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ABSTRACT

PERSONALITY TRANSFER IN HUMAN
ANIMATION: COMPARING HANDCRAFTED AND

DATA-DRIVEN APPROACHES

Arçin Ülkü Ergüzen

M.S. in Computer Engineering

Advisor: U§ur Güdükbay

September 2024

The ability to perceive and alter personality traits in animation has signi�cant im-

plications for �elds such as character animation and interactive media. Research

and developments that use systematic tools or machine learning approaches show

that personality can be perceived from di�erent modalities such as audio, images,

videos, and motions. Traditionally, handcrafted frameworks have been used to

modulate motion and alter perceived personality traits. However, deep learning

approaches also o�er the potential for more nuanced and automated personality

augmentation than handcrafted approaches. To address this evolving landscape,

we compare the e�cacy of handcrafted models with deep-learning models in alter-

ing perceived personality traits in animations. We examined various approaches

for personality recognition, motion alteration, and motion generation. We de-

veloped two methods for modulating motions to alter OCEAN personality traits

based on our �ndings. The �rst method is a handcrafted tool that modi�es bone

positions and rotations using Laban Movement Analysis (LMA) parameters. The

second method involves a deep-learning model that separates motion content from

personality traits. We could change the overall animation by altering the person-

ality traits through this model. These models are evaluated through a three-part

user study, revealing distinct strengths and limitations in both approaches.

Keywords: computer animation, Big Five Personality Traits, motion modulation,

Laban Movement Analysis, deep learning.
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ÖZET

�NSAN AN�MASYONUNDA K���L�K AKTARIMI:
EL YAPIMI VE VER� ODAKLI YAKLA�IMLARIN

KAR�ILA�TIRILMASI

Arçin Ülkü Ergüzen

Bilgisayar Mühendisli§i, Yüksek Lisans

Tez Dan�³man�: U§ur Güdükbay

Eylül 2024

Animasyondan ki³ilik özelliklerini alg�lama ve de§i³tirme becerisi, karakter ani-

masyonu ve interaktif medya gibi alanlarda önemli çal�³malara önayak olmak-

tad�r. Sistematik araçlar veya makine ö§renmesi yakla³�mlar� kullanan ara³t�r-

malar ve geli³meler, ki³ili§in ses, resim, video ve hareket gibi farkl� modalite-

lerden alg�lanabilece§ini ortaya koymaktad�r. Hareket ayarlamak ve alg�lanan

ki³ilik özelliklerini de§i³tirmek için geleneksel olarak el ile olu³turulmu³ sis-

temler kullan�lmaktad�r. Ancak derin ö§renme yakla³�mlar�, daha ayr�nt�l� ve

otomatikle³tirilmi³ ki³ilik geli³tirme olanaklar� sunmaktad�r. Bu geli³mekte olan

konuya dikkat çekmek için el ile olu³turulmu³ modellerle derin ö§renme model-

lerini, animasyonlarda alg�lanan ki³ilik özelli§ini de§i³tirme verimlili§i üzerinden

kar³�la³t�r�lm�³t�r. Ki³ilik tan�ma, hareket de§i³imi ve hareket olu³turma gibi

çe³itli yakla³�mlar incelenmi³tir. Bulgulara dayanarak OCEAN ki³ilik özel-

liklerini de§i³tirmek için hareketleri yönlendirirken kullan�labilecek iki yöntem

geli³tirilmi³tir. �lk yöntem, Laban Hareket Analizi (LMA) parametrelerini kulla-

narak kemik pozisyonlar�n� ve rotasyonlar�n� de§i³tiren, el ile olu³turulmu³ bir

araçt�r. �kinci yöntem, hareket içeri§ini ki³ilik özelliklerinden ay�ran bir de-

rin ö§renme modelidir. Ki³ilik özellikleri bu modelle de§i³tirilerek animasyonun

geneli de§i³tirilebilmi³tir. Bu modeller üç bölümden olu³an bir kullan�c� çal�³-

mas�yla de§erlendirilmi³, iki yakla³�m�n da güçlü yanlar� ve k�s�tlamalar� ortaya

konmu³tur.

Anahtar sözcükler : bilgisayar animasyonu, Be³ Büyük Ki³ilik Özelli§i, hareket

modulasyonu, Laban Hareket Analizi, derin ö§renme.
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Chapter 1

Introduction

Creating animated characters with distinct and recognizable personality traits is

a signi�cant challenge in animation, interactive media, and virtual agents. As

characters become lifelike, there is a growing need for these agents to express

unique personalities through their motions and behaviors. Personality traits are

traditionally portrayed through body movements, gestures, and facial expressions.

Being able to alter the personality of animations can enrich the user experience,

making interactions more engaging and believable.

1.1 Context and Motivation

The ability to model and modulate the motion of animations has grown sig-

ni�cantly, particularly with the rise of machine-learning techniques. Some of

these methods ([1, 2, 3, 4]) enable modulation across various animation styles.

However, no existing data-driven framework can account for the diverse varia-

tions in personality for motions. Previous works, such as [5] and [6], have used

handcrafted methods to modify characters' perceived personalities. Techniques

like Laban Movement Analysis (LMA) provide structured ways to manually ad-

just parameters, such as E�ort and Shape Quality, to subtly in�uence how a
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character's personality is perceived. Despite this, traditional methods are often

labor-intensive and lack scalability.

With the advancements in deep learning, we have seen that the personality of

humans can also be predicted from motion, as shown in [7, 8]. By modulating

these predicted personalities, deep learning methods can also in�uence motion

in animations and move beyond the constraints of handcrafted techniques. The

motivation for this thesis lies in understanding the e�cacy of these modern data-

driven techniques relative to established handcrafted methods and exploring their

potential to enhance personality transfer in animated characters.

1.2 Introducing the Approaches

This thesis examines two main approaches to transferring personality traits in

animation. The �rst is a handcrafted method, which utilizes Laban Movement

Analysis to modify animations based on prede�ned rules for movement. Adjust-

ing LMA's E�ort parameters allows the handcrafted approach to alter character

motion systematically to re�ect traits of the OCEAN personality model.

The second approach is data-driven, leveraging deep learning techniques to

separate motion content from personality traits. It o�ers an automated way to

transfer personality traits into character movements. The deep learning model

decouples the base motion from the personality and modulates the animation

through a learned latent space, o�ering the potential for more precise and scalable

alterations.
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1.3 Contributions

The contributions of this thesis are threefold:

� Development of a handcrafted tool: We present a motion modulation tool

based on LMA parameters that allows animators to manually adjust ani-

mations to re�ect di�erent personality traits.

� Implementation of a data-driven model: A deep learning model that sepa-

rates motion content from personality traits is introduced, enabling auto-

matic and scalable personality transfer in animation.

� Comprehensive evaluation: We conduct three di�erent user studies to com-

pare the e�cacy of the handcrafted and data-driven approaches, providing

insights into the strengths and limitations of each method in altering per-

ceived personality traits in animations.

1.4 Organization of the Thesis

Following the introduction, Chapter 2 summarizes the necessary background, in-

cluding the personality model, movement analysis model, and related works in

personality recognition and modulation in animation. Chapter 3 explains the

methodology, covering the datasets in this �eld of research and implemented

architectures and detailing the process for both handcrafted and data-driven per-

sonality transfer. Chapter 4 elaborates on the evaluation process, describing the

design of each user study and analyzing the results of the motion modi�cation

techniques. Chapter 5 concludes the thesis by re�ecting on the �ndings, discussing

the limitations of the current approaches, and suggesting possible directions for

future research.
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Chapter 2

Background and Related Works

2.1 OCEAN Personality Model

Researchers have developed various trait-based theories for human personality

in the psychology literature. Some examples are Cattell Sixteen Personality

Factor [9], Hans Eysenck's psychoticism, extraversion and neuroticism [10], My-

ers�Briggs Type Indicator [11], and the OCEAN Personality Model [12]. Among

those, the OCEAN Personality Model has become the most commonly used model

for personality recognition in computation.

The OCEAN personality model, in other words, the Big Five personality traits,

describes personality under �ve broad dimensions, each representing a range be-

tween two extremes. These traits are Openness (O), Conscientiousness (C), Ex-

traversion (E), Agreeableness (A), and Neuroticism (N), the acronym for the word

�OCEAN.�

Each of the �ve personality traits is summarized in the following subsections.

Additionally, details on how each trait in�uences body movement are provided,

highlighting the connection between personality dimensions and physical expres-

sion.
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2.1.1 Openness

Openness represents a person's intellectual features, such as creativity, curiosity,

and imagination. A person with high openness may be adventurous, creative,

and more diverse, whereas individuals with low openness are typically more con-

ventional in their thinking and behavior. They prefer familiar routines and are

less interested in exploring new ideas or experiences.

Individuals high in openness often display more �uid, varied, and creative

movements. They might be more expressive, using broad gestures and open pos-

tures that convey curiosity and willingness to explore new ideas. Low openness

might result in more rigid and repetitive movements. The body language can ap-

pear reserved or closed-o�, with less willingness to engage in novel or spontaneous

actions.

2.1.2 Conscientiousness

Conscientiousness indicates the carefulness and dependability of the individual.

Conscientious people are more likely to be organized, self-disciplined, and reliable.

On the other hand, people with negative conscientiousness are more likely to be

clumsy, careless, and disordered.

High conscientiousness is often associated with precise, deliberate movements.

These individuals may exhibit controlled gestures, maintaining a structured pos-

ture that re�ects their discipline and reliability. Low conscientiousness might

lead to more careless or haphazard movements. The body language could seem

disorganized, lacking focus or attention to detail, re�ecting a more spontaneous

or chaotic approach.
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2.1.3 Extraversion

Extraversion describes the social side and outgoingness of humans. People with

positive extraversion, also known as extroverts, tend to be more outgoing, warm,

energetic, and optimistic. They are often cheerful and take action rather than

re�ecting profoundly. They prefer being around others since they focus more on

the outer world. Individuals with negative extraversion, called introverts, tend

to be shy, quiet, and gloomy. They remain passive to outside elements and enjoy

alone time. These make them less energetic and sad-looking from other people's

perspectives.

Extraverted individuals often have energetic and expansive movements. They

exhibit lively gestures, open postures, and a strong presence, showing enthusiasm

and social engagement. Low extraversion can lead to more contained and subtle

movements. The body language may be more restrained, with less emphasis on

outward expressions, re�ecting a preference for solitary or quiet environments.

2.1.4 Agreeableness

Agreeableness re�ects the cooperation skills of individuals and the harmony be-

tween them. People with positive agreeableness are kind, warm, and cooperative.

They can empathize more quickly and be more generous than the ones with

negative agreeableness. People with negative agreeableness are also prone to be

narcissistic and sel�sh. They lack empathy; thus, they tend to be more competi-

tive.

High agreeableness tends to manifest in warm, cooperative movements. These

individuals might display gentle gestures and relaxed postures, often mirroring

others' movements to show empathy and harmony. Low agreeableness could lead

to more assertive or even confrontational movements. The body language might

be more rigid or defensive, with gestures emphasizing personal boundaries or a

lack of concern for others' feelings.
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2.1.5 Neuroticism

The only trait where a person's personality is a�ected negatively while the trait

goes to the higher end of the extreme is neuroticism. It is based on the likelihood

of negative emotions in people. Individuals with high neuroticism may experience

anxiety, fear, loneliness, worry, envy, and similar dark emotions more frequently

than the ones with low neuroticism. Individuals who have low neuroticism can

sustain their emotional stability easily.

High neuroticism often correlates with tense and erratic movements. Individu-

als may exhibit nervous gestures, frequent shifts in posture, and an overall sense

of unease or restlessness in their body language. Low neuroticism (emotional

stability) is usually associated with calm and steady movements. The body lan-

guage may be relaxed, with smooth and controlled gestures re�ecting con�dence

and emotional balance.

2.2 Laban Movement Analysis

Laban Movement Analysis (LMA) is a theoretical model that aims to describe

and help understand human movement. The method is used in various areas,

such as dance, acting, sports, physical therapy, education, animation, and video

games. LMA was �rst introduced by Rudolf Laban and had some basic categories.

His students have changed the structure of these categories over the years. The

�nalized categories are Body, E�ort, Shape, and Space. Each individual combines

the rules under these categories to create the motions.

The Body category shows how humans can form and move their bodies. It is

also responsible for whether the body has moved independently or is in�uenced

by other parts to move. This category can show the limits of the performer.

The E�ort displays the intention behind the movement under more psycho-

logical and emotional aspects. For example, petting a cat gently and scrubbing

7



a pan are relatively close to each other since similar body parts are used in both

of these. However, these actions di�er signi�cantly in intention, control, and

dynamics. The E�ort category can be divided into four subcategories with two

opposite polarities:

The Space subcategory re�ects the focus and directionality of the movement. A

movement can be either direct or indirect. Direct movements are straightforward,

focused on one point, and explicit. In scrubbing a pan, the hand moves in a

determined, focused path to ensure thorough cleaning. The action can be labeled

as a direct move. On the other hand, indirect movements are �exible and can

have multiple directions. While petting a cat, the hand moves with a gentle,

�owing path, following the contours of the cat's body. Which means it is an

indirect move.

The Weight subcategory refers to the force or pressure behind the movement.

A movement can be either light or heavy. Light movements are gentle and delicate

and use minimal force. The initial example, petting the cat, is a light movement.

Opposite to light, heavy movements require more force and are more powerful.

Scrubbing the pan can be an example of solid movement since it requires much

force to clean it e�ectively.

The Flow subcategory concerns the continuity and �uidity of the movement.

A movement can be either bound or free. If a movement is bound, it is controlled,

contained, and restrained. The movement is bound in the scrubbing pan example,

with a sense of purpose and resistance against the grime. The movements that are

easy-going, unrestricted, and continuous are de�ned as free movements. Petting

the cat can be described as free since it is relaxed and continuous, with a sense

of ease and �uidity.

Finally, we have the Time subcategory. It is responsible for the speed or pace of

the movement. A movement can be either sudden or sustained. Sustained move-

ments are slow, drawn-out, and gradual, as in the petting example. There are

also sudden movements, which are quick, abrupt, and immediate. The counter-

example, scrubbing the pan, can be described as sudden because the movement

8



is quick and repetitive, focusing on removing the dirt e�ciently.

The third category under LMA is Shape. It helps in understanding not only the

static positions the body can take but also the dynamic processes of movement

and transformation. It provides a nuanced way to observe and describe how the

body interacts with itself and its surrounding space. The Shape can be broken

down into several aspects:

Form: The static shapes that a body can take. Wall-like, pin-like, ball-like, and

spiral-like are examples.

Modes of shape change: These modes describe how the body transforms its

shape concerning itself or the environment. There exist three modes: Shape

�ow, Directional, and Carving.

Shape qualities : These are the characteristics of how the body changes shape.

The movement can be called rising, sinking, spreading, enclosing, advanc-

ing, or retreating.

Space is the �nal category of LMA. It focuses on how the movement occupies,

navigates, and interacts with the space. Like other categories, Space can also be

divided into subcategories:

� Kinesphere: The personal space surrounding the body can be reached with-

out any steps. If the movements are close to the body, they are called

near-reach movements. If they somehow extend the body, they are called

mid-reach movements. Furthermore, if they extend to the farthest limits of

the body, then they are far-reaching movements.

� Spatial intent : It concerns the direction and the intention within the kine-

sphere. Based on this directional intention, a movement can either be cen-

tral, peripheral, or transverse.
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2.3 Personality Recognition

Personality recognition from visual and motion-based data has become an active

area of research, with various approaches demonstrating how human personality

traits can be inferred through advanced computational models. These methods

range from analyzing static images like sel�es to videos capturing facial expres-

sions to more dynamic cues such as body motion. Researchers have developed

sophisticated systems that can accurately predict personality traits by leverag-

ing multi-modal data. This section explores recent advancements in personality

recognition across di�erent media and modalities, focusing on how innovative sys-

tems capture the subtleties of human behavior to reveal underlying personality

characteristics.

2.3.1 Image-based Approaches

Guntuku et al. [13] explore the potential of using sel�es to predict personality

traits by examining basic visual features and intermediate cues. The researchers

collected sel�es and annotated them with emotional positivity, facial visibility,

and facial expressions. They utilized low-level visual features, including color

histograms, aesthetic principles (e.g., the rule of thirds, vanishing points), GIST

descriptors, Local Binary Patterns (LBP), and Fisher Encodings of SIFT, SURF,

and HOG descriptors to capture key elements of the images. These visual features

were then used to identify mid-level cues that re�ect traits from the Five-Factor

Model of personality. This study highlights speci�c aspects of sel�es, such as facial

expressions and camera angles, which indicate personality traits. The research

found that predictions of how others perceive an individual's personality were

more accurate than self-assessments, likely due to the ampli�cation of cues like

emotional positivity.

Fu and Zhang [14] applied an enhanced Active Shape Model (ASM) combined

with a Deep Belief Network (DBN) to identify personality traits based on facial
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features. They achieved higher accuracy in detecting facial landmarks by improv-

ing the traditional ASM algorithm with Gabor wavelets and gradient features.

After extracting facial features, the researchers trained a DBN model to classify

four major personality traits: extraversion, openness, agreeableness, and consci-

entiousness. This hybrid ASM-DBN approach yielded highly accurate results,

especially for agreeableness (90.63%) and conscientiousness (91.42%). The study

highlights the strong connection between facial structures and personality traits.

2.3.2 Video-based Approaches

Suen et al. [15] examine the use of convolutional neural networks (CNNs) for au-

tomatic personality recognition (APR) in asynchronous video interviews (AVIs).

Their system analyzes video recordings of real job applicants, extracting facial

features through the TensorFlow AI engine. The model successfully predicts the

Big Five personality traits based on facial expressions and nonverbal signals using

self-reported personality scores.

Critical features for personality prediction include tracking facial expressions

using 86 facial landmark points across video frames. The model is also pre-

trained in Inception-v3 and Dlib facial detection, focusing on grayscale images to

minimize background distractions. This semi-supervised learning system achieves

high accuracy (90.9-97.4%) without needing extensive labeled data.

Song et al. [16] introduce a novel method for automatic personality recognition

based on the temporal evolution of facial expressions rather than static frames or

short video clips, typically used in other models. Their approach adopts a self-

supervised learning framework to capture unique, person-speci�c facial dynamics

from videos. The system learns the temporal progression of facial actions through

the Rank Loss function without requiring personality labels, which allows the

model to learn from unlabelled video data.
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After freezing a U-net-style network, it is trained to capture broad facial dy-

namics. This type of network also uses intermediate �lters to extract individual-

speci�c information. The learned weights are used for predicting Big Five person-

ality traits, with experimental results showing that multi-scale facial dynamics

provide richer information for personality prediction than single-scale dynamics.

Combining data from di�erent tasks also boosts prediction accuracy.

Salam et al. [17] explore how personality a�ects engagement in human-robot

interactions using a fully automatic analysis system. The study involves two

human participants interacting with a humanoid robot in a triadic setting. In

these conversations, both human and robot personalities are automatically as-

sessed. The system extracts nonverbal behavioral cues and predicts participants'

Big Five personality traits. The model focuses on body movement, interpersonal

distance, and attention exchanged between the participants and the robot.

Additionally, the research investigates group engagement, analyzing how the

alignment (similarity or di�erence) of personalities between humans and robots

impacts collective engagement in the interaction. The results show that extro-

verted robots and participants increase engagement, while introverted interac-

tions lead to lower engagement. Incorporating personality predictions enhances

engagement classi�cation compared to using nonverbal features only.

2.3.3 Motion-based Approaches

Dotti et al. [8] propose a framework that integrates non-verbal behavioral cues

with contextual information from video data. This model uses spatio-temporal

motion descriptors to capture individual engagement, social group dynamics, and

environmental interactions. The model predicts Big Five personality traits by

encoding personal movement patterns and context-speci�c interactions. It was

tested on various datasets and outperformed previous methods in predicting per-

sonality in social and non-social settings.

The research conducted by Erkoc et al. [7] focuses on personality recognition

12



using skeletal data and Laban Movement Analysis (LMA). Their approach relies

on LMA e�ort features extracted from skeletal landmarks to analyze movement

style. These features were input into Graph Convolutional Networks (GCNs) to

predict Big Five Personality traits with a regression model. The study demon-

strated that LMA-based skeletal data signi�cantly improved personality predic-

tion, achieving state-of-the-art results on the UDIVA dataset [18]. Their method

also shows that personality can be accurately predicted using motion data alone,

avoiding the potential privacy issues of image-based and audio-based approaches.

2.3.4 Multimodal Approaches

In recent years, multi-modal personality recognition systems have emerged, which

combine data from various sources to improve prediction accuracy. Gürp�nar et

al. [19] developed a model that fused audio, scene, and face features to estimate

�rst impressions based on personality traits. Building on this, Aslan et al. [20] en-

hanced the multi-modal approach with more advanced feature fusion techniques.

They introduced a system to recognize apparent personality traits from videos

by integrating various modalities, such as facial features, environmental context,

audio, and transcripts. Their method employs modality-speci�c neural networks

that independently extract features from each modality, later fused at the feature

level for �nal predictions.

The model utilizes pre-trained CNNs, like ResNet and VGGish, to extract

high-level spatial and audio features, while Long Short-Term Memory (LSTM)

networks capture temporal dynamics. Training occurs in two stages. First, the

modality-speci�c subnetworks are trained separately. Afterwards, the overall

model is �ne-tuned using these pre-trained subnetworks. When evaluated on the

ChaLearn First Impressions V2 challenge dataset [21], this multi-modal approach

achieved state-of-the-art performance predicting Big Five personality traits.

Shao et al. [22] propose a method for personality recognition by simulating

person-speci�c cognitive processes using a graph-based neural network frame-

work. Unlike traditional approaches that directly predict personality traits from
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non-verbal behaviors like facial expressions or vocal tone, this method models the

subject's cognitive process through a person-speci�c CNN. This CNN captures

how an individual's personality in�uences their facial responses during interac-

tions based on the non-verbal behaviors of their conversational partner.

The system creates a graph that preserves the unique parameters of the person-

speci�c CNN and the geometrical relationships between its layers. This model

is then used to recognize the true personality of the target individual, achieving

better results than methods relying solely on automatic personality perception

(APP) based on external non-verbal behaviors.

2.4 Incorporating Personality into Virtual Agents

In recent years, considerable research has been conducted on incorporating per-

sonality into virtual agents to enhance their believability and e�ectiveness in

interactive environments. We discuss two prominent approaches in this domain.

Durupinar et al. [5] propose a perceptual framework that integrates the

OCEAN personality model into the body movements of virtual agents. By utiliz-

ing Laban Movement Analysis (LMA), they systematically map personality traits

to motion parameters, such as hand gestures and posture, creating agents with

distinct movement styles that re�ect speci�c personality characteristics. They

built a small motion capture database using a 12-camera Vicon system to achieve

this. The dataset includes nine actions: walking, knocking, pointing, throwing,

waving, picking up a pillow, lifting a heavy object, pushing a heavy object, and

punching. The collected data was cleaned with the assistance of a certi�ed move-

ment therapist. The cleaned motions were retargeted onto a neutral wooden

�gure to avoid bias stemming from body shape during personality perception.

These motions were then adjusted using LMA-based motion parameters. Us-

ing these motions, they conducted a user study via Amazon Mechanical Turk

(AMT) to map LMA parameters to the OCEAN personality traits. The authors

employed the Ten-Item Personality Inventory (TIPI) [23] to measure perceived
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personalities, where each question was rated on a 3-point Likert scale.

Their user study �ndings revealed a signi�cant correlation between OCEAN

traits and Laban E�ort elements and between Laban E�ort elements and mo-

tion parameters. To validate these results, the authors conducted an additional

user study. In this study, they used three di�erent actions, each modulated by

distinct personality traits, and transferred these motions to three di�erent charac-

ters. This variation in actions and characters ensured that the personality-driven

animations remained recognizable across diverse scenarios beyond the speci�c ac-

tions and models initially used�the results of the second study closely aligned

with their earlier �ndings.

Sonlu et al. [6] expand personality modulation beyond just movement. Their

framework integrates personality traits across multiple modalities, including di-

alogue, voice, facial expressions, and body motion. Their framework uses hand-

crafted dialogues that �t each personality type. For example, an agreeable char-

acter speaks more politely and enthusiastically, while a neurotic character tends

to show more hesitation and insecurity. The Watson Text-to-Speech API [24]

generates the agent's voice, and vocal features like pitch and intensity are ad-

justed to match the character's personality. The framework applies a similar

approach to PERFORM for the agent's movement, using LMA's Shape Quality

and E�ort parameters. They adopted PERFORM's mapping for OCEAN traits

to E�ort and developed their mapping for OCEAN traits to Shape Quality due

to the lack of existing quantization. Facial animations are driven by emotions

(such as happiness, sadness, and anger) and are aligned with the character's per-

sonality traits. The framework modulates facial expressions using shape keys to

control muscle movements, adjusting emotion decay rates based on neuroticism

levels. The e�ectiveness of these communication modalities in conveying personal-

ity was evaluated through a scenario-based user study using Amazon Mechanical

Turk. The results indicated that personality was perceived most clearly when all

modalities were used together.
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2.5 Style Transfer Between Motions

There are no data-driven models that can transfer personality between motions.

The methods described below provide valuable insights into how styles can be

transferred between di�erent motion sequences. Since personality traits are essen-

tially an abstract and high-level style form, they can be encoded and transferred

between motions.

2.5.1 Real-time Style Transfer for Unlabeled Heteroge-

neous Human Motion

Xia et al. [1] propose an approach for real-time style transfer for human motion

using unlabeled, heterogeneous motion data. Their method introduces an online

learning algorithm that constructs local mixtures of autoregressive (MAR) mod-

els to capture the spatial-temporal relationships between di�erent motion styles.

Unlike prior methods that rely on global linear models or require labeled data,

this approach allows �exibility in dealing with complex, unlabeled motion data

like transitions between walking, running, and jumping. By constructing local

models based on the closest examples in the database, the system translates input

poses into di�erent styles with linear transformations. A local regression model

predicts pose timings, adjusting the motion's speed based on the style.

Their system performs well across various movements such as walking, running,

and punching and supports real-time control of stylistic output. The method

outperforms alternatives like Linear Time-Invariant (LTI) models and Gaussian

Process (GP) models in comparative experiments, particularly for heterogeneous

motion data. Furthermore, their system allows for style interpolation, where users

can blend multiple styles during runtime.
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2.5.2 Unpaired Motion Style Transfer from Video to Ani-

mation

Aberman et al. [2] tackle the same problem. Traditionally, such tasks required

paired data (motions with the same content in di�erent styles), which limited

the applicability of these models to the styles seen during training. The authors

propose an unpaired framework that learns from a collection of motions with style

labels, enabling the transfer of styles not observed during training.

The key innovation here is the disentanglement of motion into content and style

latent codes. While the content code is responsible for preserving the structure

of the motion, the style code modi�es its deep features using temporally invari-

ant adaptive instance normalization (AdaIN), which is known from image style

transfer tasks such as StyleGAN [25]. Their model also allows style extraction

directly from video, bypassing the need for 3D reconstruction.

2.5.3 GANimator: Neural Motion Style Transfer Using

Generative Adversarial Networks

The GANimator [3] is a Generative Adversarial Network (GAN)-based model for

animation generation and style transfer. Building on the SinGAN framework [26],

which learns internal relationships within a single image at multiple resolutions,

GANimator adapts this structure to work with animations. The model operates

by learning to recreate motion at di�erent resolutions, where each level focuses on

capturing either broad movements or �ner details, depending on the resolution.

Lower resolution stages in GANimator determine the overall motion, while higher

resolution stages re�ne minor details.

Unlike traditional content-style disentanglement methods, GANimator uses

adversarial training to map source motions to stylized versions, allowing the gen-

erator to produce realistic, stylized animations. A discriminator network ensures

the output aligns with the desired style, while content loss maintains the core

17



structure of the motion.

The GANimator system can also be used for personality transfer, where each

personality trait would require training a separate model, as the system is de-

signed to work on single examples. At this point, examples representing the

extremes of the personality spectrum (lowest and highest averages) can be used

to express each personality factor. However, this also means GANimator can

only serve as a generative model for some datasets, limiting its use in large-scale

applications.

2.5.4 Motion Puzzle: Arbitrary Motion Style Transfer Us-

ing Pieces of Motion Data

Kim et al. proposed the Motion Puzzle approach [4], which introduces a novel ap-

proach to motion style transfer, allowing for the manipulation of individual body

parts rather than applying a uniform style to the entire body. By enabling per-

body-part control, the system signi�cantly expands the range of stylized motions

that can be created, as it can combine styles from di�erent motions, like assem-

bling a puzzle. The framework employs a two-step transfer process using adaptive

instance normalization (AdaIN) and an attention network (BP-ATN), which ef-

fectively captures both global and time-varying local motion traits, improving the

transfer of dynamic and subtle styles. Unlike previous methods, Motion Puzzle

does not rely on style labeling or motion pairing, making it adaptable to publicly

available motion datasets and capable of performing zero-shot style transfer. The

framework's �exibility allows for integration into real-time motion generation sys-

tems, making it useful for applications like animation and character design while

demonstrating substantial improvements over previous techniques in capturing

complex motion details.
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2.6 Neural Motion Fields for Kinematic Anima-

tion

In recent advancements in animation and motion generation, Neural Motion

Fields (NeMF) [27] has emerged as a powerful approach to representing and

synthesizing kinematic motions. NeMF o�ers a novel paradigm by modeling mo-

tion as a continuous function over time. This approach departs from traditional

methods that treat the motion as a series of discrete frames or states. This

continuous representation is achieved with a small Multilayer Perceptron (MLP)

model, which learns to map temporal coordinates directly to motion poses.

The work is inspired by another work, Neural Radiance Fields (NeRF) [28],

which is a pioneering technique synthesizing novel views of complex 3D scenes. By

modeling a scene as a continuous volumetric function, NeRF uses neural networks

to learn a mapping from 3D coordinates and to view directions to RGB colors and

densities. This approach allows NeRF to render highly detailed and photorealistic

images of a scene from arbitrary viewpoints, making it a groundbreaking method

in computer vision and graphics. NeRF operates by sampling points along rays

cast from a camera and uses a neural network to predict the color and density

at each point. NeRF can generate novel views that are indistinguishable from

real-world photographs by integrating these predictions.

Like NeRF models a scene as a continuous function over 3D space and viewing

directions, NeMF models motion as a continuous function over time. In NeMF,

the motion is represented as a function f(t), where t is a temporal coordinate.

This continuous representation allows the neural network to predict the motion

state at any arbitrary time point, enabling smooth transitions and interpolation

between poses. Unlike autoregressive models that rely on past states to predict

future motions, NeMF directly infers motions from time alone, o�ering greater

�exibility and e�ciency in motion generation.
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2.6.1 The NeMF Module

The basic NeMF module acts like a simple decoder. For a motion, the MLP

module aims to generate the 6D joint rotations xr
t for each joint in the skeleton and

the root orientation rot from a given time frame t. Instead of directly passing the

time frame t to the model, they use a positional encoding function to transform t

and then pass the encoded output to the MLP. The purpose of positional encoding

is to embed positional information for each frame, ensuring that the model takes

the sequence of the frames into account. With this approach, one single motion

can be reconstructed:

f(t) → (xr
t , r

o
t ). (2.1)

The authors created a reconstruction loss function to optimize the function

f(t). The results of f(t), 6D rotation matrices xr
t and rot , are converted into

[3x3] rotation matrices with a Gram-Schmidt-like process described in the work

of Zhou et al. [29]. The new rotations, R̂t and R̂o
t , are then used to calculate the

geodesic distances to �nd the rotation and orientation losses as,

Lrot =
T∑
t=1

arccos

(
Tr(Rt(R̂t)

−1)− 1

2

)
, (2.2)

Lori =
T∑
t=1

arccos

(
Tr(Ro

t (R̂
o
t )

−1)− 1

2

)
, (2.3)

where Tr is the trace of the matrix and T is the total frame count. From the

R̂t, they also calculate the local rotation matrix R̂l
t and then pass it through the

forward kinematics (FK) module, suggested by [30], to obtain the regularized

joint positions x̂p
t . L1 loss is used to �nd the position reconstruction:
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Lpos =
T∑
t=1

∥xp
t − x̂p

t∥1. (2.4)

The total reconstruction loss Lrec is then calculated by the weighted sum of

these losses where each λ indicates the weights of each loss:

Lrec = λposLpos + λrotLrot + λoriLori. (2.5)
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Figure 2.1: The overview of the generative NeMF model. The model takes ani-
mation sequences and encodes them in local (zl) and global (zg) latent variables.
For each time frame t, the model learns to reconstruct joint rotations x̂r

t and root
orientation r̂ot . Here, Xt is the local motion feature in frame t, whereas X is the
concatenations of all. Similarly, rot is the concatenation of all root orientations.

2.6.2 Generative NeMF

He et al. [27] show that NeMF can be used as a generative model to extend

beyond a single motion sequence by incorporating a latent space that conditions

the motion function on a latent variable z. The di�erent values of z correspond

to di�erent motion styles or variations, enabling the model to produce a wide

range of motion sequences. This generative process is framed within a Variational

Autoencoder (VAE) [31] framework, where motion sequences are encoded into a
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latent space and then decoded back to the motion domain, allowing for realistic

and varied motion synthesis. The overview of the generative NeMF structure can

be seen in Figure 2.1.

f(t, z) → (xr
t , r

o
t ). (2.6)

The latent z is constructed from two latent variables: local latent zl and global

latent zg. The global and local latent variables are found using two separate con-

volutional encoders within the VAE framework. These encoders are speci�cally

designed to disentangle the global and local aspects of the motion data:

Local Motion Encoding: The local encoder consists of specialized layers de-

signed to process skeletal motion data. Essential layers include Skeleton Con-

volution and Skeleton Pooling [32] to capture spatial and temporal relationships

within the skeletal structure. Skeleton Convolution focuses on local joint depen-

dencies, while Skeleton Pooling reduces the complexity of the data by summariz-

ing important features across joints.

The input to the local encoder is a sequence of local motion parameters, X,

which is the concatenation of multiple time steps, Xt. Each Xt is constructed

from joint positions xp
t , joint velocities ẋp

t , 6D joint rotations xr
t , and angular

velocities ẋr
t , representing the pose of the skeleton relative to the root joint at

each time step.

The outputs of the local encoder are the mean and variance that de�ne a

latent Gaussian distribution. The local motion latent variable zl is sampled from

this distribution, providing a compact representation of the underlying motion

dynamics for further processing.

Global Motion Encoding: The global encoder is designed to process the overall

trajectory of the motion, focusing on the root joint's orientation. The architec-

ture combines 1-D convolutional layers to capture spatial dependencies and fully

connected layers to integrate global motion information through time. These
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layers work together to model the large-scale movements of the skeleton.

The input to the global encoder is the sequence of root orientations, ro. The

output of the global encoder is similar to that of the local encoder, producing

the mean and variance that de�ne a latent Gaussian distribution. From this

distribution, the global motion latent variable zg is sampled. The local latent

variable zl and global latent variable zg are combined with the time frame t to

reconstruct the motions.

The loss function in generative NeMF consists of two main components. The

�rst loss component is the reconstruction loss, Lrec, computed as described in the

previous subsection. The second loss component is the Kullback-Leibler (KL)

Divergence Loss, LKL. It ensures that the latent variables zl and zg follow the

standard normal. LKL is calculated as:

log p(xr, ro) ≥ Eqθ1 ,qθ2
[log p(xr, ro | zl, zg)]

−DKL(qθ1(zl | X) ∥ p(zl))

−DKL(qθ2(zg | ro) ∥ p(zg)). (2.7)

Finally, the total loss is calculated as:

L = Lrec + λKLLKL, (2.8)

where λKL is the weight of LKL.

He et al. use the generative NeMF to perform motion interpolation and re-

navigating tasks. Motion interpolation creates new motion sequences from exam-

ples by blending di�erent styles or actions to produce smooth transitions. Motion

re-navigating adjusts the trajectory to �t a new target or path while maintaining

the original movement characteristics.

23



Chapter 3

The Methodology

3.1 Dataset Selection and Preparation

Transferring personality traits based on motion is complex because these traits

are abstract and expressed through subtle cues like facial expressions, gestures,

and movement style. Accurate modeling of these traits in animations demands

datasets with detailed motion data and explicit personality trait labels. While

several datasets are used in studying personality through motion, they often have

limitations. Labeled datasets may need more detailed motion data for accurate

personality transfer, while unlabeled datasets, rich in motion data, miss the neces-

sary personality annotations. There is a need for a dataset that combines labeled

personality traits with detailed motion data, particularly with robust skeleton

representations. Such a dataset would improve the precision of personality-driven

animation tasks, leading to more lifelike and personalized virtual characters.
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3.2 Datasets

We can divide the existing datasets into two as personality-labeled datasets and

unlabeled datasets.

3.2.1 Personality-labeled Datasets

Personality-labeled datasets are hard to �nd because collecting accurate per-

sonality information is challenging. There are two main ways to gather this

data: self-reported assessments and perception-based evaluations. Self-reported

assessments involve people rating their personality traits, usually through ques-

tionnaires, but the results can be a�ected by how self-aware and honest they are.

Additionally, since each person is matched to a single personality pro�le, every ac-

tion or behavior they exhibit will be labeled with that same personality. In other

words, many participants must obtain diverse behaviors with di�erent personality

labels. Perception-based evaluations, where others assess someone's personality

based on their behavior, appearance, or voice, introduce even more challenges.

These evaluations can be biased by the observer's perceptions and the person's

looks or voice. An expert in the OCEAN model would analyze these labels to re-

duce bias and improve accuracy. Because of these di�culties, personality-labeled

datasets are not easy to create or maintain, making them rare. Several datasets

use Big Five personality traits as labels. Each dataset di�ers in modalities, label

collection type, and length. Table 3.1 summarizes the statistics of the datasets.

The Synergetic sociAL Scene Analysis (SALSA) dataset [33] captures 18 par-

ticipants gathered in an indoor event. The participants freely interact with each

other for over 60 minutes. The visual data is captured with four synchronized

cameras. Each participant wore sociometric badges to capture audio and mo-

tions accurately. The dataset was then annotated based on positional data such

as head and body orientations in 2D space and Big Five personality traits.

The biggest downside of this dataset is that it does not include 3D positional
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Table 3.1: Labeled dataset statistics. Each dataset includes di�erent modalities:
Image (I), Audio (A), Sensory Information (SI), Video (V), and Skeleton (S). The
labels of First Impressions are collected with Amazon Mechanical Turk (AMT),
and for the rest, a questionnaire is used to obtain the self-reported labels.

Dataset
No.

people
Time
(hr)

Modalities
Label

collection

SALSA [33] 18 90.5 I, A, SI Self-reported
First Impressions v2 [21] 469 150 I, A AMT
NoXi [34] 87 150 S, A, V, M Self-reported
UDIVA [18] 149 18.3 S, I, A, M Self-reported

data for participants. Estimating and extracting 3D data from 2D images can

introduce inaccuracies and inconsistencies in the transferred personality traits be-

tween animated motions. These methods often rely on approximations that may

not capture the full complexity of human motion, leading to potential distortions

in the intended personality expression.

First Impressions v2 [21] comprises 10,000 video clips, each about 15 seconds

long, featuring individuals speaking in English to a camera. These clips were

sourced from over 3,000 high-de�nition YouTube videos and are split into training,

validation, and test sets. The dataset is annotated with personality traits based

on the Big Five model. These traits were labeled using Amazon Mechanical

Turk (AMT). The results are processed using a procedure that results in reliable

annotations.

Similar to SALSA, this dataset lacks 3D skeleton positions. Also, most videos

miss full-body information, often capturing only partial upper-body movements,

as they are predominantly vlogs. This limitation makes the dataset unsuitable

for our needs since we work on full-body motion.

NOvice eXpert Interaction NoXi [34] provides a collection of multimodal

recordings of dyadic novice-expert interactions, capturing both spoken language
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and visual cues. Eighty-seven people were recorded during one-to-one interac-

tions. The experiments were conducted in three countries spoken in seven dif-

ferent languages. The interactions were recorded with Kinect 2.0, and audio,

video, depth, skeleton, and face information were obtained. In each session, par-

ticipants provided demographic information and self-assessed their personality

traits. These traits were evaluated using the Big Five model and measured with

Saucier's Mini-Markers set of adjectives.

While NoXi o�ers a valuable dataset, its focus on natural, everyday interac-

tions would only partially align with the speci�c requirements of our personality-

driven animation task. We aimed to create highly expressive and stylized virtual

characters, which demand more exaggerated and stylized movements than those

typically captured in NoXi.

UDIVA [18] includes 188 sessions of dyadic interactions involving 147 partic-

ipants aged 4 to 84. These sessions cover tasks such as talking, building legos

together, playing a game about cards, and guessing animals. The dataset in-

cludes multimodal data such as video, audio, and physiological signals. It also

provides detailed annotations, including facial, body, hand landmarks, and 3D eye

gaze vectors. The personality traits were labeled based on self-reported question-

naires, with each trait recorded as a �oat value centered around zero. However,

personality values for the validation and test sets were unavailable during par-

ticipant interactions. Despite the advantage of having existing 3D motion data,

the dataset's focus on seated interactions makes it less applicable to our speci�c

problem requirements.

3.2.2 Unlabeled Datasets

The following datasets do not include any personality-based annotations. How-

ever, each dataset contains full-body motion captures. Labeling is required for

such datasets to be used in our work. Table 3.2 provides the details of the unla-

beled datasets.
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Table 3.2: Unlabeled datasets statistics. The AMASS dataset is not labeled
according to content and style. The ZeroEGGS (ZEGGS) dataset is only labeled
according to style. SMPL-H [35] is a variant of SMPL.

Dataset
No.

videos
Frames FPS

Time
(sec)

Avg. time
(sec)

Content Style Data Type
No.
joints

Xia [1] - 79,829 120 665 - 28 8 BVH 31
BFA [2] 33 696,117 120 5,801 175.78 9 16 BVH 31
AMASS [36] 11,265 11 mil. Varies 145,251 12.89 - - SMPL-H 52
ZEGGS [37] 67 484,740 60 8,079 120.58 - 19 BVH 75
Bandai-1 [38] 175 36,665 30 1,222 6.98 17 15 BVH 21
Bandai-2 [38] 2,902 384,931 30 12,831 4.42 10 7 BVH 21

The Xia et al. [1] dataset developed for the motion style transfer network dis-

cussed in Section 2.5 was captured using a motion capture system with eighteen

cameras. It includes actions such as walking, kicking, and jumping, each per-

formed in eight distinct styles, including neutral, depressed, old, and proud. All

animations are annotated according to the action's content, style, and contact

points. Similarly, the BFA dataset [2] was created for motion style transfer. This

dataset can be seen as the expanded version of the Xia dataset. The dataset

consists of 16 styles and nine content variations.

He et al. [27] use the AMASS (Archive of Motion Capture as Surface

Shapes) [36] dataset to train a model for learning a latent representation of motion

and various tasks. AMASS is a comprehensive collection of human motion data

aggregated from 15 di�erent motion capture datasets into a uni�ed framework,

providing detailed 3D meshes of the human body converted from raw motion cap-

ture data using the Skinned Multi-Person Linear (SMPL) model [39]. The dataset

includes 344 subjects, 11265 motions, and approximately 40 hours of recordings.

ZeroEGGS [37] consists of 67 motion capture sequences of a female actor per-

forming monologues in English, totaling 135 minutes. The dataset encompasses

19 distinct motion styles, covering variations in posture (e.g., Tired vs. Oration)

and hand/head movements (e.g., Agreement, Oration). It was recorded at 60

frames per second (fps) using a 75-joint skeleton, capturing full-body motion,

including detailed hand and �nger movements. The dataset is also synchronized
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with high-quality audio recordings for training and evaluating speech-driven ges-

ture generation models.

The Bandai-Namco motion capture dataset [38] comprises two subsets:

Dataset-1 and Dataset-2. Dataset-1, intended as a pilot dataset, contains 36,673

frames encompassing 17 diverse content categories (e.g., daily activities, �ghting,

dancing) and 15 motion styles. On the other hand, Dataset-2 focuses on providing

a rich assortment of data for locomotion and hand actions, containing 384,931

frames across ten content types and seven styles. Dataset-2 provides data for

each content-style combination, making it more suitable to train a motion-style

transfer model.

Compared to established datasets such as Xia, BFA, Lafan [40], and

100STYLE [41], the Bandai dataset o�ers distinct advantages that make it suit-

able for our research. One of the key strengths of the Bandai dataset is its

adherence to industry-standard human bone structures. This compliance ensures

seamless integration with game engines and animation tools, eliminating the need

for extensive retargeting processes often required with other datasets.

Additionally, Dataset-2 within the Bandai collection provides a well-balanced

content-style distribution, making it an ideal choice for training high-quality style

transfer models. This characteristic was critical in selecting this dataset for our

research. While other datasets may o�er greater volume or a more comprehensive

range of styles, the Bandai dataset excels in practicality by directly addressing

the challenges of applying motion style transfer in real-world applications.

3.2.3 Labeling the Bandai Dataset

We used the Bandai Namco dataset. We chose to annotate only Motion Dataset-1

because it was the pilot dataset with fewer samples, which made the annotation

process faster. We also excluded speci�c motion samples that were too long, like

dance sequences, or redundant, such as di�erent walking directions. After these

eliminations, we were left with 128 motions.
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Figure 3.1: The website, built with Unity, is used to annotate the Bandai-1
dataset with Big Five personality traits.
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To facilitate the annotation process, we developed a website using Unity

(see Figure 3.1) and recruited participants through email invitations and Pro-

li�c, an online crowdsourcing platform. Proli�c users were compensated based on

their time rating 10 unlabeled animation samples, while participants recruited via

email volunteered their time. We received 184 individual responses, resulting in

2,280 ratings. 17 to 21 participants evaluated each animation sample. Based on

�ve questions corresponding to the Big Five personality traits, the ratings were

recorded on a 7-point Likert scale. These responses are also used in [42].

The raw annotations had some outliers. While methods like RANSAC [43] or

�ltering by mean and standard deviation could be used to remove them, we opted

for a more straightforward approach. Each personality trait label was initially

scaled between [−3, 3]. For each trait, the dataset was divided into three regions.

R1 = [−3,−1], R2 = [−1, 1], and R3 = [1, 3].

Then we eliminate the region Ri if |Ri| < 0.7×max{|R1|, |R2|, |R3|}, where |Ri|
represents value count in the region Ri. Ideally, we aim to retain only one region,

but in cases where no consensus is reached, two or all three regions are kept. After

determining the regions, we calculate the sample average by averaging the regions.

The initial 2,280 ratings were reduced to varying amounts for each personality

trait: 1,798 (O), 1,831 (C), 1,753 (E), 1,739 (A), and 1,757 (N). Figure 3.2 shows

the standard deviations for each personality trait before and after �ltering the

outliers.

3.3 LMA-based Handcrafted Motion Modulation

Tool

The key objective of our motion modulation tool was to create variations of the

same action performed in di�erent personality styles. These modulated actions

were crucial for comparing their e�ectiveness against those the deep learning

31



O C E A N
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Standard Deviations of the Personality Traits

Unfiltered
Filtered

Figure 3.2: Violin plot showing the distribution of standard deviations for each
personality trait (OCEAN) across animations in the Bandai dataset. The plot
compares raw annotations (un�ltered) with annotations with outliers removed
(�ltered).

model generated. By the end of our work, this comparison allowed us to evaluate

whether the augmented actions provided a more accurate or varied representation

of personality-driven motion than the deep learning models alone.

We adopted the work of Sonlu et al. [6] to enhance our motion alternation

approach. Their framework allows virtual characters to express the full range of

the �ve personality factors through dialogue, voice, body motion, and facial ex-

pressions. Speci�cally, the body movement module in their system drives changes

in the joints of the conversational agent, guided by two key Laban parameters:

shape and e�ort. Our study focused on the Laban e�ort parameters as the foun-

dation for the motion alternation tool. While the original work utilized the Unity

Engine [44] to introduce variations and modify animations in real-time, we em-

ployed Blender [45], an open-source 3D software, to change the motions in our

dataset, enabling us to implement these changes with a greater degree of control

and �exibility.

The system starts by asking the user to select a base armature skeleton for

the dataset that will be augmented. This selected armature becomes the main

skeleton for the entire dataset. From this armature, a new skeleton is created.
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The �rst skeleton controls bone movement using Forward Kinematics (FK), while

the second uses Inverse Kinematics (IK). Eight additional bones are added to

make IK work�four pole bones to control the direction of the knees and elbows

and four target bones to control the position of the hands and feet. With these

additions, the armature is ready for use (see Figure 3.3).

TRF TLF

PLF
PRF

TLHPLH

TRH

PRH

IK ArmatureFK Armature

Figure 3.3: The Bandai dataset's armatures are visualized in Blender, showcasing
both Forward Kinematics (FK) and Inverse Kinematics (IK). In the visualization,
blue bones indicate the target bones, while orange bones represent the pole bones.
`R' and 'L' refer to right and left, respectively, and `H' and `F' denote hand and
foot bones.

The animations in the dataset will be applied to the base armature and mod-

i�ed based on the in�uencing factor, either on the FK armature or the IK arma-

ture. There are a total of four factors that a�ect the animation. These are the

Space, Weight, Time, and Flow. Each factor can take a value within the [−1, 1]

range. The in�uences of each factor are discussed in the following subsections.
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3.3.1 Space

Being one of the Laban e�ort parameters, the Space indicates whether the motion

is performed directly or indirectly. In the work of Sonlu et al. [6], the e�ect of the

Space was achieved by spreading the hands on the horizontal axis. The target

bones of the hands and feet in the IK armature system were made to move away

from or closer to the body depending on the sign of Space factor fS to achieve

a similar change. If fS is positive, the limbs spread, creating a more �indirect�

appeal. When fS is negative, the limbs will close, resulting in a more �direct�

appeal.

First, each target bone inside the IK armature is paired with a corresponding

�limit� bone, with the upper arm bones serving as limit bones for the hand targets

and the upper leg bones for the foot targets. For each frame in the animation, a

limit vector VL is calculated by subtracting the position (head joint) of the limit

bone from the position of the target bone:

VL = Jtarget − Jlimit. (3.1)

To achieve spreading or enclosing motions, the limit vector VL is decomposed

into its vertical VL
v and horizontal VL

h components, which are then used to rotate

the vector in the depth plane. The initial rotation degree r is set to 15◦, repre-

senting the maximum possible rotation, and is further adjusted by multiplying it

with the Space factor fS.

Before determining the vertical and horizontal shifts for the target bones, we

assess the distance dsym between each pair of symmetric target bones. If the

Space factor fS is negative and the distance dsym is less than the magnitude of

VL (∥VL∥), a new symmetry factor fsym is calculated.
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fsym =


∣∣∣∣1− | dsym − ∥VL∥ |

∥VL∥

∣∣∣∣, if bones are not crossing,

0, if bones are crossing.

(3.2)

This factor prevents issues during movements such as walking, clapping, or

bringing hands together. Speci�cally, when the horizontal distance between two

symmetrical target bones is close to zero, the fsym value will also approach zero.

The �nal rotation amount R is then obtained by multiplying the initial rota-

tion r by the symmetry factor fsym. The horizontal and vertical shifts for the

target bones are calculated using this rotation amount as follows:

shifth = (VL
h · cos(R)− VL

v · sin(R))− VL
h, (3.3)

shiftv = (VL
h · sin(R) + VL

v · cos(R))− VL
v. (3.4)

Finally, the new position of the target bone in that frame is determined by

shifting its current position by the combined shift values: shifth+shiftv. Figure 3.4

shows the e�ect of the Space factor in positive and negative directions.

Space- Neutral Space+

Figure 3.4: The impact of the Space factor: the left armature performs an enclos-
ing motion due to the negative Space factor, while the right armature executes a
spreading motion driven by the positive Space factor.
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3.3.2 Weight

Another e�ort parameter, Weight, re�ects the movement's interaction with grav-

ity. The Weight parameter is categorized into light and heavy. The Weight factor

fW adjusts the IK armature system, altering the overall motion. A positive fW

value indicates a �descending� movement matched with �heavy�, while a negative

fW value indicates an �ascending� movement matched with �light.� During these

adjustments, the foot target bones remain stationary. In contrast, the hip bone

Bh and hand target bones move either lower or higher relative to their original

positions.

We begin by adjusting the position of the hip bone, Bh. Directly altering

the vertical position of Bh is not feasible since the foot targets must remain in

contact with the ground. In �bowing� or �rising� movements, the hip reaches the

maximum distance from the foot targets. To address this, we �rst determine the

midpoint M of the action, calculated as the average distance between the two-

foot targets. Next, we establish the limit distance dlim, representing the distance

between Bh and the �oor.

The midpoint M determines the horizontal and depth-wise shift, shifthd, for

Bh. When the fW gets closer to 1, Bh will also get close to M (Equation 3.5).

Meanwhile, dlim is used to calculate the vertical shift, shiftv. If fW is negative,

we also identify a limit bone for Bh, which will be either the left or right upper

leg. The distance between the hip and this limit bone is dLimH .

shifthd =

(M − Jh) · fW , if fW > 0,

0, if fW = 0
(3.5)

shiftv =


dLimF

20
· fW , if fW ≥ 0,

max(dLimF − dLimF) · fW , otherwise
(3.6)

The shift vector shiftall is then calculated by simply combining the shifthd and
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shiftv vectors as components. The same vector shiftall is also applied to hand

target bones.

r =

15◦ · fW , if fW ≥ 0,

5◦ · fW , otherwise
(3.7)

In addition to these positional changes, the neck and spine bones are rotated

with the angle of r along the body's horizontal axis where r is calculated as given

in Equation 3.7. Figure 3.5 shows the e�ect of the Weight factor in positive and

negative directions.

Weඈght- Neutral Weඈght+

Figure 3.5: The impact of the Weight factor.

3.3.3 Time

The Time e�ort parameter represents the variation of movement over time. Mo-

tion is categorized into two types: quick and sustained. In our study, we applied

the method described in [6] to in�uence movement within the time domain.

In the original study, the e�ect of Time parameter on motion was achieved by

accelerating or decelerating the animation. The playback speed of each frame was

irregularly modi�ed to preserve the naturalness of movement. First, the average
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speed of the hand bones in each frame was computed, and the frames were then

ranked from relatively fast to slow. The playback speeds of these ordered frames

were determined based on the Time factor, fT . When fT = 1, the playback speed

ranged from [1, 2], and when fT = −1, the playback speed ranged from [0.5, 1].

In our approach, we extend this method by incorporating both the hands and

feet. For each frame di�erence, ∆T , we calculate the total average displacement

by averaging the displacements of the hand and foot bones during ∆T . Frames

are then reordered based on average displacement, and keyframes are shifted

accordingly. We use fT to compute the speed factor, fs, to determine the new

keyframe positions (cf. Equation 3.8). Figure 3.6 shows the e�ect of the Time

factor in positive and negative directions.

Tඈme- Neutral Tඈme+

Figure 3.6: The impact of the Time factor.

fs =


fT + 1, if fT ≥ 0,

1

|fT |+ 1
, otherwise

(3.8)

The keyframe shift amount, sk, is the inverse of fs since a higher speed fac-

tor results in a smaller shift. For each displacement, we calculate incremental

changes. The minimum increment, incmin, is
|1−ks|

N
, where N is the total number

of displacements. The new shift for each keyframe, S(ki), is calculated as:
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S(ki) = sk + i · incmin. (3.9)

3.3.4 Flow

The last of the e�ort parameters, Flow, represents the continuity of movement

within the process. A movement is categorized as either bound or free under the

Flow parameter. We apply two di�erent methods to modify the movement in the

direction of Flow.

The movement is restricted when the Flow factor fF is negative. We applied

the Decimate Keyframes operation to restrict the movement, a built-in feature

in Blender. This process reduces the number of keyframes while maintaining the

overall animation curve as much as possible. It helps simplify the animation data

without signi�cantly altering the content of the movement. The function takes

a Decimation Factor fdec as input. This factor can be any real number between

[0, 1]. As the Decimation Factor approaches 1, the animation becomes more

simpli�ed. Based on our trials with several di�erent animations, we concluded

that the [0, 0.9] range works best for this factor. So, fdec can be calculated as

0.9 · fF .

When fF is positive, the animation is allowed to move more freely. In this

context, as in the studies of Durup�nar et al. [5] and Sonlu et al. [6], a certain

amount of rotation is added to each bone in the skeleton at random keyframes to

demonstrate the uncontrollability of the movement.

A function generates keyframe positions based on fF to select these random

keyframes. The function calculates a range for the intervals between keyframes:

if fF is close to 1, the range is narrower, making keyframes more closely spaced.

Speci�cally, the range is determined by a minimum of 5 frames and a maximum

of 30 frames, with the exact interval varying depending on fF . The function

then randomly selects increments within this computed range to determine the

positions of the keyframes throughout the animation. The ratio of the selected
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random keyframes and the amount of rotation added are directly proportional to

the determined fF .

3.4 Data-driven Approach

Our data-driven approach consists of two parts: data processing and the deep

learning architecture.

3.4.1 Data Processing

We labeled the Bandai-Namco dataset according to the OCEAN model. After the

annotations and the �ltering stages, we were left with 128 labeled animations.

The rest of the data was not annotated; we had 3,077 animations. However,

this number of examples was insu�cient for e�ective training. In our model, the

reconstruction of personality traits relies on having a diverse dataset to ensure

that the model can generalize well across di�erent personality dimensions. To

achieve tangible results, we needed a more substantial amount of labeled data.

To increase the total amount of augmented data, we �rst divided each anima-

tion into segments of 128 frames. If an animation was shorter than 128 frames,

we repeated the last frame to pad the sequence until it reached 128. Additionally,

we applied a sliding window approach to generate overlapping animations, fur-

ther increasing the data. The window progression was controlled by the �overlap

ratio.� In our case, we used an overlap ratio of 0.75, meaning each new segment

includes the last 96 frames from the previous segment, with 32 new frames added.

We also introduced the �drop ratio,� determining when the last segment should

be discarded. We set the drop ratio to 0.67, meaning it would be dropped if the

new segment contained fewer than 86 non-padded frames.

After creating the overlapping animations, the total number of animations

increased to 7,171, with 390 annotated. We then split the dataset into training
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Figure 3.7: Overview of our personality transfer model, P-GeNeMF. The network
takes Animation A and aims to reconstruct Animation Â1 by learning the content
latent variable (zc) and personality latent variable (zp). The local input features
(X) are passed through the Local Encoder (LE), and global features (ro) are
passed through the Global Encoder (GE), resulting in the local latent variable
(zl) and the global latent variable (zg), respectively. These two latent variables are
combined to construct zc. The personality input features Xp are passed through
the Personality Encoder (PE), resulting in the personality latent variable (zp).
A random personality variable (zrp) is passed through another NeMF module
with zc to construct Animation Â2, which essentially contains the content of Â1

with a di�erent personality. The discriminator D ensures Â2 is real. A third
NeMF generates Â3 by getting the content variable żc from Â2 and personality
variable zp to ensure consistency between Â1 and Â3. Finally, a fourth NeMF
(placed at the top of the �gure) is used to ensure consistency between zrp and
żrp. The variable zc is passed as detached, which cuts the gradient �ow to LE
and GE. This ensures that only PE is trained to learn żrp without a�ecting zc.
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and validation sets using a 90/10 ratio. During this process, we ensured that no

segments from the same animation were present in both sets simultaneously to

avoid inconsistencies and data leakage during training.

3.4.2 Deep Learning Architecture

We employed the NeMF model, as outlined by He et al. [27], as the backbone

of our architecture. The architecture is extended to form a semi-supervised

personality-driven generative model called P-GeNeMF, representing motion as

content (zc) and personality (zp). This approach incorporates personality traits

(OCEAN model) into the latent variable to condition the generation of anima-

tions. Figure 3.7 depicts the overview of our architecture.

3.4.2.1 Personality Encoder

We introduced a new personality encoder based on the existing local and global

encoders of generative NeMF to extract the personality latent variable (zp). The

input Xp to the personality encoder includes LMA-based features. We calculate

the personality features as follows:

� Space Parameter: Calculated using L2 distances (Dp
t ) between key joints,

including

� hands,

� lower arms,

� upper arms,

� feet,

� lower legs,

� upper legs,

� head and each hand,

� hips and head,

� hips and each hand, and
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� each lower arm and each hand.

� Weight Parameter: Derived from angles (Ar
t ) between joints, such as

� l/r hand � l/r lower arm � l/r upper arm,

� l/r foot � l/r lower leg � l/r upper leg,

� l/r lower arm � l/r upper arm � l/r shoulder,

� head � neck � spine,

� chest � spine � hips,

� left hand � hips � right hand,

� left upper arm � hips � right upper arms, and

� left foot � hips � right foot.

� Time and Flow parameters: We calculated joint velocities (ẋp
t ) and angular

accelerations (ẍr
t ), as in [7] for these respective parameters.

We refer to the joint distances and angles as joint-speci�c personality features,

while the velocities and angular accelerations of joints are called local personal-

ity features. The joint-speci�c personality features are processed through four

residual blocks, as used in the global encoder of the generative NeMF model.

Each of these residual blocks consists of 1D convolutional layers. Similarly, the

local personality features are passed through four skeleton residual layers, also

following the local encoder of the generative NeMF architecture. Each output

feature vector has 256 dimensions. These vectors are concatenated to create a

512-dimensional vector, which is then passed through a linear layer to generate

the 5-dimensional personality latent variable zp.

3.4.2.2 Decoding and Reconstruction Losses

After generating the personality latent variable, we pass t, zc, and zp through

a NeMF decoder, and the outputs joint rotations (xr
t ) and (rot ) are generated.

Similarly, as in generative NeMF, these outputs are used in the reconstruction

loss (Lrec) for the animation.
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f(t, zc, zp) → (xr
t , r

o
t ) → Â1, (3.10)

where xr
t and rot indicate the reconstructed motion's joint rotations and root

orientation, respectively. Here, zc comprises a local latent variable (zl) and a

global latent variable (zg). These are generated by the local and global encoders,

respectively, as described in Section 2.6.

During training, leveraging animations with labeled personality traits, a per-

sonality reconstruction loss Lpers was used. These labels served as supervision

to optimize the model's ability to learn and replicate the target personality fea-

tures from the animation data. As some animations were not labeled, we applied

masking to hide the unlabeled ones while calculating the Lpers.

3.4.2.3 Semi-supervised Learning

From our experiments, we found that using only a small amount of supervised

data did not provide consistent results. To improve this, we adopted a semi-

supervised approach. We jointly trained the model using both labeled and unla-

beled data. The personality encoder was trained to accurately predict the ground

truth personality traits for the labeled data. For the unlabeled data, the person-

ality encoder learned the distribution of the personality traits.

We introduced the generation of a secondary animation Â2 to allow our model

to explore more animations and personality traits. This new animation combines

the content latent variable zc extracted from A with a randomly sampled person-

ality latent variable zrp, where the OCEAN traits are uniformly sampled from

the range [−3, 3].

f(t, zc, zrp) → (ẋr
t , ṙ

o
t ) → Â2. (3.11)
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3.4.2.4 Adversarial Training

To ensure the realism of the generated animation Â2 with the fake personality,

we applied an adversarial strategy. We have used the discriminator D to decide

whether Â2 should be classi�ed as real or fake. We trained D using the ground

truth animation A and the reconstructed animation Â2. Here, the ground truth

animation A is the real sample while Â2 was the fake one. Since some of our

data lacked labels, instead of training the discriminator with ground truth per-

sonality labels, we utilized the learned personality representations, zp. We used

the Wasserstein-GAN with gradient penalty algorithm [46] while training D.

The structure of D is similar to the local encoder in NeMF. It takes local

motion features (X̂2) that are reconstructed from Â2 and zrp as inputs. The

local motion features are processed directly through four residual blocks con-

structed from skeleton convolution and skeleton pooling layers with activation

function PReLU. The output of these layers is then concatenated with zrp, and

the concatenated result is passed through several linear layers, each followed by

activation layers. The �nal output indicates whether Â2 is real or fake.

3.4.2.5 Consistency and Further Synthesis

In addition to leveraging the discriminator, we passed the generated output Â2

through the NeMF module and synthesized a new animation, denoted as Â3.

This new animation was generated by combining the content latent variable żc

of Â2 with the original personality latent variable zp. This process aimed to en-

force consistency between the input animation and Â3, ensuring that the original

animation's key attributes (content and personality) are preserved through the

transformation.

f(t, żc, zp) → (ẍr
t , r̈

o
t ) → Â3. (3.12)
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We used an additional NeMF module to ensure the consistency of zrp. We

input a detached zc and zrp into this module to generate Â4. Next, Â4 was passed

through the personality encoder, producing a new personality variable, żrp.

3.4.2.6 Loss Functions and Total Loss

We summarize the loss functions in the sequel. The total loss L is used to train

the P-GeNeMF model.

Motion Reconstruction Loss: The motion reconstruction loss (Lrec) are the

weighted sums of Lpos, Lrot and Lori as described in Section 2.6.1. We calculate

these losses by calculating the input animation A and the generated animation

Â1. λpos, λrot, λori are selected as 20, 2, and 2, respectively.

Lrec = λposLpos + λrotLrot + λoriLori. (3.13)

KL Divergence Loss: We only used KL Divergence Loss LKL to ensure the content

variable zc follows the standard normal.

log p(xr, ro) ≥ Eqθ1 ,qθ2
[log p(xr, ro | zl, zg)]

−DKL(qθ1(zl | X) ∥ p(zl))

−DKL(qθ2(zg | ro) ∥ p(zg)). (3.14)

Personality Reconstruction Loss: Because not all animations were labeled, we

used a mask M to mask out the unlabeled animations to �nd the personality

reconstruction loss Lpers:

LOCEAN = max

(
1

N

N∑
i=1

(P (i) − z(i)p )2,m

)
−m, (3.15)
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where P is the personality label, zp is the personality latent variable, m is a

margin, and N is the number of samples inside the batch. The overall loss Lpers

is then averaged over the batch, considering the mask:

Lpers =

∑B
i=1

(
L(i)
OCEAN ·M (i)

)
max

(
1,
∑B

i=1M
(i)
) . (3.16)

Motion Consistency Loss: The motion consistency loss (Lcons) is similar to motion

reconstruction loss (Lrec). Instead of using the generated animation Â1, we have

used Â3 to compare it with the input animation A. λcpos, λcrot, λcori are selected

as 10, 1, and 1, respectively.

Lcons = λcposLcpos + λcrotLcrot + λcoriLcori. (3.17)

Personality Consistency Loss: The consistency loss (Lpcons) between the random

personality latent zrp and the constructed personality latent żrp from the gener-

ated animation Â4. Similar to Lpers, we have used Mean Squared Error (MSE).

N stands for the total number of samples in the dataset:

Lpcons = max

(
1

N

N∑
i=1

(z(i)rp − ż(i)rp )
2,m

)
−m. (3.18)

Content Consistency Loss: We also experimented with content consistency loss

(Lctcons) between the content latent zc and the constructed content latent żc from

the generated animation Â2. For both local and global variables in the content

variables, we used the MSE loss, and again, N stands for the total number of

samples in the dataset. Both loss weights, λcl and λcg, are selected as 1:
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Lcl =
1

N

N∑
i=1

(z
(i)
l − ż

(i)
l )2 Lcg =

1

N

N∑
i=1

(z(i)g − ż(i)g )2 (3.19)

Lctcons = λclLcl + λcgLcg. (3.20)

Generator Loss: This loss is simply the negative mean of the output of discrim-

inator D because we use the Wasserstein-GAN with gradient penalty algorithm

(W-GAN GP) [46] while training D. For the total number of N samples in the

dataset, the generator loss is given by

Lgen = − 1

N

N∑
i=1

D(X̂2, zrp)
(i). (3.21)

Total Loss: The total loss is the weighted sum of all loss functions. The weights

that are present inside the losses are not displayed again. λpers, λpcons, λgen, and

λKL are selected as 0.3, 3, 1, and 10−5, respectively:

L = Lrec + λpersLpers + Lcons + λpconsLpcons + Lctcons + λgenLgen + λKLLKL

(3.22)

Discriminator Loss: We trained D using the input animation A and the recon-

structed animation Â2. For each loop of training P-GeNeMF, we trained D twice.

The discriminator loss Ldisc is calculated as follows:

Lreal = E[D(A)], Lfake = E[D(Â2)], (3.23)

LGP = λGP · E
[
(∥∇x̂D(x̂)∥2 − 1)2

]
, (3.24)

Ldisc = Lfake − Lreal + LGP. (3.25)

where x̂ is a random interpolation between A and Â1. λGP is the loss weight and

is set as 10.
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3.4.2.7 Training Details

We train our model on an HP® Proliant DL380 Gen9 server with 2 Intel® Xeon®

E5-2620 v4 CPUs @ 2.10GHz, 64GB memory and a 16GB NVIDIA Tesla P100

GPU. We have used Python 3.9.13 and PyTorch 1.12.1 with CUDA 11.6. Our

model is built upon the code from the NeMF: Neural Motion Fields repository

of He et al., available at https://github.com/c-he/NeMF/tree/main. We em-

ployed the Adam optimizer to train both P-GeNeMF and the discriminator, as

described in [27]. The learning rate for both optimizers was set to 0.0001. As dis-

cussed in the discriminator loss section, p-GeNeMF was trained for 300 epochs,

while the discriminator was trained for twice as many iterations. P-GeNeMF

optimizer had a weight decay of 0.0001, while the discriminator optimizer did not

have any weight decay.
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Chapter 4

Experimental Evaluation

4.1 User Studies

We conducted three user studies to evaluate both of our methods. The �rst and

third studies focused on transferring personality traits from Animation B to A. In

the second study, we focused on changing the personality traits of each motion,

either in a positive or negative direction. Each study design and the results of

them are explained in the following subsections. The screenshots for each study

are provided in Appendix A.

4.1.1 Study 1

In Study 1, we aim to demonstrate the e�ectiveness of our handcrafted modu-

lation tool and P-GeNeMF in in�uencing the personality of Animation A when

transferring personality traits from Animation B. We selected ten animation pairs.

Six of these pairs shared the same content, where both animations either per-

formed a dynamic action or remained in a stable motion. For the other four

pairs, we selected animations with di�ering content motions. We transferred the

personality traits from B to A for all ten pairs and then reversed the transfer
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direction, resulting in 20 animations.

For each task, the participant rated the perceived personality of the samples

using the sliders below each animation. Sliders measure the OCEAN personal-

ity traits in �ve dimensions. Additionally, the realism (human-likeness) of each

motion is also rated. The study has twenty tasks, including four randomly ar-

ranged animations for each task: Animation A (content motion), the result of

the handcrafted modulation tool, P-GeNeMF, and Animation B (style motion).

Additionally, for each participant, the tasks are shown in random order.

The participants could also rotate the camera along the vertical axis and zoom

in or out. This feature was crucial for participants to explore the animations in

more depth, as some di�erences or details might not be immediately noticeable

when viewing the animation from a static perspective.

The P-GeNeMF model could transfer personalities between motions by switch-

ing their personality latent codes (zp). We followed a simple approach to modulate

the motion using the handcrafted tool. Since the personality labels were not ex-

plicitly de�ned, we manually adjusted each LMA parameter to match Animation

A's e�ort parameters with those of Animation B.

4.1.2 Study 2

In Study 2, we attempted to modify each personality trait in both positive and

negative directions for Animation A to evaluate the e�ectiveness of the models.

For each personality trait T , we selected two animations with neutral values for

the trait. These two animations were then altered in the T+ and T− directions,

resulting in 20 animations for both models.

Similar to Study 1, participants rated the perceived personality of the samples

using sliders measuring the OCEAN personality traits across �ve dimensions and

the realism (human-likeness) of each motion. Twenty tasks were presented in

this study, each containing three randomly arranged animations: Animation A
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(GT), the result of the handcrafted modulation tool, and the result of P-GeNeMF.

Additionally, for each participant, the tasks are shown in random order. Again,

as in the previous study, the cameras were rotatable, allowing participants to

explore the animations from di�erent angles.

The results of the P-GeNeMF model were generated by preserving the content

latent code (zc) and modifying the target personality trait by either -3 or 3,

depending on the direction. We employed the Laban E�ort - OCEAN correlation

as described in [5] to modulate the motion using the handcrafted tool. The

correlations can also be seen in Table 4.1

Table 4.1: The Laban E�ort - OCEAN correlations based on the �ndings of [5]. A
�+� indicates a positive correlation, while a �−� represents a negative correlation
between the E�ort Parameter and the corresponding OCEAN trait. Empty cells
show that the e�ort parameter does not a�ect the trait.

Space Weight Time Flow

Openness − −
Conscientiousness + − +
Extraversion − + −
Agreeableness − −
Neuroticism − + −

4.1.3 Study 3

The �nal study focused on the content, style, and personality resemblance of

character animations. Each participant was asked to compare Animation A (con-

tent motion), the result of P-GeNeMF, and Animation B (personality motion).

They evaluated the CENTER animation (P-GeNeMF) by comparing it with A

and B. Each ground truth motion was randomly arranged.

For the animation samples, we used the same ones from Study 1. There were

twenty tasks, and for each task, the participants adjusted horizontal sliders to

indicate their choices for each criterion: content, style, and personality. Like in
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studies 1 and 2, the tasks are shown in random order for each participant.

4.2 Results and Discussion

4.2.1 Study 1

A total of 44 unique users participated in Study 1. Between 22 and 23 di�erent

participants rated each sample. Initially, we did not have personality labels for

the pairs of animations (Animation A and B). Therefore, we used the OCEAN

personality values obtained from the experiment for each pair. After collecting

these values, we categorized the pairs into groups based on individual personality

traits. The OCEAN traits of the animation pairs determined each group. Ani-

mations were classi�ed as low (L), neutral (N), or high (H) for each trait. The

groups were created from all possible combinations of these classi�cations (e.g.,

L-L, L-N, and L-H); there can be at most nine groups for each OCEAN trait.

Table 4.2: Sample classi�cations based on OCEAN traits. Each sample is cate-
gorized as `Low,' `Neutral,' or `High' for a speci�c trait, depending on where its
value falls within the de�ned range. The values for each trait are assigned to one
of these three categories based on the range boundaries, where rs and re represent
the start and end of the range, respectively.

Traits O C E A N

Classes rs re rs re rs re rs re rs re

Low -1.405 -0.260 -1.290 -0.281 -2.040 -0.507 -0.750 0.265 -1.603 -0.777
Neutral -0.260 0.885 -0.281 0.727 -0.507 1.031 0.265 1.280 -0.777 0.048
High 0.885 2.031 0.727 1.735 1.031 2.570 1.280 2.296 0.048 0.874

Table 4.2 provides the details of the classi�cation ranges for each OCEAN

trait. These classi�cations result in varying numbers of groups for each trait.

There are six distinct groups for openness and �ve groups for extraversion. Con-

scientiousness, agreeableness, and neuroticism each have seven distinct groups.
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To determine the ranges for each OCEAN trait, we �rst calculated the mean

values of Animation A and B for each sample. From these mean pairs, we iden-

ti�ed the minimum and maximum values. These values were then divided into

three equal parts to de�ne the range for each sample classi�cation.

From the same table, we can also observe that each OCEAN trait has distinct

classi�cation ranges. These di�erences can be highlighted by calculating the gap

between the re value of `High' and the rs value of `Low.' Among the traits,

extraversion (E) has the largest range, while neuroticism (N) has the smallest.

This variability shows that analyzing the samples by these groups was necessary

to accurately re�ect the variations in each trait and provide more reliable results.

Each pairwise comparison �gure presents distinct groups for the speci�c per-

sonality trait. In these �gures, each group displays the distribution of generated

results, including content motion (A) and personality motion (B). For each gener-

ated result, we aim to observe the mean value between A and B, with a preference

for values closer to B. Between the two generated results, the one closer to B for

a given personality trait can be considered more successful in that context.

The analysis of the openness trait, as shown in Figure 4.1, reveals distinct per-

formance di�erences between the data-driven model (NeMF) and the handcrafted

tool (HC). In the �High-Low,� �High-Neutral,� and �Neutral-Neutral� groups,

NeMF successfully transfers the target personality (B), outperforming HC. The

handcrafted tool is notably e�ective only in the �High-Low� group. The pairwise

comparisons (cf. Table 4.3) support these �ndings, where the signi�cance value

(p) con�rms that the mean di�erences between B-NeMF and B-HC in the �High-

Low� group are not coincidental. This observation suggests that both models

perform well in this group, though the data-driven approach is generally more

e�ective.

For the conscientiousness trait, displayed in Figure 4.2, both models exhibit

reasonable performance, particularly when transferring a higher trait level to

a lower one. In the �Low-Neutral� group, both data-driven and handcrafted

methods successfully raise the trait level, indicating that a smaller gap between
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Figure 4.1: Box-plots for pairwise comparisons of the openness groups (Study 1).

extremes enhances transferability. The pairwise comparisons demonstrate signif-

icant mean di�erences between the target personality distribution and the hand-

crafted method in the �Neutral-Low,� and �High-Low,� groups, showing that both

models perform e�ectively in these cases.

When examining the extraversion trait in Figure 4.3, it is clear that both

data-driven and handcrafted methods perform well in transferring the trait to

a lower level across most groups. This observation is validated by the p values

in the pairwise comparisons, which suggest signi�cant di�erences in all groups

except the �Neutral-Neutral� case for the data-driven approach. Interestingly,

in the �Neutral-Neutral� group, the data-driven approach surpasses the target

distribution, suggesting that while the model performs well, adjustments may be

necessary in cases where the target trait remains constant. This problem could

be addressed by �ne-tuning the scales between the two personality latent vectors

to minimize such discrepancies.

Figure 4.4 shows that the results for the agreeableness trait follow a similar

trend to those seen with other personality traits, where both models perform well
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Figure 4.2: Box-plots for pairwise comparisons of the conscientiousness groups
(Study 1).
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Figure 4.3: Box-plots for pairwise comparisons of the extraversion groups
(Study 1).
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when tasked with decreasing the trait. The data-driven method appears more

e�ective than the handcrafted tool in these cases. The p values from the pairwise

comparisons indicate that the di�erences between the target personality and the

data-driven approach are statistically signi�cant, except in the �High-Neutral�

group. This observation suggests that the data-driven consistently produces more

accurate personality transfers, emphasizing its potential over the handcrafted

method in most scenarios.
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Figure 4.4: Box-plots for pairwise comparisons of the agreeableness groups
(Study 1).

Figure 4.5 shows that increasing the neuroticism trait can be done more ac-

curately than decreasing it for both methods. The pairwise comparisons con�rm

this, as the p values show signi�cant mean di�erences between the generated re-

sults and the target personality in the �Low-High� group. Additionally, the �gure

shows that in the �Low-Neutral� group, the handcrafted method more closely

aligns with the target personality. At the same time, the data-driven model over-

shoots the intended mean, again highlighting a potential need for adjustment in

the data-driven approach when transferring traits to more moderate levels.

Based on the �ndings across all traits, a consistent pattern emerges regarding
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Table 4.3: Pairwise comparisons of OCEAN trait groups and the corresponding
ANOVA statistics for Study 1. Bold values show p < 0.05. The mean di�erences
are calculated by subtracting the second pair (Y) from the �rst (X), where the
paired label is shown as X-Y.

Openness

Pairs A-B A-HC A-NeMF B-HC B-NeMF HC-NeMF

Groups M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p

High-Neutral -1.117 < .001 -0.009 .999 -0.678 < .001 1.108 < .001 0.438 .057 -0.670 < .001

High-High 0.967 .040 -0.492 .516 -0.022 < .001 -1.459 < .001 -0.989 .034 0.470 .554
High-Low -2.558 < .001 -0.698 .018 -1.226 < .001 1.860 < .001 1.331 < .001 -0.529 .116
Neutral-High 0.938 < .001 -0.059 .984 -0.647 < .001 -0.997 < .001 -1.585 < .001 -0.588 .002

Low-High 2.293 < .001 0.388 .429 -0.157 .928 -1.905 < .001 -2.450 < .001 -0.545 .147
Neutral-Neutral -0.381 .574 0.233 .861 -0.583 .206 0.615 .167 -0.201 .905 -0.816 .033

Conscientiousness

Pairs A-B A-HC A-NeMF B-HC B-NeMF HC-NeMF

Groups M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p

Neutral-High 1.019 < .001 -0.491 .198 -0.669 .037 -1.510 < .001 -1.688 < .001 -0.178 .890
Neutral-Low -1.206 < .001 -0.406 .427 -0.986 .002 0.800 .016 0.221 .842 -0.579 .136
Neutral-Neutral 0.119 .962 -0.468 .222 -0.602 .067 -0.587 .078 -0.721 .018 -0.134 .946
High-Neutral -1.194 < .001 -0.902 .015 -0.895 .016 0.291 .761 0.298 .749 0.006 .999
High-Low -1.584 < .001 -0.304 .494 -1.160 < .001 1.280 < .001 0.424 .202 -0.856 < .001

Low-Neutral 1.021 .013 0.173 .954 0.580 .300 -0.848 .055 -0.441 .545 0.407 .610
Low-High 1.488 < .001 0.025 < .001 -0.794 .004 -1.463 < .001 -2.283 < .001 -0.820 .003

Extraversion

Pairs A-B A-HC A-NeMF B-HC B-NeMF HC-NeMF

Groups M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p

Neutral-High 1.716 < .001 0.091 .912 -0.707 < .001 -1.624 < .001 -2.422 < .001 -0.798 < .001

High-Low -2.960 < .001 -0.377 .250 -1.195 < .001 2.582 < .001 1.764 < .001 -0.818 < .001

Low-High 3.268 < .001 0.374 .453 -0.241 .778 -2.894 < .001 -3.509 < .001 -0.615 .075
Neutral-Neutral -1.264 .005 0.038 < .001 -1.747 < .001 1.302 .004 -0.483 .563 -1.785 < .001

High-Neutral -1.592 < .001 -0.181 .755 -1.095 < .001 1.412 < .001 0.498 .034 -0.914 < .001

Agreeableness

Pairs A-B A-HC A-NeMF B-HC B-NeMF HC-NeMF

Groups M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p

Neutral-High 1.262 < .001 -0.419 .382 0.015 < .001 -1.681 < .001 -1.247 < .001 0.434 .351
Low-High 2.110 < .001 0.353 .256 0.059 .990 -1.757 < .001 -2.051 < .001 -0.294 .418
High-Neutral -1.070 < .001 -0.347 .565 -0.908 .005 0.723 .037 0.162 .930 -0.561 .156
Low-Low -0.082 .992 0.063 .996 -0.452 .392 0.145 .957 -0.370 .567 -0.515 .275
Neutral-Low -1.376 < .001 0.035 .999 -0.481 .214 1.411 < .001 0.895 .002 -0.516 .162
Low-Neutral 0.906 .001 0.192 .861 -0.282 .654 -0.714 .019 -1.188 < .001 -0.474 .212
High-Low -2.157 < .001 -0.553 .036 -1.432 < .001 1.603 < .001 0.724 .003 -0.879 < .001

Neuroticism

Pairs A-B A-HC A-NeMF B-HC B-NeMF HC-NeMF

Groups M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p M. Di�. Adj. p

High-Low -1.746 < .001 -0.1616 .952 -0.203 .910 1.584 < .001 1.542 < .001 -0.042 .999
Low-High 1.644 < .001 0.421 .177 1.033 < .001 -1.223 < .001 -0.611 .018 0.612 .017

High-Neutral -0.338 .726 0.117 .984 0.806 .066 0.454 .501 1.143 .003 0.689 .149
Neutral-Low -0.646 .024 0.380 .337 0.823 .001 1.026 < .001 1.470 < .001 0.443 .207
Low-Neutral 1.032 .016 0.870 .059 1.382 < .001 -0.162 .966 0.350 .740 0.512 .449
Neutral-High 0.874 .001 0.060 .994 1.021 < .001 -0.814 .003 0.147 .922 0.961 < .001

Neutral-Neutral -0.340 .659 -0.019 < .001 0.323 .695 0.321 .699 0.663 .116 0.342 .655
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Figure 4.5: Box-plots for pairwise comparisons of the neuroticism groups
(Study 1).

the e�ectiveness of the data-driven model and the handcrafted tool. Generally,

both methods perform well when tasked with decreasing a personality trait. This

observation also holds for neuroticism when viewed as emotional stability, which

can be considered the inverse of neuroticism. However, the data-driven model

consistently shows greater accuracy and success in most cases, particularly when

signi�cant trait changes are required. For instance, NeMF performs better when

transferring traits from higher to lower levels, whereas the handcrafted tool tends

to be more limited in scope.

Another recurring theme is that while the data-driven method generally pro-

duces more precise results, it sometimes overshoots the target in cases where the

goal is to maintain or slightly adjust a trait, as seen in the �Neutral-Neutral� cases

for extraversion. This observation suggests that while the data-driven model is

more versatile and practical overall, it may require scale adjustments for moderate

personality shifts to avoid exceeding the intended target.

In summary, the data-driven model outperforms the handcrafted tool across
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most personality traits, particularly when signi�cant trait shifts are needed. How-

ever, both models demonstrate strengths in reducing traits, with the data-driven

being more promising in handling diverse personality transfer tasks.

Figure 4.6 demonstrates that the handcrafted model typically produces more

realistic results than the data-driven approach. This discrepancy may explain

why the data-driven model struggles when transferring traits from low to high

levels. The handcrafted method's focus on realism may contribute to its success in

maintaining a more authentic appearance, particularly in these more challenging

trait transformations.
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Figure 4.6: Boxplots showing the realism of generated animations in Study 1.
Lower realism values indicate that users perceive the animations as less realistic.

4.2.2 Study 2

A total of 35 unique users participated in Study 2. Between 19 and 21 di�erent

participants rated each sample. Figures 4.7 to 4.11 show the trait di�erences

for each sample between the generated animations and the ground truth. The

samples are named as T sign
i , where T represents the trait intended to be altered,

and sign indicates the direction of the change for that trait. A positive di�erence

value in the �gures suggests that the generation method increased that trait,

whereas a negative di�erence decreased it. A generation method can be con-

sidered successful if it modi�es only the target trait without a�ecting the other

traits.

As depicted in Figure 4.7, both models struggled to increase openness when
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Figure 4.7: Openness di�erences for each sample between the generated anima-
tions and the ground truth (Study 2).

it was intended (O+
i ). However, the data-driven model outperformed the hand-

crafted one when the goal was to reduce openness (O−
i ). Moreover, the data-

driven model usually preserved openness better than its handcrafted counterpart

in cases where other traits were being modi�ed.
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Figure 4.8: Conscientiousness di�erences for each sample between the generated
animations and the ground truth (Study 2).

Figure 4.8 shows that the results were mixed between the two models for consci-

entiousness. The data-driven model outperforms at increasing conscientiousness

in the �rst sample, while the handcrafted model performs better in the second

sample. This pattern also appeared when conscientiousness was meant to be

decreased. For other samples, excluding those targeting changes in extraversion

and neuroticism, both the handcrafted and data-driven methods produced similar

results. However, the data-driven model better preserved the conscientiousness

trait for the samples where extraversion and neuroticism were modi�ed.

Looking at Figure 4.9, handcrafted animations were more e�ective at chang-

ing the extraversion trait than the data-driven method in the samples aimed at
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Figure 4.9: Extraversion di�erences for each sample between the generated ani-
mations and the ground truth (Study 2).

modifying extraversion. Likewise, for other traits intended to be modi�ed, ex-

cept for conscientiousness and neuroticism, the handcrafted model was better at

preserving the extraversion trait.

The data-driven method was more e�ective than the handcrafted one at chang-

ing agreeableness, except for sample A+
1 (see Figure 4.10). For other traits in-

tended to be altered, the results for preserving agreeableness were mixed between

the handcrafted and data-driven methods.
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Figure 4.10: Agreeableness di�erences for each sample between the generated
animations and the ground truth (Study 2).

Figure 4.11 shows that the handcrafted method is more e�ective at altering

neuroticism than the data-driven method. For other traits intended to be altered,

both models have mixed results when preserving the neuroticism trait. Notably,

changing extraversion with the handcrafted method increases total neuroticism.

Figure 4.12 shows the boxplot depicting the realism of each animation sample

generated for Study 2. Compared to the realism of generated animations in
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Study 1 (cf. Figure 4.6), it is seen that only altering one personality trait reduces

the result of the realism in our case.
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Figure 4.11: Neuroticism di�erences for each sample between the generated ani-
mations and the ground truth (Study 2).
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Figure 4.12: Boxplots showing the realism of generated animations in Study 2.
Lower realism values indicate that users perceive the animations as less realistic.

The data-driven method was better at altering agreeableness, whereas the

handcrafted method was better at changing extraversion and neuroticism. This

di�erence can result from changing the Space and Flow factors inside the hand-

craft method. Referring back to Table 4.1, the e�ect of these factors can be more

accurately represented in the handcrafted method than in the data-driven ap-

proach. Finally, in animations generated with the data-driven approach, chang-

ing the conscientiousness a�ected the other traits less than in the animations

generated with the handcrafted method.
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4.2.3 Study 3

Study 3 had a total of 27 unique participants, with each sample rated by 22 or 23

di�erent individuals. Figure 4.13 shows that transferring personalities between

animations with similar content is perceived more positively than transferring

personalities between animations with di�erent content.

Personality Style Content
A

B Transfer Between Different Contents

Personality Style Content
A

B Transfer Between Similar Contents

Figure 4.13: The results of Study 3. The plots show the distributions of users'
choices. A distribution closer to Animation A or B indicates similarity to that
animation for the given criterion. The left �gure shows the distributions for
personality transfer between animations with similar content, while the right
shows distributions for transfers between animations with di�erent content.

Table 4.4: Pairwise comparisons and the corresponding ANOVA statistics for
Study 3. Bold values show p < 0.05. The mean di�erences are calculated by
subtracting the second pair (Y) from the �rst (X), where the pairs are shown as
X-Y.

Groups
Di�. Cont. Sim. Cont.

M. Di�. Adj. p M. Di�. Adj. p

Content-Personality 1.278 < .001 0.738 < .001

Content-Style 0.879 < .001 0.534 < .001

Personality-Style -0.399 .047 -0.204 .310

The results depicted in Figure 4.13 and Table 4.4 and our prior user studies

demonstrate that our model e�ectively transfers personalities without changing

the style or content of the animations. While Figure 4.13 suggests that the

personalities are not transferred, the �ndings from our previous user studies con-

tradict this outcome. This discrepancy may be attributed to the vagueness of
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the personality-related questions posed in user study three, potentially leading to

varied participants' interpretations.

4.3 Ablation Study

For the ablation study, we evaluate di�erent model versions' reconstruction, syn-

thesis, and personality recognition capabilities. To assess motion reconstruction,

we calculate the geodesic distance for joint rotations (Rot) and the L1 distance

for joint positions (Pos) between the validation set and the reconstructed anima-

tion.

The synthesis capabilities of our various models are evaluated by comparing

Fréchet Inception Distance (FID) [47] and Diversity (Div) [48]. The FID mea-

sures the similarity between the distributions of features extracted from generated

animations and real animations. A lower FID score indicates that the generated

animations are more similar to the ground truth animations. Diversity mea-

sures the variance among the generated animations, with higher scores indicating

greater diversity. Like He et al. [27], we utilize a pre-trained global and local fea-

ture extractor to obtain motion features from both real and generated motions for

FID and diversity measurements. This feature extractor is a regular auto-encoder

with a similar architecture to GeNeMF. To compute these metrics, we �rst gen-

erate random motions using di�erent P-GeNeMF models and then extract the

motion features using the feature extractor. FID is calculated by measuring the

Fréchet distance between the feature distributions of generated and real anima-

tions. Diversity is calculated by partitioning the features of generated animations

into two sets and computing the mean Euclidean distance between these sets of

feature vectors.

Additionally, we compare the performance of the personality encoder of the

di�erent models. We use the mean-squared error (MSE) of individual personality

traits and their averages. We calculate the trait errors only from labeled validation

animations. Lower MSE error means that the personality encoder can better
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recognize the animation's personality.

We compare �ve di�erent versions of our model,

� P-GeNeMF full consistency : Similar to our model, however, the content

embedding zc is not detached from the input of the personality consistency

path and remains unchanged.

� P-GeNeMF without personality consistency : A version where the personal-

ity consistency loss is disabled.

� P-GeNeMF without cycle consistency : Our model without the cycle consis-

tency between A and Â3.

� P-GeNeMF without discriminator : A version of our model where the ad-

versarial loss is removed.

� P-GeNeMF supervised : Similar to our model, but without semi-supervised

training where only labeled data is used for training.

Table 4.5 shows the results of our ablation study. P-GeNeMF demonstrates

the best motion reconstruction and synthesis results among the di�erent vari-

ants. P-GeNeMF without personality consistency achieves the best performance

in personality recognition but has weaker motion reconstruction and synthesis

performance. P-GeNeMF supervised shows a good personality performance; how-

ever, it has the highest reconstruction loss, emphasizing the importance of our

semi-supervised training approach.

Table 4.5: Results of our ablation study. Arrows next to the metrics indicate the
direction of better performance.

Motion Rec. Motion Syn. Personality Recognition
Models Rot↓ Pos↓ Div↑ FID↓ O↓ C↓ E↓ A↓ N↓ Avg↓
full consistency 0.337 0.036 7.035 0.644 1.930 4.733 2.271 2.714 5.900 3.509
w/o personality consistency 0.387 0.045 8.097 0.715 1.667 3.315 1.026 1.858 3.955 2.364

w/o cycle consistency 0.370 0.040 9.450 0.516 2.387 4.616 2.861 2.427 5.358 3.530
w/o discriminator 0.356 0.038 8.594 1.213 1.877 3.315 2.392 2.601 5.442 3.125
supervised 0.622 0.077 7.353 1.114 2.541 3.496 1.526 2.785 4.768 3.023
P-GeNeMF 0.327 0.035 10.208 0.456 2.406 4.552 2.493 3.377 6.319 3.829
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One interesting observation from the ablation study is that the generally high

loss for the openness and neuroticism traits may be due to the solely motion-

based nature of the data. Personality recognition results from Erkoc et al. [7] also

show low performance for these traits. Additionally, in our labeling process, the

standard deviation of the openness and neuroticism labels is high (see Figure 3.2),

which might suggest that discerning these traits from motion alone is particularly

challenging.
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Chapter 5

Conclusion

This thesis explores and compares two methods for transferring personality traits

in animation: the handcrafted Laban Movement Analysis-based approach and

a data-driven deep learning model, P-GeNeMF. The results demonstrate that

both methods have unique strengths. The handcrafted approach produces realis-

tic animations, speci�cally when transforming traits between extreme levels. In

contrast, the data-driven method, P-GeNeMF, shows greater �exibility and e�ec-

tiveness in transferring a more comprehensive range of personality traits, albeit

with occasional overshooting in trait moderation.

Through comprehensive user studies and evaluations, it becomes evident that

data-driven approaches hold signi�cant promise for scalable, automated person-

ality modulation in animated characters, while handcrafted techniques remain

valuable for achieving nuanced realism. As a potential future work, the hand-

crafted modulation tool could augment the dataset, thereby increasing its size and

potentially enhancing the training of data-driven models. Additionally, improv-

ing the performance of the data-driven model could involve incorporating more

labeled animations and adapting paired comparison-based labeling processes to

reduce label variability. Moreover, state-of-the-art style transfer approaches de-

signed for NeRFs, such as [49, 50], could be adapted for the animation domain

to re�ne further and enhance the quality of the animations.
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Appendix A

User Study

We provide the screenshots of each user study. Figure A.1 shows a screenshot from

Study 1. The aim of this study is to demonstrate the e�ectiveness of our hand-

crafted modulation tool and data-driven method in in�uencing the personality of

content animation when transferring personality traits from personality anima-

tion. The participants compare four di�erent animations: the content animation,

the result of the handcrafted method, the result of the data-driven method, and

the personality animation. There exist twenty tasks and six questions for each

task. The screenshot shows only the �rst question in the �rst task. Each task is

assigned randomly to a participant.

Figure A.2 shows a screenshot from Study 2. The aim is to modify each

personality trait in both positive and negative directions for content animation

to evaluate the e�ectiveness of the handcrafted tool and data-driven approach.

The participants compare three di�erent animations: the content animation, the

result of the handcrafted method, and the result of the data-driven method.

Again, there exist twenty tasks and six questions for each task. The screenshot

shows only the fourth question in task one. Each task is assigned randomly to a

participant, as in Study 1.

Figure A.3 depicts a screenshot from Study 3. This study focused on the
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content, style, and personality resemblance of character animations. The par-

ticipants compare three di�erent animations: the content animation, the result

of the data-driven method (the center animation), and the personality anima-

tion. There exist twenty tasks and three questions for each task. The screenshot

shows the �rst task. Like in other studies, each task is assigned randomly to a

participant.
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