step, we start traversing the tetrahedral mesh. We first

fetch the index of the fourth corner of the next tetrahedron (three corners are

already known because two neighboring tetrahedra share three vertices) using the

following expression where XV next denotes the xor sum of the next tetrahedron.

idx3 = idx0 ⊕ idx1 ⊕ idx2 ⊕ XVnext.

Using the index idx3, we fetch the vertex from the points array, transform it to

the new coordinate system, C, and use the resulting 2D point p3 to decide the exit

face of the ray (cf. Algorithm 1). Because the query point is at the origin after

transformation, only four floating point multiplications and two floating point

comparisons are sufficient. The exit face index is denoted as exit face idx and

resides across the point pexit face idx whose index is idxexit face idx. To get the next

tetrahedron, we use the idxexit face idx in the current tetrahedron data to fetch the

corresponding neighbor tetrahedron index. Figure 3.4 illustrates the coordinate

system transformation for a ray and a tetrahedron.

In Tet32, we simply search for idxexit face idx in the current tetrahedron. Since

vertex and neighbor indices correspond to each other, location of the idxexit face idx

(value from 0 to 3) also reveals the location of the neighbor to be traversed next.

We describe this process in Algorithms 2 and 3.

We terminate the traversal if the neighbor index points to a constrained face

or tetrahedral mesh boundaries. Otherwise, knowing the next tetrahedron, we

discard pi and idxi by replacing its contents with the newly fetched point data

22

v2 v3

v0

v1

p1

p2

p3 p0

Figure 3.4: Ray-tetrahedron intersection. Left: a ray and a tetrahedron. Middle:
the tetrahedron transformed into the coordinate system defined by the ray. The
ray coincides with the z-axis. Right: the tetrahedron projected onto 2D. The ray
is at the origin and points to the viewer.

Algorithm 1 Exit face selection

procedure GetExitFace(p0..3)
exit face idx← 0
if det(p⃗3, p⃗0) < 0 then

if det(p⃗3, p⃗2) ≥ 0 then
exit face idx← 1

end if
else if det(p⃗3, p⃗1) < 0 then

exit face idx← 2
end if
return exit face idx

end procedure

Algorithm 2 Tetrahedron traversal loop for Tet32

while tet idx ≥ 0 do
idxexit face id ← idx3
idx3 ← idx0 ⊕ idx1 ⊕ idx2 ⊕ VXtet idx

vnew ← pointsidx3 − ro
pexit face idx ← p3
p3 ← (u⃗ · vnew, v⃗ · vnew)
exit face idx = GetExitFace(p0..3)
next tet idx = GetNextTet32(tet idx, idxi)

end while

23

Algorithm 3 Next tetrahedron determination for Tet32

procedure GetNextTet32(tet idx, idx0..3)
next tet idx← N tet idx

3

for i← 0, 2 do
if idxexit face idx = V tet idx

i then
next tet idx← N tet idx

i

end if
end for
return next tet idx

end procedure

p3 and idx3. We repeat this process until a geometry is intersected or the tetra-

hedral mesh boundaries are reached. In this method, no further modifications

are necessary to ensure vertex ordering because the counterclockwise ordering is

always preserved for points on the exit face.

Fetching a new vertex id requires three bitwise exclusive or operations. The

coordinate system transformation of the newly fetched point is six floating-point

multiplications and four floating-point additions. We decide whether a face is an

exit face using four floating-point multiplications and two floating-point compar-

isons. Finally, we determine the next tetrahedron index using the appropriate

method for the preferred structure.

Our alternative tetrahedral representations, namely Tet20 and Tet16, are even

more efficient since their compact nature results in better cache utilization. These

representations can be used in the same way during traversal since we can recon-

struct full tetrahedron data given that traversal operations exhibit ray connectiv-

ity. However, both representations require additional operations to reconstruct

tetrahedron data. Appendix A describes these representations and operations

required to reconstruct the tetrahedron data.

In Tet20, we eliminate vertex indices and store only the xor-sum and the

neighboring indices. We use the xor-sum field to get the index of the unshared

vertex of the next tetrahedron during traversal. To this end, shared vertices

between two tetrahedra must be known, which is guaranteed by ray connectivity,

meaning that the start and endpoints of rays are always connected in a typical

24

ray-tracing scenario. However, we use a source tet, a tetrahedron with complete

index information, to initialize the indices at the beginning. We can choose this

tetrahedron randomly. It is possible to reconstruct the indices of the neighboring

tetrahedra starting from source tet. We need to sort the neighbor indices in a

tetrahedron using their corresponding vertex indices to find the neighbor for a

given vertex index. Figure 3.5 shows the memory representation of the Tet20

structure.

VXi N i
0 N i

1 N i
2 N i

3

Figure 3.5: Tet20 structure. Each field is an integer and four bytes long. The
tetrahedron data occupies 20 bytes of memory.

In Tet16, instead of storing four neighbor indices explicitly, we store three

values that can be used to reconstruct neighbor indices, given that the previous

(neighbor) tetrahedron index is known. We compute these three indices as follows.

NXi
0 = N i

0 ⊕N i
3

NXi
1 = N i

1 ⊕N i
3

NXi
2 = N i

2 ⊕N i
3

Knowing the index of a neighbor tetrahedron and its order, we can easily

reconstruct the rest of the neighbors. For example, if we have N i
2, we retrieve N

i
1

as follows.

N i
2 = N i

2 ⊕ NXi
2 ⊕ NXi

1.

The resulting Tet16 structure is given in Figure 3.6.

25

VXi NXi
0 NXi

1 NXi
2

Figure 3.6: Tet16 structure. Each field is an integer and four bytes long. The
tetrahedron data occupies 16 bytes of memory.

3.3 Tetrahedron Traversal for Tet20 and Tet16

Representations

In Tet20, we use the property that neighbor indices are sorted using their coun-

terpart vertex indices as keys. Thus, to find the next neighbor index, we find the

order of idxexit face idx among idx0, idx1, idx2, idx3 (which are actually the vertex

indices of the tetrahedron). Because the neighbor indices are sorted using vertex

indices, order of the vertex index also happens to be the next neighbor index. We

describe this process in Algorithms 4 and 5.

Algorithm 4 Tetrahedron traversal loop for Tet20

while tetidx ≥ 0 do
idxexit face idx ← idx3
idx3 ← idx0 ⊕ idx1 ⊕ idx2 ⊕ VXtet idx

vnew ← pointsidx3 − ro
pexit face idx ← p3
p3 ← (u⃗ · vnew, v⃗ · vnew)
exit face idx = GetExitFace(p0..3)
ordera ← sorted order of id3 among idi
next tet idx = GetNextTet20(tet idx, order a)

end while

Algorithm 5 Next tetrahedron determination for Tet20

procedure GetNextTet20(tet idx, order a)
next tet idx← Norder a

return next tet idx
end procedure

In Tet16, we use the previous tetrahedron index to reconstruct next tetrahe-

dron index using the values NXi
j. As in Tet20, we need to construct the value NXi

j

using sorted vertex indices. To reconstruct the next tetrahedron, sorted order of

26

values are computed for idx3, which corresponds to a previous tetrahedron and

idxexit face idx, which corresponds to an exit face, must be computed. We describe

this process in Algorithms 6 and 7.

Algorithm 6 Tetrahedron traversal loop for Tet16

while tet idx ≥ 0 do
idx3 ← idx0 ⊕ idx1 ⊕ idx2 ⊕ VXtet idx

vnew ← pointsidx3 − ro
p3 ← (u⃗ · vnew, v⃗ · vnew)
ordera ← sorted order of id3 among idi
exit face idx = GetExitFace(p0..3)
orderb ← sorted order of idexit face idx among idi
next tet idx =
GetNextTet16(tet idx, prev tet idx, order a, order b)

Swap(tet idx, prev tet idx)
end while

Algorithm 7 Next tetrahedron determination for Tet16

procedure GetNextTet16(tet idx, prev tet idx, order a, order b)
if ordera ̸= 3 then

next tet idx = prev tet idx⊕ NXtet idx
ordera

end if
if orderb ̸= 3 then

next tet idx = next tet idx⊕ NXtet idx
orderb

end if
return next tet idx

end procedure

3.4 Point Projection Using Specialized Basis

We project newly fetched points to the two-dimensional (2D) coordinate system

using two dot product operations, which require six floating-point multiplications

and four floating-point additions. We can optimize this step by scaling the basis

vectors to make some components zero or one. Since the basis vectors are only

scaled, the exit face determination still works correctly. To avoid numerical issues,

we scale vectors so that only the absolute largest components become one (or

minus one). Equation (3.1) describes the construction of the first basis vector

27

u⃗, which is orthogonal to n⃗ (and not necessarily of unit length). It should be

noted that this technique is only useful for long traversals where a ray visits

many tetrahedra. For short-lived travels, the setup cost renders the performance

benefit negligible.

u⃗min = 0,

u⃗(min+1) mod 3 =
n⃗(min−1) mod 3

n⃗max

,

u⃗(min−1) mod 3 = −
n⃗(min+1) mod 3

n⃗max

,

(3.1)

where v⃗0, v⃗1, and v⃗2 correspond to v⃗x, v⃗y, and v⃗z, respectively, min and max are

the indices of the absolute smallest and largest components of the vector n⃗.

We construct the second basis vector v⃗, which is orthogonal to n⃗ and u⃗ (and

not necessarily of unit length), as in Equation (3.2).

t⃗ = n⃗× u⃗,

v⃗ =
t⃗

t⃗(3−max−min)

.
(3.2)

Now, we can transform three-dimensional (3D) point v to the 2D coordinate

system using the basis b = (u⃗, v⃗), as shown in Equation 3.3. It should be noted

that the sign s of the last parameter v⃗min can be either positive or negative

depending on the sign of v⃗min.

other = 3−max−min,

p⃗x = u⃗maxv⃗max + v⃗other,

p⃗y = v⃗maxv⃗max + v⃗otherv⃗other ± v⃗min.

(3.3)

Three floating-point multiplications and three floating-point addition/subtractions

are sufficient to perform the above computation. We implement this fast pro-

jection method using a templated function over the variables min, max, and

28

sign(v⃗min) and call the corresponding function by inspecting the components of

the new basis to avoid run-time overhead of keeping additional function argu-

ments.

3.5 Handling Common Ray-tracing Operations

We handle common ray-tracing operations using tetrahedral meshes as follows.

Point lights: Point lights are handled by having a field denoting the tetrahedron

index that contains that light. This way, point lights can be tested for

visibility during rendering efficiently. Ray traversal must be initiated from

the query point towards the point light. If the tetrahedron containing the

point light is reached, point light is visible. If the ray hits a constrained

geometry before doing so, that light source is blocked from the query point.

Mesh Lights: Mesh lights do not require special treatment. Once a ray hits a

constrained geometry, its material is checked for a light-emitting material,

and lighting computations can be carried out accordingly.

Reflection and refraction rays: Two tetrahedra that share the incident triangle

must be reported at each intersection point to handle reflection and refrac-

tion rays. These two tetrahedra (one is further inside the incident triangle

and the other is on the outside) are then used to initialize ray traversal for

reflection and refraction, respectively. Since ray origin is on the incident

triangle, an initial 4-face search method is unnecessary. In order to simplify

this process, traversal data needed to initialize reflected and refracted faces

could be stored in the Constrained Faces table. We call this data Shared

Face which is illustrated in Figure 3.7 . It stores the indices of the inci-

dent triangle vertices along with the non-shared vertices of two neighboring

tetrahedra on that incident triangle. Figure 3.8, illustrates different types

of rays used in a typical ray-tracing scenario.

29

V Xtet V Xother tet V0 V1 V2

Figure 3.7: Shared face structure. Each field is an integer and four bytes long.
Constrained face data occupies 12 bytes of memory.

Figure 3.8: The types of rays in tetrahedral mesh-based ray tracing. S is the
center of source tetrahedron. C is the camera position. I is the intersection
point. L is the light source position. Rays Ra and Rb are used to locate the light
source and camera position, respectively. Rc is the camera ray. Rd is the shadow
ray. Re and Rf are the reflection and refractions rays, which are cast from two
different neighboring tetrahedra.

30

3.6 Accelerator Construction

Constructing the tetrahedral mesh-based accelerator out of a 3-D scene involves

a couple of steps which are as follows.

1. Meshes that are part of the scene geometry (including the light-emitting

meshes) are transformed into the world space. This step ensures that the

tetrahedralization method runs on an agreed world-space transformation.

2. A 3-D spatial grid is constructed, and the vertices in the scene are inserted

into this structure using keys derived from vertex positions. If two vertices

share the same position, they are merged to ensure that tetrahedral meshing

works in the existence of incident points. Such situations can occur if con-

tent generators model some geometry by breaking down the shared vertices

for convenience. Given that the scene geometry contains no intersections,

the resulting mesh is now PLC and ready to be tetrahedralized.

3. We insert Steiner points to improve the ray tracing performance of the

tetrahedral mesh-based accelerator. This step is optional.

4. Constrained tetrahedralization is built using a tetrahedralization algorithm.

Scene geometry is constrained, meaning it will be preserved in the tetrahe-

dral output mesh.

5. We sort the tetrahedral mesh data (both points and tetrahedra) using a

Hilbert Curve to improve the cache utilization.

6. We process the tetrahedral meshes for potential early termination optimiza-

tions such as Half-space based early ray termination and Portal-based early

ray termination. This step is optional.

7. We built the Constrained faces table, enabling us to have a spatial splits-like

approach while keeping the accelerator as compact as possible.

8. Canonical TetMesh structure is converted to one of the efficient TetMesh

representations: TetMesh32, TetMesh20 or TetMesh16.

31

9. We identify and store the data for source tetrahedron, which is used to

locate the ray origin. In order to minimize numerical issues, we select a

tetrahedron that is as equilateral as possible.

Bake scene geometry
to world space

Construct spatial
hashing grid

Merge coinciding
vertices & edges

Tetrahedralize the
PLC

Early ray termination
optimizations

Convert TetMesh to
 TetMesh32

Locate Points

Steiner Point insertion

Reorder tetrahedral
mesh data

Figure 3.9: Steps during the construction of tetrahedral mesh based ray-tracing
accelerator. Steps illustrated with dashed lines are optional.

3.6.1 Early Ray Termination

Tetrahedral mesh traversal can be terminated early if a ray passes through a

specific triangle where the next half-space determined by it contains no geometry

32

to intersect. We implement early space termination in two ways: half-space-based

early ray termination and portal-based early ray termination.

3.6.1.1 Half-space-based Early Ray Termination

Half-space-based early ray termination exploits the fact that each face of a tetra-

hedron defines a half-space. If a ray passes through a tetrahedron face where the

defined half-space does not have a scene geometry, further traversal is no longer

needed. Figure 3.10 shows a triangulated scene where half-space-based early ray

termination is used to reduce the number of traversal steps to improve ray-tracing

performance.

Figure 3.10: Half-space-based early ray termination. The red segment indicates
the triangle where ray can be terminated early.

In order to use this technique, we preprocess the tetrahedral mesh to find

faces that define empty half-spaces. For this purpose, scene geometry is checked

against each face using a left-test. If all tests have the same sign, that face defines

an empty half-space; we mark the corresponding neighbor link for that face to

terminate the traversal immediately as soon as a ray passes through it. Prepro-

cessing of half-spaces is highly parallelizable. Figure 3.11 shows the comparison of

renderings with and without half-space-based early ray termination comparisons.

33

Figure 3.11: The effect of half-space-based early ray termination. Left: Rendered
without half-space optimization. Right: Rendered with half-space optimization.

34

3.6.1.2 Portal-based Early Ray Termination

Portal-based early ray termination works by knowing that a ray that passes

through two faces of a tetrahedron cannot intersect with some geometry in the

scene. A ray that passes consecutively through two faces defines a region (re-

ferred to as portal). If this region contains no geometry, it is safe to terminate

the traversal early. To use this optimization, we must keep track of entry and exit

faces when traversing a tetrahedron. Since there are three possible entry faces for

each exit face, three bits need to be stored to see whether to see the termination

is possible or not. Therefore, additional 12 bits are needed for a tetrahedron to

encode early ray termination information. Figure 3.12 illustrates the portal-based

early ray termination.

Figure 3.12: Portal-based early ray termination. Left: entry face is red, exit face
is yellow. Right: Corresponding portal space for the given entry-exit face combi-
nation which contains no scene geometry, thus suitable for early termination.

3.6.2 Minimum Weight Triangulation

The structure of the tetrahedral mesh dictates the number of tetrahedrons tra-

versed. Therefore, it is possible to increase ray-tracing performance by building

better tetrahedral meshes. In the simulation domain, better tetrahedralization

35

often means tetrahedra with a better maximum radius-edge ratio, resulting in

more equilateral tetrahedra, enabling more accurate simulations. However, for

ray tracing performance, this statement does not hold. Lagae and Dutre [1] dis-

cuss that tetrahedral meshes with a smaller total surface area are better for ray

tracing as rays pass through tetrahedron faces at each step. A smaller surface

area means less number of nodes traversed. It is possible to reduce the total

surface area (called weight) by adjusting the quality parameter of the tetrahedral

mesh building algorithm. Figure 3.13 shows the resulting weight of a tetrahedral

mesh for different scenes with varying maximum radius-edge ratio parameter val-

ues. Since the result of this experiment does not provide a clear relationship

between the maximum radius-edge ratio and the resulting weight, we generally

use values between 2-6 based on empirical observations, which results in smaller

weight values in general.

Figure 3.13: Tetrahedral mesh weight - tetrahedralization quality. Weight values
are computed for each tetrahedral mesh for different scenes using different quality
values.

36

3.6.3 Intersecting Geometry

Intersecting geometry needs special treatment to build a tetrahedral mesh-based

accelerator. For that purpose, intersection resolving operators are used. Such

operators create additional geometry (vertices, edges, and faces) in the intersect-

ing meshes so that the resulting mesh is still a PLC when combined. Popular

mesh processing libraries (MeshLib [78]) and content creation tools (Blender [79])

provide the functionality to resolve intersections between meshes. Figure 3.14 il-

lustrates this process where two meshes are shown before and after resolving the

intersection.

Figure 3.14: Resolving intersections for two meshes where tetrahedralization is
not possible. Left: Two intersecting meshes. Right: New meshes after intersec-
tions have been resolved. These meshes can now be tetrahedralized.

3.6.4 Steiner Points

Special rays such as shadow and camera rays can be accelerated further by strate-

gically optimizing the structure of the tetrahedral mesh. By inserting special

vertices into the tetrahedralization, called Steiner points [80, 81], it is possible

to reduce the number of traversed nodes for such rays. For example, placing a

37

Steiner point behind a light creates long tetrahedra along the direction of scene

geometry vs. light. This means that rays will travel more distance in each tetra-

hedron, thus reducing the number of traversed tetrahedra.

3.6.5 Hidden-tetrahedra Removal

It is possible to reduce the accelerator size by removing the tetrahedra located

inside the regions where rays cannot enter. For example, tetrahedra generated

inside a fully opaque geometry might never be visited during ray-tracing. In

such cases, vertices and tetrahedra inside such geometry could be removed safely

without affecting the traversal.

Most tetrahedral mesh construction methods output a region id for each en-

closed region in the resulting tetrahedral mesh. Thus, hidden regions can be

conveniently detected by checking the region flags after tetrahedral mesh con-

struction.

Hidden regions could still be visited when locating the source tetrahedron;

therefore, a modification might be needed to locate the tetrahedron that contains

the ray origin. A* algorithm [82], for example, could be used to locate the

tetrahedron by initiating the search from the source tetrahedra. Tetrahedron

centroids can be used to compute the cost function, and at each step, a point-in-

tetrahedron test needs to be carried out to check for termination.

3.7 Reordering Tetrahedral Mesh Data

We reorder points and tetrahedra in memory to improve cache locality during

ray-traversal. For this purpose, we use a two-step method. In the first step,

we detect if there are distinct regions in the tetrahedralization. Each closed

surface in the input geometry divides the space into two regions (outside and

inside regions). These regions occur when a set of constrained faces completely

38

encloses a set of tetrahedra. Because the rays are traced until a constrained face

is encountered, the tetrahedra from different regions are not visited in a single ray

traversal, which is not the case for multi-hit traversal methods. Thus, we store

the tetrahedra that belong to the same region nearby in memory. Furthermore,

we reorder points based on their positions and tetrahedra based on their center

points. We map points to memory using a Hilbert curve [83] (see Figure 3.15).

A Hilbert curve is a space-filling curve that can map spatial data from three

dimensions to one dimension by preserving the locality. In this way, primitives

close to each other in 3D space are also close to each other in one dimension.

Figure 3.15: Sorting tetrahedron data. Top left: The three-dimensional scene.
Top right: Unsorted tetrahedron data. Bottom left: Tetrahedron data sorted us-
ing a Hilbert curve. Bottom right: Tetrahedron data sorted using a Hilbert curve
and mesh regions. Memory positions are coded with different colors. Tetrahedra
that are close in memory are represented with similar colors. Tetrahedron data
are stored in a contiguous manner. Courtesy of Aman et al. [10].

39

3.8 GPU Implementation

For the GPU implementation, we use the CUDA platform. Once we build the

tetrahedral mesh-based acceleration structure, the tetrahedra and points data

are copied to the GPU. We store the constrained face data on the host computer

because it is not a part of the hot data, which is frequently accessed during

traversal. Once the initialization is complete, the steps to render a single frame

are as follows.

1. We identify the source tetrahedron on the CPU.

2. We pass the batch of rays and the source tetrahedron to the global memory

of the GPU.

3. CUDA kernels run for each ray, traversing the scene, and terminate when

they hit the scene geometry.

4. We store the results of the intersection calculations in the GPU’s global

memory and then pass them to the main memory. We use these results to

perform shading and generate additional rays.

Our method can be trivially implemented for the CUDA platform. However,

this trivial implementation does not provide the best performance on the GPU

in terms of computation speed. Thus, we perform the following optimizations to

make our method run faster on the GPU.

1. We project ray origin to the 2D coordinate system beforehand. When pro-

jecting the newly fetched point, translation is performed on the 2D coordi-

nate system instead of a 3D one. Thus, instead of using the origin in 3D, we

use the projected origin in 2D. This potentially results in fewer occupied

registers on the GPU, resulting in better performance. We compute the

projected origin, po, as follows:

po = (u⃗ · ro, v⃗ · ro), (3.4)

40

where (u⃗, v⃗) is the 2D basis constructed from the ray. During traversal, we

can project the new point to the 2D plane as follows:

p3 = (u⃗ · vnew − pox, v⃗ · vnew − poy), (3.5)

where p3 is the projected point and vnew is the newly fetched point from the

next tetrahedron.

2. We make use of CUDA textures when accessing tetrahedral mesh data. To

optimize traversal in Tet20 and Tet16 structures, we use a single channel

integer texture (32 bytes). The required elements to use the texture are

the xor field and one neighbor field for Tet20, the xor field, and one or

two neighbor fields for Tet16. We fetch and store these in a local stack,

potentially reducing the number of registers used.

3.9 Experimental Results

We compare our approach to k -d tree, BVH, and the state-of-the-art tetrahe-

dral mesh-based methods, namely the ScTP-based traversal [1] and the Plücker

coordinate-based traversal [61]. We use the k -d tree and SAH-based BVH imple-

mentations, as described in [24, 84]. We use the original implementation provided

by Maria et al. ([61]) for the Plücker coordinate-based traversal.

We use TetGen [56] to generate the tetrahedral mesh of the 3D scene. We perform

experiments on a computer with six cores @3.2 GHz (Intel), 16 GB of main

memory, and NVIDIA GTX 1060 with 6 GB of memory. On the CPU, we render

the scenes at a resolution of 1920×1440 using multi-threading by subdividing the

image into 16×16 tiles and assigning them to available threads. To make a fair

comparison between our method and the other state-of-the-art approaches, we

render the same scene many times and pick the best result for each method to

avoid noisy measurements due to background processes.

41

Tables 3.1, 3.2, and 3.3 show the computational costs of the construction of

acceleration structures and rendering times of different traversal methods. The

test scenes in Table 3.3 cannot be tetrahedralized using TetGen. We tetra-

hedralized them using TetWild [85] and used the remeshed geometry as input.

To test the adaptiveness of the structures in a challenging scene geometry, we

include the versions of the scenes with bounding boxes composed of large trian-

gles. Experiments show that our method performs better than the ScTP- [1] and

Plücker coordinate-based traversal methods [61] in all scenes. It performs better

than the BVH-based traversal in seven of the fifteen scenes and better than the

k -d tree-based traversal in six of the fifteen scenes. In the other scenes where

BVH- and k -d tree-based traversal methods perform superior to our tetrahedral

mesh-based traversal, the rendering times are mostly close. While testing the

state-of-the-art tetrahedral-mesh-based traversal methods of [1, 61], we sorted

the tetrahedral meshes using space-filling curves for a fair comparison. Although

the construction times of BVH and k -d tree are lower than that of the tetrahedral

meshes, the tetrahedral mesh is constructed during preprocessing, and it does not

affect the ray-tracing performance for the scenes that do not require the update

of acceleration structures. The tetrahedral mesh does not need to be updated for

dynamic scenes where the topology does not change. If the topological changes to

a tetrahedralization are local, the tetrahedral mesh can be updated with efficient

insertion and removal operations [1].

Table 3.4 shows rendering times of tetrahedral mesh-based methods for test

scenes on the GPU. Tet20 representation gives the best performance, around

15% faster than Maria’s method while occupying much less memory (half of the

memory required by Maria’s method in the largest scene). Tet16 representation

requires even less memory, but it is not as fast as Tet20 (roughly the same

performance as Maria’s method) due to more memory and arithmetic operations

needed to decode compressed neighbor data.

42

Table 3.1: The computational costs of different acceleration structures and ren-
dering times for traversal methods (part 1). We compare our Tet-mesh-32,
Tet-mesh-20, and Tet-mesh-16 structures and traversal methods with Tet-mesh-
ScTP [1], Tet-mesh-80 [61], BVH [13], and k -d tree [13].

Scenes

Torus Knots Torus Knots Armadillo Armadillo Neptune
in a Box in a Box

Scene statistics

of triangles 77,760 77,772 345,938 345,950 448,896
of tetrahedra 270,036 270,351 1,027,749 1,021,965 1,240,582

Construction times (in seconds)

Tet-mesh-ScTP 3.596 3.638 16.733 20.252 79.822
Tet-mesh-80 3.656 3.663 16.595 20.143 79.657
Tet-mesh-32 3.753 3.643 16.659 20.262 79.536
Tet-mesh-20 3.778 3.658 16.704 20.444 79.573
Tet-mesh-16 3.640 3.524 16.546 19.919 79.846
BVH 0.078 0.079 0.391 0.396 0.474
k -d tree 0.739 0.590 1.454 1.651 2.265

Rendering times (in milliseconds)

Tet-mesh-ScTP 261.5 293.4 232.5 306.7 268.9
Tet-mesh-80 244.1 278.9 218.1 262.4 236.5
Tet-mesh-32 150.7 181.7 148.5 182.5 158.7
Tet-mesh-20 125.8 142.3 117.1 145.3 127.1
Tet-mesh-16 136.3 152.4 124.6 153.2 135.9
BVH 152.7 192.2 78.1 126.1 78.7
k -d tree 139.9 214.4 85.7 182.3 81.7

43

Table 3.2: The computational costs of different acceleration structures and ren-
dering times for traversal methods (part 2). We compare our Tet-mesh-32,
Tet-mesh-20, and Tet-mesh-16 structures and traversal methods with Tet-mesh-
ScTP [1], Tet-mesh-80 [61], BVH [13], and k -d tree [13].

Scenes

Neptune Mix Mix Mix close Mix in a
in a Box in a Box Box close

Scene statistics

of triangles 448,908 2,505,992 2,506,004 2,505,992 2,506,004
of tetrahedra 1,242,883 7,259,175 7,252,946 7,259,175 7,259,193

Construction times (in seconds)

Tet-mesh-ScTP 155.478 124.208 170.216 124.840 485.950
Tet-mesh-80 156.381 125.081 169.116 125.068 482.908
Tet-mesh-32 153.788 124.000 169.502 123.183 487.291
Tet-mesh-20 155.580 124.087 169.890 124.015 483.827
Tet-mesh-16 154.644 124.493 170.175 123.401 484.516
BVH 0.487 2.968 3.017 2.966 2.997
k -d tree 2.471 13.889 14.668 13.846 16.624

Rendering times (in milliseconds)

Tet-mesh-ScTP 279.6 402.6 430.0 449.5 455.0
Tet-mesh-80 261.0 355.7 384.7 411.2 419.6
Tet-mesh-32 176.1 247.2 268.5 265.5 269.9
Tet-mesh-20 137.0 196.3 211.1 205.6 210.2
Tet-mesh-16 152.0 223.9 241.4 237.4 240.3
BVH 120.4 144.6 187.9 224.9 253.8
k -d tree 162.6 143.5 214.8 193.1 213.6

44

Table 3.3: The computational costs of acceleration structures and rendering
times for traversal methods (remeshed scenes). We compare our Tet-mesh-32,
Tet-mesh-20, and Tet-mesh-16 structures and traversal methods with Tet-mesh-
ScTP [1], Tet-mesh-80 [61], BVH [13], and k -d tree [13].

Scenes

Rungholt Rungholt Rungholt Exhaust Exhaust
Far Default Close Pipe Left Pipe Right

Scene statistics

of triangles 3,580,928 3,580,928 3,580,928 6,244,678 6,244,678
of tetrahedra 8,381,071 8,381,071 8,381,071 18,480,542 18,480,542

Construction times (in seconds)

BVH 4.230 4.247 4.212 7.771 7.767
k -d tree 37.140 37.078 37.039 66.462 66.403

Rendering times (in milliseconds)

Tet-mesh-ScTP 554.035 525.523 436.716 333.291 344.483
Tet-mesh-80 488.299 466.933 400.589 312.152 320.361
Tet-mesh-32 353.444 333.274 265.337 202.472 207.239
Tet-mesh-20 282.211 265.337 215.118 163.814 166.619
Tet-mesh-16 313.335 293.351 238.027 183.198 186.125
BVH 198.140 227.333 243.165 177.263 187.540
k -d tree 119.589 127.948 126.434 114.358 121.114

45

Table 3.4: The rendering times of tetrahedral mesh-based acceleration structures
on the GPU. We compare our Tet-mesh-32, Tet-mesh-20, and Tet-mesh-16 struc-
tures and traversal methods with Tet-mesh-ScTP [1] and Tet-mesh-80 [61].

Scenes

Torus Armadillo Neptune Mix Rungholt Exhaust
Knots Pipe

Scene statistics

of triangles 77,760 345,938 448,896 2,505,992 3,580,928 6,244,678
of tetrahedra 270,036 1,027,739 1,240,582 7,259,175 8,381,071 18,480,542

Kernel execution time (in milliseconds)

Tet-mesh-ScTP 20.021 19.612 20.898 43.910 43.633 22.560
Tet-mesh-80 7.790 7.136 7.941 13.454 14.360 9.023
Tet-mesh-32 19.541 18.950 20.958 42.690 44.544 21.320
Tet-mesh-20 6.156 5.803 6.529 11.322 12.172 6.931
Tet-mesh-16 7.120 6.477 7.328 12.157 13.444 8.231

46

Table 3.5 shows the memory costs for different acceleration structures on dif-

ferent scenes. Our most compact structure, Tet16, can be stored using signifi-

cantly less memory than the other tetrahedral-mesh-based alternatives, Tet-mesh-

ScTP [1] and Tet-mesh-80 [61], which provides two benefits. First, accelerators

for much larger scenes can fit the main memory or GPU global memory. Second,

this small footprint provides much better performance by facilitating cache local-

ity. Our smallest accelerator data is memory aligned (16 bytes per tetrahedron).

Memory usage of the k -d tree tends to be affected considerably by the distribu-

tion of the primitives in the scene, thus resulting in a smaller or larger accelerator

size in different scenes.

On the other hand, memory used for a BVH structure is always smaller than

its tetrahedra-mesh-based counterparts. It should be noted that BVHs and

tetrahedra-mesh-based accelerators exhibit orthogonal strengths, which can be

combined for better results, as demonstrated in [9]. This approach allows dy-

namic scenes to be rendered by combining two structures: a top-level acceleration

structure, a BVH, and a bottom-level acceleration structure, a tetrahedral mesh.

Figure 3.16 demonstrates the effect of the tetrahedral mesh sorting on ren-

dering performance. Even though sorting is not vital for performance in small

scenes, it significantly improves the rendering performance in large scenes.

Table 3.6 demonstrates the efficiency of a tetrahedral mesh-based traversal

approach when the camera gets closer to a surface. In this experiment, we render

the images at varying distances to the Armadillo 3D model and compare the

rendering times for different acceleration structures. Both BVH and k -d tree

perform much better than the tetrahedral mesh structure when the camera views

the object from a fair distance. However, as the camera gets closer to the surface,

the traversal cost decreases because the tetrahedral mesh is not hierarchical,

unlike the BVH and k -d tree. In the extreme case, when the camera is about

to touch the surface, only one tetrahedron is traversed. This is not the case for

hierarchical structures because many tree nodes may need to be traversed to find

the closest ray-surface intersection. This comparison shows that, depending on

the scene, tetrahedral mesh-based accelerator or BVH could be preferred over

47

Table 3.5: The memory requirements of different acceleration structures. We
compare our proposed tetrahedra-mesh-based Tet-mesh-32, Tet-mesh-20, and
Tet-mesh-16 structures with the state-of-the-art tetrahedra-mesh-based acceler-
ation structures, Tet-mesh-ScTP [1] and Tet-mesh-80 [61], and other types of ac-
celeration structures, Bounding Volume Hierarchy (BVH), and k -d tree. Because
Tet-mesh-32 and Tet-mesh-ScTP use the same tetrahedral mesh representations,
their memory requirements are the same.

Scenes

Torus Armadillo Neptune Mix Rungholt Exhaust
Knots Pipe

Scene statistics

of triangles 77,760 345,938 448,896 2,505,992 3,580,928 6,244,678
of tetrahedra 270,036 1,027,739 1,240,582 7,259,175 8,381,071 18,480,542

Accelerator size (in megabytes)

kd-tree 19.9 7.8 27.4 97.1 512.0 1417.8
BVH 4.7 20.4 10.6 150.0 175.6 380.0
Tet-mesh-ScTP 12.3 49.4 61.2 352.1 406.1 885.1
Tet-mesh-80 20.6 78.4 94.6 553.8 639.4 1410.0
Tet-mesh-32 12.3 49.4 61.2 352.1 406.1 885.1
Tet-mesh-20 9.2 37.7 47.0 269.0 310.2 673.6
Tet-mesh-16 8.2 33.7 42.2 241.3 278.2 603.1

Torus Knots Armadillo Neptune Mix Mix Close
0

0.1

0.2

0.3

0.4

R
en
d
er
in
g
ti
m
e
(s
ec
.) None Hilbert Hilbert-regions

Figure 3.16: The rendering times for unsorted and sorted tetrahedral mesh data.
Courtesy of Aman et al. [10].

48

each other for better performance. We can employ SAH and other heuristics

to determine the best accelerator for a particular scenario. In Chapter 4.2, we

present three traversal cost heuristics to determine the cost of ray-tracing using

tetrahedral meshes which can be used to determine the best accelerator to use

for a particular geometry.

49

Table 3.6: The rendering times and visited node counts for different types of
accelerators as the camera gets closer to the mesh surface. We compare our Tet-
mesh-20 structure and traversal method with BVH [13] and k -d tree [13].

Scenes

Tet-mesh-20

BVH

kd-tree

Visited node count per pixel

Tet-mesh-20 48.54 52.32 55.11 59.13 60.13 43.62
BVH 27.23 32.90 38.53 46.67 57.88 65.27
k -d tree 34.12 41.84 49.50 60.21 70.18 65.46

Rendering times (in milliseconds)

Tet-mesh-20 140.3 151.0 168.3 179.4 182.3 126.6
BVH 87.4 109.4 123.9 146.8 175.9 193.9
k -d tree 86.8 107.4 118.8 136.8 157.9 144.0

50

Chapter 4

Applications

Tetrahedral meshes have their uses in many domains. We can use our compact

and efficient methods in different fields. In the following sections, we describe the

applications of our compact tetrahedral mesh-based representation to different

domains such as volume rendering, hybrid accelerators, and point location queries

in a triangulation.

4.1 Volume Rendering

NVIDIA recently introduced the Turing [86] architecture, which supports

hardware-accelerated ray-tracing queries. We extended our method to support

volumetric data utilizing the RTX cores on these GPUs through the OPTIX

framework [87]. This approach has the following advantages:

• It uses a compact and efficient memory representation that can be used

for fast ray-tetrahedra intersection tests and ray traversal inside the tetra-

hedralization. This GPU-friendly structure is based on the techniques de-

scribed in Chapter 3.

• It can handle both primary and secondary rays; therefore, it could be used

51

to produce effects such as light shadows, scattering, and ambient occlusion.

• It can be used in both convex and non-convex volumetric domains and

volumes with challenging geometry that contains holes and discontinuities.

4.1.1 Method Overview

A ray marcher can be used to perform volumetric rendering over a tetrahedral

mesh. Since a tetrahedral domain can be in any form (convex or non-convex),

entry and exit faces to these tetrahedral elements must be located efficiently. To

this end, shell faces (boundary faces of the tetrahedral domain) are extracted and

put into an efficient BVH structure in the GPU. By leveraging the computational

power on the GPU, entry and exit faces can be located very quickly. Once these

faces are located, rays are marched through the tetrahedral mesh using our fast

tetrahedral mesh traversal method. This method provides a convenient way of

computing secondary rays such as ambient occlusion, reflection, and refraction

by utilizing the ray connectivity. Figure 4.1 shows some images rendered using

this method. Sahistan et al. [11] and Sahistan [88] provide the details of these

methods.

4.2 Two-level Hybrid Acceleration Structures

Rendering dynamic scenes is generally done by having a two-level accelerator

structure. In such a structure, the bottom levels represent objects that can have

a dynamic motion. The top-level structure is generally a BVH tree where bottom-

level objects are treated as leaves. Similarly, we propose BVH-Tetrahedralization

Hybrid (BTH) acceleration structure to speed up ray tracing and propose a con-

struction method for the BTH structure. We also show that the BTH structure

can be adapted to dynamic scenes.

52

Figure 4.1: Volumetric images rendered on the GPU. Courtesy of Sahistan et
al. [11].

53

4.2.1 BVH-Tetrahedralization Hybrid Structure

BTH refers to a Bounding Volume Hierarchy (BVH) where some leaves are tetra-

hedralized. This structure combines the strength of BVHs and tetrahedraliza-

tions, meaning that the structure can handle self-intersected models and support

different primitives. This structure can also benefit from early termination.

4.2.1.1 Top-Down BTH Construction

BTH is constructed in three steps.

1. The complete BVH is constructed using a top-down construction method

utilizing the Surface Area Heuristic (SAH).

2. Self-intersection-free nodes are marked. A node has a self-intersection if

its descendants contain self-intersection or its children have intersecting

primitives. The constructed BVH can be used to speed up self-intersection

detection.

3. Nodes are marked as to be tetrahedralized if

CostTET(node) < CostSAH(node),

where CostTET(node) is the total cost of traversal of a tetrahedralized node

and CostSAH(node) is the total traversal cost of a SAH-based BVH node.

Marked nodes are then pruned, tetrahedralized, and stored in the BVH tree

as leaf nodes.

4.2.1.2 BTH Nearest-Hit Traversal

BTH traversal is very similar to the BVH traversal. Traversal starts from the

root, and when a tetrahedralized node is found, the first tetrahedron is located

to initiate tetrahedral mesh traversal. Then, tetrahedralization is traversed by

following neighboring links and our efficient tetrahedral traversal technique.

54

4.2.1.3 Tetrahedralization Nearest-Hit Cost Heuristic

The BTH Construction algorithm marks nodes to be tetrahedralized using the

formula in the preceeding section, requiring that CostTET needs to be computed

or approximated. Similar to the SAH, CostTET can be approximated in the fol-

lowing way, assuming the rays are distributed uniformly and originate outside the

tetrahedralization. CostTET becomes directly related to the number of tetrahedra

traversed, denoted as Navg, which can be approximated using different methods.

Sampling-based cost calculation: A Monte-Carlo approach is employed in this

method. We randomly sample rays, traverse the tetrahedralization along

the ray, and derive an average number of tetrahedrons traversed using those

samples. Sampling-based cost calculation accuracy improves as the number

of samples increases, and it can approximate Navg well. However, since it

requires a tetrahedralization, it is slow for BTH construction and used only

for comparison and evaluation of the other methods.

Average depth-based cost calculation: In this method, the average number of

tetrahedra traversed is derived using the average depth of rays and the

average length of the edges of the tetrahedra. The average number of tetra-

hedra traversed is

Ndepth(Tnode) ≈ davg/Iavg,

where davg is the average depth of rays and Iavg is the average length of

the edges. Compared to the sampling-based cost calculation method, this

method tends to underestimate the cost.

Primitive count-based cost calculation: Alternatively, primitive count in a node

can be used to approximate the Navg as well such as

Ncount(Tnode) ≈ 3
√
|F |,

where F is number of faces in that particular node. This method makes cost

approximation more accurate than the average depth-based cost calculation.

55

4.2.1.4 Handling Animated Scenes

Acceleration structures need to be adapted for dynamic scenes. For this purpose,

a complete rebuild or update can be done. Assuming objects have rigid-body

motion only, we can employ a two-level strategy to handle updates to the BTH

to render dynamic scenes. For this purpose, we construct a bottom-level acceler-

ation structure (BTH) for each object and then construct a top-level acceleration

structure (BVH) for these bottom-level structures. Figure 4.2 illustrates this

two-level structure.

Figure 4.2: Two-level hierarchy to handle animated scenes. Courtesy of
Aman et al. [9].

The nearest hit-traversal with this two-level hierarchy works as follows. First,

the bounding volume hierarchy, i.e., the top-level acceleration structure (TLAS),

is traversed. When the leaves of the TLAS, i.e., bottom-level acceleration struc-

ture (BLAS), which are tetrahedralizations, are reached, we transform rays into

objects’ coordinates and continue traversing the BLAS in the local coordinate

system. If the scene is changed, only the top-level needs to be built as the bot-

tom levels do not change. Aman et al. [9] and Demirci [89] provide a detailed

explanation of these methods.

56

4.3 Point Location Queries in Two-dimensional

(2-D) and Three-dimensional (3-D) Space

The traversal methods described in this work could be used to perform point

location queries in triangulations in two different ways.

4.3.1 Point Location Queries in a Triangulation by

Stabbing

Using the proposed ray traversal techniques to locate points in 2-D triangula-

tions is straightforward. To this end, we can derive 2-D variants of our compact

representation; the vertex data becomes an array of two-dimensional points. To

represent the triangulation, we adapt the XOR-based scheme to triangles. Then,

the triangle could be represented as shown in Figure 4.3.

VXi N i
0 N i

1 N i
2

Figure 4.3: Tri16 structure. Each field is an integer and four bytes long. The
triangle representation occupies 16 bytes of memory.

It is possible to compress this data by XORing the neighbor links, similar to

the compression process for Tet16 (also proposed by Mebarki [76]).

NXi
0 = N i

0 ⊕N i
2

NXi
1 = N i

1 ⊕N i
2

Then, the resulting compact triangle representation, called Tri12, could be rep-

resented as shown in Figure 4.4.

The source triangle needs to be identified within the compact triangulation

representation to trace a ray in this structure. Algorithm 8 and 9 describes the

57

VXi N i
0 N i

1

Figure 4.4: Tri12 structure. Each field is an integer and four bytes long. The
triangle representation occupies 12 bytes of memory.

ray traversal loop in a triangulation using Tri16 structure.

Algorithm 8 Triangle traversal loop for Tri16

while triidx ≥ 0 do
idxexit edge idx ← idx2
idx2 ← idx0 ⊕ idx1 ⊕ VXtri idx

vnew ← pointsidx2 − ro
pexit edge idx ← p2
p2 ← (u⃗ · vnew, v⃗ · vnew)
exit edge idx = GetExitTri(p0..2)
ordera ← sorted order of id2 among idi
next tri idx = GetNextTri16(tri idx, order a)

end while

Algorithm 9 Next triangle determination for Tri16

procedure GetNextTri16(tri idx, order a)
next tri idx← Norder a

return next tri idx
end procedure

Algorithms 10 and 11 describe the ray traversal loop in a triangulation using

Tri12 structure. Algorithm 12 describes the exit edge selection method for a ray

traversal inside the triangulation.

4.3.2 Point Location Queries in a Triangulation Using

Flattened Tetrahedral Mesh

Rather exciting usage of the proposed technique is the ability to use a flattened

tetrahedral mesh to handle point location queries. For this, planar PCL containing

the triangulation and another PCL, a very basic triangulation, must be fed into

a tetrahedralization algorithm as constrained geometry. Once this structure is

58

Algorithm 10 Triangle traversal loop for Tri12

while tri idx ≥ 0 do
idx2 ← idx0 ⊕ idx1 ⊕ VXtri idx

vnew ← pointsidx2 − ro
p2 ← (u⃗ · vnew, v⃗ · vnew)
ordera ← sorted order of id2 among idi
exit edge idx = GetExitFace(p0..2)
orderb ← sorted order of idexit edge idx among idi
next tri idx =
GetNextTet12(tri idx, prev tri idx, order a, order b)

Swap(tri idx, prev tri idx)
end while

Algorithm 11 Next triangle determination for Tri12

procedure GetNextTri12(tri idx, prev tri idx, order a, order b)
if ordera ̸= 1 then

next tri idx = prev tri idx⊕ NXtri idx
ordera

end if
if orderb ̸= 1 then

next tri idx = next tri idx⊕ NXtri idx
orderb

end if
return next tri idx

end procedure

Algorithm 12 Exit edge selection

procedure GetExitEdge(p0..2)
if det(p⃗3, p⃗0) < 0 then

exit face idx← 1
else

exit face idx← 2
end if
return exit tri idx

end procedure

59

tetrahedralized, point queries can be answered by shooting a ray from the top

triangulation towards the bottom triangulation. Since ray is orthogonal to both

triangulations, tetrahedral mesh information along the Z-axis could be safely

ignored without affecting the traversal. Since the triangulation at the top level is

simple (triangulated from regular quads), we can locate the initial tetrahedron in

constant time. Point location query performance could be increased by increasing

the resolution of the regular subdivision of the triangulation at the top level. It

should be noted that an increase in the resolution also increases the memory

required to store the flattened tetrahedral mesh. Figure 4.5 illustrates a point

location query using a flattened tetrahedral mesh.

Figure 4.5: Point location query using a flattened tetrahedral mesh: Triangula-
tion and the query point (red) (left). Simple triangulation on top of the actual
triangulation (right). A ray orthogonal to the triangulations that passes through
the query point will eventually end up in the queried triangle, given that the
space between two triangulations is tetrahedralized.

4.4 Tetrahedralization of Very Large Meshes

Tetrahedralization is the core operation in the construction of a tetrahedral mesh-

based accelerator. Therefore, to be able to use these accelerators for ray tracing

purposes, large scenes need to be tetrahedralized as well. To this end, we employ

60

a practical method to tetrahedralize larges scenes with good quality where a

tetrahedralization by well-known Tetrahedralization tools, such as TetGen [56],

might fail due to memory limitations. We fix this problem using a simple yet

practical divide-and-conquer algorithm, which is as follows [12].

1. We halve to input by having a split plane on the major axis of the scene

geometry. We use the clip function provided by CGAL [90].

2. We repair the defects introduced by the clipping operation and ensure that

triangulated surfaces at the split planes match for each side.

3. Each half is tetrahedralized separately and then merged. It should be noted

that the algorithm is recursive, meaning that the input can be subdivided

many times before halves can be merged again.

Erkoc et al. [12] and Erkoc [91] provide the details of this divide-and-conquer

approach for tetrahedralization.

61

Chapter 5

Conclusions and Future Research

Directions

We propose methods for fast tetrahedral mesh traversal for ray tracing. Specif-

ically, we propose compact and memory-aligned tetrahedral mesh data struc-

tures. We use a space-filling curve to improve cache locality. We propose efficient

traversal methods to improve ray-tracing performance and provide the GPU im-

plementation. Experiments show that our approach can reduce rendering times

substantially and perform better than other alternatives in different scenarios.

There are two main limitations of using tetrahedral meshes as acceleration struc-

tures in ray tracing complex 3D scenes.

• Tetrahedral mesh generation is computationally costly and requires more

memory than the alternative methods. Developing a high-quality tetrahe-

dralization tool is also complex; most tools rely on a third-party library.

• Our current implementation cannot construct a tetrahedral mesh accelera-

tion structure for scenes with intersecting geometry. We can overcome this

limitation by a pre-processing step where mesh intersections are resolved so

that the resulting geometry is a Piecewise Linear Complex [92], as proposed

by Lagae and Dutre [1].

62

Other areas for further research regarding contemporary ray-tracing concepts

are as follows.

• Non-triangular models: The proposed acceleration structure does not sup-

port non-triangular models. Recent research by Hu et al. ([93]) provides a

way to build triangulations with curve constraints. The extension of this

method to 3D with surface constraints can act as an accelerator to ren-

der paramteric 3D surfaces, which could be a potentially interesting and

challenging research direction.

• Real-time rebuilds: Although our approach allows real-time manipulation

of the geometry by certain deformers (smooth, C1 continuous) naturally, it

is not very easy to have real-time rebuilds on changing geometry, which is

well supported by the state-of-the-art BVHs.

It is also worth mentioning that our compact tetrahedralization structure

might be used in other domains where compressed and compact forms are es-

sential. Tetrahedral meshes are widely used in volume rendering, medical vi-

sualizations, finite element methods, and other forms of simulation. Efficient

and compact tetrahedral mesh representation could be helpful in such fields, es-

pecially in resource or/and bandwidth-limited environments such as streaming

applications or low-end mobile devices.

63

Bibliography

[1] A. Lagae and P. Dutré, “Accelerating ray tracing using constrained tetra-

hedralizations,” Comper Graphics Forum, vol. 27, no. 4, pp. 1303–1312,

2008.

[2] E. Angel and D. Shreiner, Interactive Computer Graphics with WebGL.

Addison-Wesley Professional, 7th ed., 2014.

[3] T. Whitted, “An Improved Illumination Model for Shaded Display,” Com-

munications of the ACM, vol. 23, no. 6, pp. 343–349, 1980.

[4] A. Appel, “Some techniques for shading machine renderings of solids,” in

Proceedings of the Spring Joint Computer Conference, AFIPS ’68 (Spring),

(New York, NY, USA), pp. 37–45, ACM, 1968.

[5] G. Tran, “Glasses, pitcher, ashtray and dice (POV-Ray),” 2016. Online,

Available at http://www.oyonale.com/modeles.php?lang=en&page=40,

Access date: 29 June 2022.

[6] K. Dudka, “RRV - Radiosity Renderer and Visualizer,” 2016. Online, Avail-

able at http://dudka.cz/rrv, Access date: 29 June 2022.

[7] A. S. Glassner, ed., An Introduction to Ray Tracing. London, UK: Academic

Press Ltd., 1989.

[8] A. Aman and U. Güdükbay, “Fast Tetrahedral Mesh Traversal for Ray

Tracing,” in High-Performance Graphics, Posters, HPG ’17, 2017.

[9] A. Aman, S. Demirci, U. Güdükbay, and I. Wald, “Multi-level

Tetrahedralization-based Accelerator for Ray-tracing Animated Scenes,”

64

http://www.oyonale.com/modeles.php?lang=en&page=40
http://dudka.cz/rrv

Computer Animation and Virtual Worlds, vol. 32, no. 3-4, Article No.

e2024, 10 pages, 2021.

[10] A. Aman, S. Demirci, and U. Güdükbay, “Compact tetrahedralization-

based acceleration structures for ray tracing,” Journal of Visualization, In

Press.

[11] A. Sahistan, S. Demirci, N. Morrical, S. Zellmann, A. Aman, I. Wald, and

U. Güdükbay, “Ray-traced shell traversal of tetrahedral meshes for direct

volume visualization,” in Proceedings of the IEEE Visualization Conference-

Short Papers, VIS ’21, pp. 91–95, IEEE, 2021.

[12] Z. Erkoç, A. Aman, U. Güdükbay, and H. Si, “Out-of-core constrained

delaunay tetrahedralizations for large scenes,” in Numerical Geometry, Grid

Generation and Scientific Computing (V. A. Garanzha, L. Kamenski, and

H. Si, eds.), (Cham), pp. 113–124, Springer International Publishing, 2021.

[13] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From

Theory to Implementation. San Francisco, CA, USA: Morgan Kaufmann

Publishers, Inc., 3rd ed., 2016.

[14] A. Fujimoto, T. Tanaka, and K. Iwata, “ARTS: Accelerated Ray-tracing

System,” in Tutorial: Computer Graphics; Image Synthesis (K. I. Joy,

C. W. Grant, N. L. Max, and L. Hatfield, eds.), pp. 148–159, New York,

NY, USA: Computer Science Press, Inc., 1988.

[15] D. Cohen and Z. Sheffer, “Proximity clouds—an acceleration technique for

3d grid traversal,” The Visual Computer, vol. 11, no. 1, p. 27–38, 1994.

[16] A. Es and V. İşler, “Accelerated regular grid traversals using extended

anisotropic chessboard distance fields on a parallel stream processor,” Jour-

nal of Parallel and Distributed Computing, vol. 67, no. 11, pp. 1201–1217,

2007.

[17] A. Lagae and P. Dutré, “Compact, fast and robust grids for ray tracing,”

Computer Graphics Forum, vol. 27, no. 4, pp. 1235–1244, 2008.

65

[18] A. V. Aho and J. D. Ullman, Principles of Compiler Design (Addison-

Wesley Series in Computer Science and Information Processing). USA:

Addison-Wesley Longman Publishing Co., Inc., 1977.

[19] J. Kalojanov, M. Billeter, and P. Slusallek, “Two-level grids for ray tracing

on GPUs,” Computer Graphics Forum, vol. 30, pp. 307–314, 2011.

[20] A. Pérard-Gayot, J. Kalojanov, and P. Slusallek, “Gpu ray tracing using

irregular grids,” Computer Graphics Forum, vol. 36, no. 2, p. 477–486, 2017.

[21] J. Goldsmith and J. Salmon, “Automatic creation of object hierarchies for

ray tracing,” IEEE Computer Graphics and Applications, vol. 7, no. 5,

pp. 14–20, 1987.

[22] J. Bittner and V. Havran, “RDH: Ray distribution heuristics for construc-

tion of spatial data structures,” in Proceedings of the 25th Spring Conference

on Computer Graphics, SCCG ’09, p. 61–67, Association for Computing

Machinery, 2009.

[23] T. Aila, T. Karras, and S. Laine, “On quality metrics of bounding volume

hierarchies,” in Proceedings of the 5th High-Performance Graphics Confer-

ence, HPG ’13, (New York, NY, USA), p. 101–107, Association for Com-

puting Machinery, 2013.

[24] I. Wald, “On fast construction of SAH-based bounding volume hierarchies,”

in Proceedings of the IEEE Symposium on Interactive Ray Tracing, RT ’07,

(Washington, DC, USA), pp. 33–40, IEEE Computer Society, 2007.

[25] P. Ganestam, R. Barringer, M. Doggett, and T. Akenine-Möller, “Bonsai:

Rapid bounding volume hierarchy generation using mini trees,” Journal of

Computer Graphics Techniques, vol. 4, no. 3, pp. 23–42, 2015.

[26] D. J. MacDonald and K. S. Booth, “Heuristics for Ray Tracing Using Space

Subdivision,” The Visual Computer, vol. 6, no. 3, pp. 153–166, 1990.

[27] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding volume

hierarchies,” in Proceedings of the High-Performance Graphics, HPG ’09,

(New York, NY, USA), pp. 7–13, ACM, 2009.

66

[28] S. Popov, I. Georgiev, R. Dimov, and P. Slusallek, “Object partitioning

considered harmful: Space subdivision for bvhs,” in Proceedings of the Con-

ference on High Performance Graphics 2009 (HPG ’09), pp. 15–22, 01 2009.

[29] D. Wodniok and M. Goesele, “Construction of bounding volume hierar-

chies with SAH cost approximation on temporary subtrees,” Computers &

Graphics, vol. 62, pp. 41–52, 2017.

[30] I. Wald, C. Benthin, and P. Slusallek, “Distributed interactive ray tracing

of dynamic scenes,” in Proceedings of the IEEE Symposium on Parallel and

Large-Data Visualization and Graphics, PVG ’03, pp. 77–85, 2003.

[31] C. Benthin, S. Woop, I. Wald, and A. T. Áfra, “Improved two-level bvhs

using partial re-braiding,” in Proceedings of High Performance Graphics,

HPG ’17, (New York, NY, USA), Association for Computing Machinery,

2017.

[32] S. Woop, C. Benthin, I. Wald, G. Johnson, and E. Tabellion, “Exploiting

local orientation similarity for efficient ray traversal of hair and fur,” in

Proceedings of the High-Performance Graphics, HPG ’14, 2014.

[33] I. Wald, N. Morrical, S. Zellmann, L. Ma, W. Usher, T. Huang, and V. Pas-

cucci, “Using Hardware Ray Transforms to Accelerate Ray/Primitive In-

tersections for Long, Thin Primitive Types,” Proceedings of the ACM on

Computer Graphics and Interactive Techniques (Proceedings of High Per-

formance Graphics), 2020.

[34] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,

“Fast BVH construction on GPUs,” Computer Graphics Forum, vol. 28,

pp. 375–384, 2009.

[35] G. Morton, A Computer Oriented Geodetic Data Base and a New Tech-

nique in File Sequencing. International Business Machines Company,

1966. Online, Available at https://books.google.co.uk/books?id=

9FFdHAAACAAJ, Access date: 29 June 2022.

67

https://books.google.co.uk/books?id=9FFdHAAACAAJ
https://books.google.co.uk/books?id=9FFdHAAACAAJ

[36] J. Pantaleoni and D. Luebke, “HLBVH: Hierarchical LBVH construction

for real-time ray tracing of dynamic geometry,” in Proceedings of High Per-

formance Graphics, HPG ’10, pp. 87–95, 2010.

[37] M. Vinkler, J. Bittner, and V. Havran, “Extended morton codes for high

performance bounding volume hierarchy construction,” in Proceedings of

High Performance Graphics, HPG ’17, (New York, NY, USA), Association

for Computing Machinery, 2017.

[38] I. Wald, J. Amstutz, and C. Benthin, “Robust iterative find-next-hit ray

traversal,” in Proceedings of the Symposium on Parallel Graphics and Visu-

alization, EGPGV ’18, (Goslar, DEU), p. 25–32, Eurographics Association,

2018.

[39] I. Wald, C. Benthin, and S. Boulos, “Getting rid of packets - efficient simd

single-ray traversal using multi-branching bvhs -,” in Proceedings of the

IEEE Symposium on Interactive Ray Tracing, RT ’08, pp. 49–57, 2008.

[40] A. S. Glassner, “Space subdivision for fast ray tracing,” IEEE Computer

Graphics and Applications, vol. 4, no. 10, pp. 15–24, 1984.

[41] K.-Y. Whang, J.-W. Song, J.-W. Chang, J.-Y. Kim, W.-S. Cho, C.-M.

Park, and I.-Y. Song, “Octree-R: An adaptive octree for efficient ray trac-

ing,” IEEE Transactions on Visualization and Computer Graphics, vol. 1,

pp. 343–349, 1996.

[42] V. Havran and J. Bittner, “On improving kd tree for ray shooting,” Journal

of WSCG, vol. 10, pp. 209–216, 2002.

[43] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and

on doing that in O(N log N),” in Proceedings of the IEEE Symposium on

Interactive Ray Tracing, pp. 61–69, 2006.

[44] B. Choi, R. Komuravelli, V. lu, H. Sung, R. Jr, S. Adve, and J. Hart,

“Parallel SAH k-D tree construction,” in Proceedings of the Conference on

High Performance Graphics, HPG ’10, pp. 77–86, 2010.

68

[45] E. Haines and D. Greenberg, “The light buffer: A shadow-testing acceler-

ator,” IEEE Computer Graphics and Applications, vol. 6, no. 9, pp. 6–16,

1986.

[46] W. Hunt and W. Mark, “Adaptive Acceleration Structures in Perspective

Space,” in Proceedings of the IEEE Symposium on Interactive Ray Tracing,

RT ’08, pp. 11–17, 2008.

[47] W. Hunt and W. Mark, “Ray-specialized Acceleration Structures for Ray

Tracing,” in Proceedings of the IEEE Symposium on Interactive Ray Trac-

ing, RT ’08, pp. 3–10, 2008.

[48] K. Klimaszewski and T. Sederberg, “Faster ray tracing using adaptive

grids,” IEEE Computer Graphics and Applications, vol. 17, no. 1, pp. 42–51,

1997.

[49] D. Lin, K. Shkurko, I. Mallett, and C. Yuksel, “Dual-split trees,” in Pro-

ceedings of the Symposium on Interactive 3D Graphics and Games, I3D ’19,

(New York, NY, USA), ACM Press, 2019.

[50] D. Lin, E. Vasiou, C. Yuksel, D. Kopta, and E. Brunvand, “Hardware-

accelerated dual-split trees,” Proceedings of the ACM on Computer Graph-

ics and Interactive Techniques, vol. 3, no. 2, Article No. 20, 21 pages,

pp. 20:1–20:21, 2020.

[51] J. Arvo and D. Kirk, “Fast ray tracing by ray classification,” ACM Com-

puter Graphics (Proceedings of SIGGRAPH ’87, vol. 21, no. 4, pp. 55–64,

1987.

[52] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray tracing algo-

rithm,” ACM Transactions on Graphics, vol. 24, no. 3, p. 1176–1185, 2005.

[53] T. Ize, I. Wald, and S. G. Parker, “Ray tracing with the bsp tree,” in

Proceedings of the IEEE Symposium on Interactive Ray Tracing, pp. 159–

166, 2008.

[54] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray trac-

ing,” in Proceedings of Eurographics ’87, pp. 3–10, 1987.

69

[55] B. Arnaldi, T. Priol, and K. Bouatouch, “A new space subdivision method

for ray tracing CSG modelled scenes,” The Visual Computer, vol. 3, no. 2,

pp. 98–108, 1987.

[56] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh generator,”

ACM Transactions on Mathematical Software, vol. 41, no. 2, Article no. 11,

36 pages, 2015.

[57] A. Bowyer, “Computing Dirichlet tessellations,” The Computer Journal,

vol. 24, no. 2, pp. 162–166, 1981.

[58] D. F. Watson, “Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes,” The Computer Journal, vol. 24, no. 2,

pp. 167–172, 1981.

[59] H. Edelsbrunner and N. R. Shah, “Incremental topological flipping works

for regular triangulations,” Algorithmica, vol. 15, p. 223–241, 1996.

[60] J. R. Shewchuk, “Adaptive precision floating-point arithmetic and fast ro-

bust geometric predicates,” Discrete & Computational Geometry, vol. 18,

pp. 305–363, 1996.

[61] M. Maria, S. Horna, and L. Aveneau, “Efficient ray traversal of constrained

Delaunay tetrahedralization,” in Proceedings of the 12th International Joint

Conference on Computer Vision, Imaging and Computer Graphics Theory

and Applications, vol. 1 of VISIGRAPP ’17, pp. 236–243, 2017.

[62] M. Maria, S. Horna, and L. Aveneau, “Constrained convex space partition

for ray tracing in architectural environments,” Computer Graphics Forum,

vol. 36, no. 1, pp. 288–300, 2017.

[63] M. Maria, S. Horna, and L. Aveneau, “Topological space partition for fast

ray tracing in architectural models,” in Proceedings of the International

Conference on Computer Graphics Theory and Applications, GRAPP ’14,

pp. 1–11, 2014.

70

[64] C. T. Silva, J. S. B. Mitchell, and A. E. Kaufman, “Fast rendering of

irregular grids,” in Proceedings of the Symposium on Volume Visualization,

pp. 15–22, 1996.

[65] C. T. Silva and J. S. B. Mitchell, “The lazy sweep ray casting algorithm for

rendering irregular grids,” IEEE Transactions on Visualization and Com-

puter Graphics, vol. 3, no. 2, pp. 142–157, 1997.

[66] H. Berk, C. Aykanat, and U. Gudukbay, “Direct volume rendering of un-

structured grids,” Comp. & Graph., vol. 27, pp. 387–406, 2003.

[67] K. Koyamada, “Fast traverse of irregular volumes,” in Visual Computing

(T. L. Kunii, ed.), (Tokyo), pp. 295–311, Springer Japan, 1992.

[68] M. P. Garrity, “Raytracing irregular volume data,” in Proceedings of the

Workshop on Volume Visualization, VVS ’90, (New York, NY, USA),

pp. 35–40, ACM, 1990.

[69] S. Ribeiro, A. Maximo, C. Bentes, A. Oliveira, and R. Farias, “Memory-

aware and efficient ray-casting algorithm,” in Proceedings of the XX

Brazilian Symposium on Computer Graphics and Image Processing, SIB-

GRAPI ’07, pp. 147–154, 2007.

[70] A. Maximo, S. Ribeiro, C. Bentes, A. Oliveira, and R. Farias, “Memory ef-

ficient GPU-based ray casting for unstructured volume rendering,” in Pro-

ceedings of the IEEE/ EG Symposium on Volume and Point-Based Graph-

ics, SPBG ’08, (Goslar, DEU), pp. 155–162, Eurographics Assoc., 2008.

[71] G. Marmitt and P. Slusallek, “Fast ray traversal of tetrahedral and hexahe-

dral meshes for direct volume rendering,” in Proceedings of the Eighth Joint

Eurographics / IEEE VGTC Symposium on Visualization, EUROVIS ’06,

(Aire-la-Ville, Switzerland), pp. 235–242, Eurographics Assoc., 2006.

[72] N. Platis and T. Theoharis, “Fast ray-tetrahedron intersection using

Plücker coordinates,” Journal of Graphics Tools, vol. 8, no. 4, pp. 37–48,

2003.

71

[73] C. Garth and K. I. Joy, “Fast, memory-efficient cell location in unstructured

grids for visualization,” IEEE Transactions on Visualization and Computer

Graphics, vol. 16, no. 6, pp. 1541–1550, 2010.

[74] R. Fellegara, L. D. Floriani, P. Magillo, and K. Weiss, “Tetrahedral trees: A

family of hierarchical spatial indexes for tetrahedral meshes,” ACM Trans-

actions on Spatial Algorithms and Systems, vol. 6, no. 4, Article no. 23, 34

pages, 2020.

[75] P. Sinha, “A memory-efficient doubly linked list,” Linux Journal, vol. 2005,

no. 129, p. 10, 2005.

[76] A. Mebarki, “XOR-based compact triangulations,” Computing & Informat-

ics, vol. 37, pp. 367–384, 2018.

[77] T. Duff, J. Burgess, P. Christensen, C. Hery, A. Kensler, M. Liani, and

R. Villemin, “Building an orthonormal basis, revisited,” Journal of Com-

puter Graphics Techniques, vol. 6, no. 1, pp. 1–8, 2017.

[78] A. Jacobson, D. Panozzo, et al., “libigl: A simple C++ geometry processing

library,” 2018. Online, Available at https://libigl.github.io/, Access

date: 29 June 2022.

[79] B. O. Community, “Blender - a 3D modelling and rendering package,” 2018.

Online, Available at http://www.blender.org, Access date: 29 June 2022.

[80] F. Hwang, D. Richards, and P. Winter, The Steiner tree problem. Annals

of Discrete Mathematics, Burlington, MA: Elsevier, 1992.

[81] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computa-

tional Geometry: Algorithms and Applications. Springer-Verlag, second ed.,

2000.

[82] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” IEEE Transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[83] D. Hilbert, “Ueber die stetige abbildung einer line auf ein flächenstück,”

Mathematische Annalen, vol. 38, no. 3, pp. 459–460, 1891.

72

https://libigl.github.io/
http://www.blender.org

[84] J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime ray tracing

on GPU with BVH-based packet traversal,” in Proceedings of the IEEE

Symposium on Interactive Ray Tracing, RT ’07, (Washington, DC, USA),

pp. 113–118, IEEE Computer Society, 2007.

[85] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo, “Tetrahe-

dral meshing in the wild,” ACM Transactions on Graphics, vol. 37, no. 4,

pp. Article no. 60, 14 pages, 2018.

[86] NVIDIA, “NVIDIA TURING GPU ARCHITECTURE..” Online, Avail-

able at https://images.nvidia.com/aem-dam/en-zz/Solutions/

design-visualization/technologies/turing-architecture/

NVIDIA-Turing-Architecture-Whitepaper.pdf, Access date: 29

June 2022.

[87] NVIDIA, “NVIDIA OptiX 6.0–Programming Guide..” Online, Avail-

able at https://raytracing-docs.nvidia.com/optix7/guide/index.

html, Access date: 29 June 2022.

[88] A. Sahistan, “Hardware-accelerated direct visualization of unstructured vol-

umetric meshes,” Master’s thesis, Department of Computer Engineering,

Bilkent University, 2022.

[89] S. Demirci, “Bounding volume hierarchy-tetrahedralization hybrid acceler-

ation structure for ray tracing,” Master’s thesis, Department of Computer

Engineering, Bilkent University, 2020.

[90] The CGAL Project, CGAL User and Reference Manual. CGAL Editorial

Board, 5.4.1 ed., 2022. Online, Available at https://doc.cgal.org/5.4.

1/Manual/packages.html, Access date: 29 June 2022.

[91] Z. Erkoç, “Memory-efficient constrained delaunay tetrahedralization of

large three-dimensional triangular meshes,” Master’s thesis, Department

of Computer Engineering, Bilkent University, 2022.

73

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://raytracing-docs.nvidia.com/optix7/guide/index.html
https://raytracing-docs.nvidia.com/optix7/guide/index.html
https://doc.cgal.org/5.4.1/Manual/packages.html
https://doc.cgal.org/5.4.1/Manual/packages.html

[92] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington, and H. Wang, “Control

volume meshes using sphere packing: Generation, refinement and coarsen-

ing,” in Proceedings of the 5th International Meshing Roundtable, pp. 47–61,

1996.

[93] Y. Hu, T. Schneider, X. Gao, Q. Zhou, A. Jacobson, D. Zorin, and

D. Panozzo, “TriWild: Robust triangulation with curve constraints,” ACM

Trans. Graph., vol. 38, no. 4, pp. Article no. 52, 15 pages, 2019.

[94] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020.

Online, Available at https://developer.nvidia.com/cuda-toolkit, Ac-

cess date: 29 June 2022.

[95] C. Guillemet, “ImGuizmo: Immediate mode 3D gizmo for scene editing

and other controls based on Dear Imgui.” Online, Available at https:

//github.com/CedricGuillemet/ImGuizmo, Access date: 29 June 2022.

[96] O. Cornut, “Dear ImGui: Bloat-free Graphical User interface for C++

with minimal dependencies.” Online, Available at https://github.com/

ocornut/imgui, Access date: 29 June 2022.

[97] S. Kaslev, “gl3w: Extension wrangler for OpenGL,” 2017. Online, Available

at https://github.com/skaslev/gl3w, Access date: 29 June 2022.

[98] Camilla Löwy, Marcus Geelnard, “GLFW: an Open Source, multi-platform

library for OpenGL, OpenGL ES and Vulkan development on the desktop.”

Online, Available at https://www.glfw.org, Access date: 29 June 2022.

[99] G-Truc, “OpenGL Mathematics (GLM),” 2020. Online, Available at

https://github.com/g-truc/glm, Access date: 29 June 2022.

[100] G. Chereau, Z. Shahaf, and A. Belt, “Noc File Dialog: A portable library to

create open and save dialogs on Linux, OS X and Windows,” 2019. Avail-

able at https://github.com/guillaumechereau/noc/blob/master/noc_

file_dialog.h, Access date: 29 June 2022.

74

https://developer.nvidia.com/cuda-toolkit
https://github.com/CedricGuillemet/ImGuizmo
https://github.com/CedricGuillemet/ImGuizmo
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://github.com/skaslev/gl3w
https://www.glfw.org
https://github.com/g-truc/glm
https://github.com/guillaumechereau/noc/blob/master/noc_file_dialog.h
https://github.com/guillaumechereau/noc/blob/master/noc_file_dialog.h

[101] S. T. Barrett, “STB: single-file public domain libraries for C/C++.” Online,

Available at https://github.com/nothings/stb, Access date: 29 June

2022.

[102] S. Fujita, “tinyOBJLoader: Tiny but powerful single file Wavefront

obj loader.” Online, Available at https://github.com/tinyobjloader/

tinyobjloader, Access date: 29 June 2022.

75

https://github.com/nothings/stb
https://github.com/tinyobjloader/tinyobjloader
https://github.com/tinyobjloader/tinyobjloader

Appendix A

Ray-tracing Toolkit

We built a raytracer, called Neptun, with editing capabilities to build and interact

with 3-D scenes and render them.

A.1 Editor

Neptun editor has the following capabilities:

1. User-friendly interface to create and edit 3-D scenes. It can export .obj

files and supports the generation of procedural shapes such as grids and

icosahedrons with different subdivision levels. As found in popular 3-D

content generation tools, those shapes can be selected visually and manip-

ulated using transformation gizmos. Inspector windows allow the user to

edit properties of scene objects such as position, material colors, and light

intensity.

2. Build and analyze different accelerators. Neptun can construct different

types of accelerators (BVH, k -d trees and tetrahedral mesh-based accel-

erators). The leaves and nodes of these accelerators can be visualized

76

separately from the scene objects for better understanding and analysis.

Parameters of these accelerators can be modified using the user interface.

3. Render images and generate diagnostic images. Neptun can render 3-D

scenes using different types of accelerators and possibly different rendering

techniques such as basic raycasting, recursive ray tracing, or simple path

tracing. Figure A.1 top part shows scene objects and the tetrahedral mesh-

based accelerator for a scene. It can also generate diagnostic images to

analyze the efficiency of the acceleration structures (cf. Figure A.1 bottom

part). For tree-based accelerators, it creates a diagnostic image out of the

tree nodes traversed. It creates the diagnostic images for tetrahedral meshes

using the number of traversed tetrahedra per pixel.

4. Neptun is cross-platform, meaning it can be built and used in Windows,

Linux, and macOS. Neptun also can utilize the GPU for accelerating ray-

intersection tests. GPU support is only available through CUDA [94] plat-

form.

A.2 Accelerator Interface

Accelerator interfaces provide a convenient way to use accelerator functions inde-

pendent of the accelerator structure underneath. This interface supports single,

and packet ray traversal queries and provides an output format to retrieve and

process traversal data. Figure A.2 shows the Unified Modeling Language (UML)

diagram for the accelerator interface that shows the relationship between accel-

eration structure classes.

A.3 Command-line Interface

Neptun can be used in headless mode, meaning that it can be run without needing

a user interface. Such a mode is useful for experiments and benchmarks. An

77

Figure A.1: Top: Neptun editor showing scene objects and the tetrahedral mesh-
based accelerator built for the scene. Bottom: Neptun editor showing a scene
along with the rendered image and accompanying diagnostic image showing the
rendering heatmap (based on the number of traversal steps).

78

<<Interface>>
Accelerator

+ build(primitives: Triangle*, int size):bool
+ intersect1(ray_hit: RayHit<1>): void
+ intersect4(ray_hit4: RayHit<4>): void
+ intersect8(ray_hit8: RayHit<8>): void
+ intersect16(ray_hit16: RayHit<16>): void
+ intersectN(ray_hit_n: RayHitN): void
+ intersect1_stats(ray_hit: RayHit, stats: Stats) : void
+ get_memory_size(): int

RayHit

+ray: Ray<N>
+hit: Hit<N>

N: int

Ray

+org_x: float[N]
+org_y: float[N]
+org_z: float[N]
+dir_x: float[N]
+dir_y: float[N]
+dir_z: float[N]
+t_max: float[N]

 +prev_tet_index: int[N]
 +next_tet_index: int[N]
 +tet_vertices: int[N][3]

N: int

Hit

+u: float[N]
+v: float[N]
+nx: float[N]
+ny: float[N]
+nz: float[N]
+primitive_id: int[N]
+geometry_id: int[N]

N: int

Bvh

+ root: BvhNode

GridTetMesh

+ vertices: vec3[]
+ faces: Face[]

+ sort(): void
+ get_weight() : float
+ find_tet(): int

TetMesh32

+ tetrahedra: Tet32[]

TetMesh20

+ tetrahedra: Tet20[]

TetMesh16

+ tetrahedra: Tet16[]

KdTree

+ root: KdNode

Figure A.2: Unified Modeling Language (UML) diagram of the accelerator inter-
face.

external scripting language can be used to invoke Neptun commands through the

command line and can perform many experiments in a single run. For convenience

and reliability, we use extensive Python scripts to manage many tests for detailed

comparison. The command-line interface allows the following parameters to be

specified by the user.

Scene file: Input file path of the scene to be rendered. We use a custom scene

format to describe the 3-D scene. If available, it is possible to use a cached

version of the accelerator.

Accelerator : Specifies the ray tracing accelerator type: Tetrahedral mesh, k -d

tree or Bounding Volume Hierarchy (BVH). Tetrahedral mesh-based accel-

erators have sub-types such as TetMesh32 and TetMesh16.

Output file: Specifies the output file path for the rendered images. The resulting

output is often used to check for differences that might point to the problems

in different techniques.

79

Test : Instructs Neptun to output diagnostic images used to analyze the accel-

erator performance. The resulting diagnostic images show the number of

intersected nodes using a heatmap for different types of accelerators used.

Resolution: Resolution of the rendered image. By default, we use 1920×1440
pixels.

Thread-count : Number of threads to be used by the rendered. By default,

all available threads are used. Each thread is assigned to render the next

available tile in the image.

Repetition count : For more reliable results, Neptun can be instructed to render

a scene many times. For rendering, it is often advised to use the shortest

render time as a rule of thumb since it is more robust to the effect of other

processes running on the system that uses the computing resources.

Sorting : This is used to reorder the tetrahedral mesh data (points and tetra-

hedra) using a space-filling curve. Neptun supports the Hilbert Curve and

the Morton curve.

Tetmesh cache: Tells Neptun to use a prebuilt tetrahedral mesh-based accel-

erator when rendering a scene. This option reduces the time needed to

evaluate tetrahedral mesh-based accelerators.

Quality : Specifies the tetrahedral mesh quality parameter. This number dic-

tates the maximum-radius-edge ratio of the tetrahedrons in the resulting

tetrahedral mesh.

Split-triangles : If enabled, the tetrahedralization method can modify and sub-

divide constrained faces to improve tetrahedral mesh quality. This is anal-

ogous to having spatial splits in BVHs.

Use-gpu: If enabled, Neptun will use GPU accelerated ray intersection tests.

Right now, only CUDA-capable GPUs are supported in this mode.

80

A.4 Third-party Libraries

Neptun rendering tool relies on the following libraries for various purposes.

ImGuizmo — Immediate mode 3D gizmo for scene editing and other controls

based on Dear Imgui [95]: This library provides a convenient and straight-

forward way of creating transform manipulation gizmos for 3-D applications

that use Dear ImGui [96].

gl3w — Simple OpenGL core profile loading [97]: gl3w provides an easy way to

use the functionality offered by the OpenGL core profile specification.

GLFW — An OpenGL library [98]: GLFW is an Open Source, multi-platform

library for OpenGL, OpenGL ES, and Vulkan development on the desktop.

It provides a simple Application Programming Interface (API) for creating

windows, contexts, and surfaces, receiving input and events.

OpenGL Mathematics (GLM) [99]: GLM is a header-only C++ mathemat-

ics library for graphics software based on the OpenGL Shading Language

(GLSL) specifications.

Dear ImGUI — Bloat-free graphical user interface library for C++ (GLM) [95]:

GLM is a header-only C++ mathematics library for graphics software based

on the OpenGL Shading Language (GLSL) specifications.

noc file dialog (noc) [100]: noc is a portable library to create open and save

dialogs on Linux, OS X, and Windows.

STB Image (GLM) [101]: GLM is a header-only C++ mathematics library

for graphics software based on the OpenGL Shading Language (GLSL)

specifications.

TetGen [56]: TetGen is a tetrahedralization library that can generate Delaunay

tetrahedralization, Voronoi diagram, and convex hull for three-dimensional

point sets. It can generate the constrained Delaunay tetrahedralizations and

quality tetrahedral meshes for three-dimensional domains with piecewise

linear boundaries.

81

tinyOBJ Loader (GLM) [102]: Tiny but powerful single file wavefront obj loader,

written in C++03. No dependency except for C++ STL. It can parse over

10M polygons with moderate memory and time.

82

	Introduction
	Acceleration Structures for Ray Tracing
	Tetrahedral Meshes as Acceleration Structures
	Publications
	Organization of the Thesis

	Background and Related Work
	Acceleration Structures
	Grids
	BVHs
	Octrees
	k-d trees
	Ray-specialized Acceleration Structures
	Hybrid Structures
	Other approaches

	Tetrahedral Mesh Construction and Traversal
	Ray-casting for Direct Volume Rendering

	Compact Acceleration Structures for Ray-tracing
	Tetrahedral Mesh Representation
	Tetrahedron Traversal
	Tetrahedron Traversal for Tet20 and Tet16 Representations
	Point Projection Using Specialized Basis
	Handling Common Ray-tracing Operations
	Accelerator Construction
	Early Ray Termination
	Half-space-based Early Ray Termination
	Portal-based Early Ray Termination

	Minimum Weight Triangulation
	Intersecting Geometry
	Steiner Points
	Hidden-tetrahedra Removal

	Reordering Tetrahedral Mesh Data
	GPU Implementation
	Experimental Results

	Applications
	Volume Rendering
	Method Overview

	Two-level Hybrid Acceleration Structures
	BVH-Tetrahedralization Hybrid Structure
	Top-Down BTH Construction
	BTH Nearest-Hit Traversal
	Tetrahedralization Nearest-Hit Cost Heuristic
	Handling Animated Scenes

	Point Location Queries in Two-dimensional (2-D) and Three-dimensional (3-D) Space
	Point Location Queries in a Triangulation by Stabbing
	Point Location Queries in a Triangulation Using Flattened Tetrahedral Mesh

	Tetrahedralization of Very Large Meshes

	Conclusions and Future Research Directions
	Bibliography
	Appendix
	Ray-tracing Toolkit
	Editor
	Accelerator Interface
	Command-line Interface
	Third-party Libraries

