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ABSTRACT

HARDWARE-ACCELERATED DIRECT
VISUALIZATION OF UNSTRUCTURED

VOLUMETRIC MESHES

Alper Şahıstan
MS in Computer Engineering

Advisor: Uğur Güdükbay
July 2022

Computational fluid dynamic simulations often produce large clusters of finite ele-
ments with non-trivial, non-convex boundaries and uneven distributions among com-
pute nodes, posing challenges to compositing during interactive volume rendering.
Correct, in-place visualization of such clusters becomes difficult because viewing rays
straddle domain boundaries across multiple compute nodes. We propose a GPU-based,
scalable, memory-efficient direct volume visualization framework suitable for in situ
and post hoc usage. Our approach reduces memory usage of the unstructured volume
elements by leveraging an exclusive or-based index reduction scheme and provides
fast ray-marching-based traversal without requiring large external data structures built
over the elements. Moreover, we present a GPU-optimized deep compositing scheme
that allows correct order compositing of intermediate color values accumulated across
different ranks that works even for non-convex clusters. Furthermore, we illustrate
that we can achieve secondary effects such as shadows and gradient shading using our
method for single GPU setups. Our approach scales well on large data-parallel sys-
tems and achieves interactive frame rates during visualization. We can interactively
render Fun3D Small Mars Lander (14 GB / 798.4 million finite elements) and Huge
Mars Lander (111.57 GB / 6.4 billion finite elements) data sets at 14 and 10 frames
per second using 72 and 80 GPUs, respectively, on the Frontera supercomputer at The
Texas Advanced Computing Center (TACC).

Keywords: Direct volume visualization, unstructured volumetric mesh, ray tracing, ac-
celeration structure, tetrahedralization, bounding volume hierarchy, k-d tree, hardware-
acceleration, Graphics Processing Unit.
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ÖZET

DÜZENSİZ HACİMSEL AĞLARIN DONANIMSAL
HIZLANDIRICI YÖNTEMLERİ İLE DOĞRUDAN

GÖRÜNTÜLENMESİ

Alper Şahıstan
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Uğur Güdükbay
Temmuz 2022

Hesaplamalı akışkan dinamiği simülasyonları genellikle büyük, karmaşık ve dış bükey
yapıda olmayan sonlu eleman kümeleri üretir. Bu verilerin dağıtık sistemlerde inte-
raktif doğrudan hacim görüntülenmesi esnasında hesaplama düğümleri arasında mey-
dana gelen adil olmayan iş bölümü, elde edilen kısmi çözümlerin birleştirilmesi
aşamasında sorun teşkil edebilir. Bu tarz durumlarda görüntülenmek isteyen hacim
modelleri için doğru ve yerinde çalışan bir yöntem önermek ışın takibi yapılırken
ışınların küme sınırları arasında farklı hesaplama düğümlerine erişmelerinden ötürü
zor bir süreçtir. Bu tezde Grafik İşlemci Ünitesi tabanlı, ölçeklenebilir, hafıza verimi
yüksek bir doğrudan hacim görselleştirme yöntemi sunuyoruz. Bu yöntem hem simü-
lasyon yeri ve anında, hem de sonrasında kullanım için tasarlanmıştır. Yaklaşımımız
XOR-tabanlı sıkıştırma tekniklerini kullanarak düzensiz hacim elemanlarının bellek
kullanımını azaltmakta ve büyük hierarşik yapılarak gerek kalmadan hızlandırılmış
ışın yürüyüşü sağlamaktadır. Ayrıca, bu karmaşık dış bükey yapıda olmayan ağların
ışın yürüyüşü sırasında elde edilen kısmi çözümleri (renk değerleri) birleştiren “derin-
birleştirici” algoritması sunulmuştur. Buna ek olarak, önerilen yöntemin tek ekran kartı
ile çalışan bir senaryoda ikincil efektlerin kullanımına uygun olduğu gösterilmektedir.
Yöntemimiz büyük veri-paralel sistemlerde iyi bir şekilde ölçeklenebilmekte ve inte-
raktif hızlarda görüntü alabilmektedir. Fun3D’nin Küçük Mars İniş Aracı (14GB /
798.4 milyon eleman) ve Devasa Mars İniş Aracı (111.57GB / 6.4 milyar eleman)
modellerini sırasıyla saniyede 14 ve 10 kare olarak görüntüleyebilmektedir. Bu perfor-
mansa Texas Advanced Computing Center (TACC)’da yeralan Frontera süper bilgisa-
yarında küçük model için 72, devasa olan için 80 GPU kullanılarak erişilmiştir.

Anahtar sözcükler: Doğrudan hacim görüntüleme, düzensiz hacimsel ağ, ışın izleme,
hızlandırıcı yapısı, dörtyüzleme, sınırlayıcı hacim hiyerarşisi, k-d ağacı, donanımsal
hızlandırıcı, grafik işlemci ünitesi.
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Chapter 1

Introduction

With the increasing computation power over the years, computational fluid dynamic

(CFD) simulations have become more complex. To understand the underlying phe-

nomena, scientists rely on scientific visualization methods. One of the most popular

visualization methods is direct volume rendering (DVR). A robust way to achieve DVR

is to utilize ray-tracing, where view-aligned rays are traced through the volume sam-

pling scalar values stored within volume elements. Ray-tracing is embarrassingly par-

allel and allows for secondary effects such as ambient occlusion or single or multiple

scattering. These effects usually convey more information to users about the visual-

ization by giving depth cues and occlusion. From improved divergence handling to

built-in ray-tracing (RT) cores, recent advancements in the Graphics Processing Units

(GPU) open many possibilities in terms of applications of DVR. Nevertheless, single-

node visualization techniques stop offering feasible solutions with the increasing sizes

of simulations. For these reasons, many modern visualization systems rely on dis-

tributed rendering solutions that can achieve ray-traced effects.

Contemporary large-scale volumetric simulations often operate over unstructured
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meshes, as individual elements can be adaptively distributed. These distributions en-

sure detailed regions receive more elements while less critical areas receive fewer ele-

ments, thus increasing accuracy while preserving the memory when necessary. How-

ever, as these meshes bend and twist around to achieve this flexibility, implement ro-

bust algorithms to traverse and store these meshes. Moreover, many of these meshes

produce non-convex or non-trivially shaped boundaries that present difficulties for

some visualization algorithms. Many simulation data represent their unstructured ge-

ometry with tetrahedra to maintain algorithmic simplicity, but it often produces a high

memory footprint to keep many smaller elements rather than a few larger elements.

Hence, extensive CDF simulations construct their geometry using mixed elements like

tetrahedra, pyramids, wedges, and hexahedra.

A popular way to traverse through these unstructured volumes is using ray-marching

via connectivity. This approach uses view-aligned rays to sample volumes while inter-

secting individual faces of elements to jump to the next element in succession. With

the added benefit of not using external hierarchical data structures like Bounding Vol-

ume Hierarchy (BVH) or KD-tree, the ray-marchers that can handle mixed element

unstructured meshes with non-convex boundaries are particularly appealing.

Although memory bandwidth and sizes have significantly increased over the years,

it has not been at the same level as the compute power. Supercomputer systems that

solve large-scale simulations tend to distribute their memory across nodes to fully uti-

lize the underlying compute power, which requires data-parallel processing. Due to

the sheer size of the simulation data, time and effort put into one compute round can

be tremendous. For this reason, simulation frameworks often implement in situ visu-

alization and steering to tap into a running simulation. However, distributing portions

of the topology and running parallel rendering runs requires each partial image gener-

ated to be combined. The standard way to achieve a final image is via compositing,

yet as mentioned before, some clusters of unstructured meshes come with non-convex

boundaries, making the composting process challenging. Since CFD simulations tend

to take up a significant amount of resources and redistributing data is infeasible due to

high I/O costs, interactive, lightweight, correct, and in-place visualization algorithms

have become necessary.
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This work explores a data-parallel GPU-based in situ DVR framework that can

interactively render large-scale mixed element volumetric datasets with non-convex

boundaries. Our contributions mostly accumulate in [1] and [2]. More specifically, we

present:

• a compact, cache- and GPU-friendly memory layout that facilitates fast ray-

element intersection and efficient traversal;

• a shell-to-shell traversal scheme that allows robust entry through convex and

non-convex boundaries of clusters, non-common-origin rays;

• an extension that allows secondary effects like ray-traced shading, shadows, or

ambient occlusion to be applied on meshes that fit into a single GPU;

• a GPU-optimized deep compositor that supports convex and non-convex geom-

etry with proper depth ordering.

With our framework, we observe significant memory savings provided by our geom-

etry compaction scheme. We also observe interactive rates while correctly rendering

large-scale data sets on the simulation system’s native distributions. Although most

communications between nodes occur during our fragment compositing step, increas-

ing the compute node count does not significantly impact the overall compositing time,

which tells us our compositing method scales well. We achieve interactive framerates

(10-15 frames per second) for reasonably large data sets while using the native distri-

butions of their respective simulations.

The organization of this thesis is as follows. Related work on direct volume ren-

dering alongside similar approaches is given in Chapter 2. Our volume integrator and

its novelties are given in Chapter 3. We describe a deep-compositor that works with

convex and non-convex meshes in Chapter 4. We present and discuss our experimental

results in Chapter 5. Chapter 6 concludes and provides further research directions.
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Chapter 2

Background and Related Work

2.1 Unstructured Volume Rendering

There are variety of techniques proposed for rendering unstructured meshes [3, 4, 5, 6].

The two popular schools of visualizing unstructured volumes are point-query sam-

pling, e.g., [7] and ray-marching [8].

Traditional point-query sampling casts rays using external acceleration structures

built over individual volume elements like KD-trees or bounding volume hierarchies

(BVH) to take samples at determined coordinates. Using point-query sampling offers

advantages like adaptive sampling and space skipping techniques. Rathke et al. [9]

speeds up the element look-up processes using a min/max BVH. Wald et al. [10] ex-

ploit NVIDIA’s ray-tracing (RT) cores for point location queries on tetrahedral meshes.

Extention of this work is proposed by Morrical et al. [7] where queries can handle all

unstructured elements. These approaches can produce quick but noisy results that can

converge over time. To further accelerate convergence times and pick necessary sam-

ples, adaptive sampling strategies [11, 12], or empty space skipping [13, 14] can be

utilized. Morrical et al. show that empty space skipping and adaptive sampling [15]

can be accelerated via the RTX hardware. These techniques prove helpful in many vi-

sualization scenarios; however, waiting for convergence for a clean-looking image and
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usage of auxiliary hierarchical structures makes these approaches less attractive for

other needs, such as in situ visualization, where partial images are composited while a

running simulation throttles computing and memory resources.

Conventional ray-marching techniques calculate individual pixel colors by access-

ing all volume elements in visibility-ordering without external acceleration structures.

Marching is performed via visibility sorting or element connectivity. Shirley and Tuch-

mann [8] is a well-known rasterization-based method for tetrahedral mesh rendering.

Due to the high cost of sorting that incurs every time viewing angle changes, many

researchers turned their interests to traversal via connectivity. A recent method by

Aman et al. [16, 17] explores a tetrahedra traversal algorithm that reduces memory

consumption and instruction count introduced by intersection tests. Although these

works propose solutions for pure tetrahedral meshes, Muigg et al. [6] addresses the

problem of rendering mixed element meshes that includes other element types than

tetrahedra. Their work can handle non-convex bounding geometry by storing compact

face-based connectivity lists and projecting vertices to a ray-centric coordinate system

for intersections. For some ray-marching applications finding the first element where

the ray first enters the volume may be required to start the marching; Sahistan et al. [2]

describe doing this with RTX hardware by building a BVH over the shell and tracing

rays.

Since many CFD simulations already maintain a connectivity list or a connectivity

matrix for their elements, ray-marchers that can leverage those already present lists are

particularly appealing for in situ purposes.

2.2 Secondary Effects

Secondary effects such as ambient occlusion, shadows, shading, and border contours

improve perception and visualization quality. These effects usually require tracing

secondary rays, cast after primary rays interact with the scene geometry. These sec-

ondary rays, unlike primary rays, are arbitrary and incoherent; achieving these effects

in raster-based pipelines is challenging [18] and often requires extra raster passes.
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Volumetric shadows and ambient occlusion(AO) are secondary effects that increase

depth perception. When combined, these effects can create soft-looking shadows as

well. We use the standard ray traced AO method, proposed in [19, 20].

Volumetric gradient shading is also a well-known technique where a normal to a

given sample point is calculated alongside its color and transparency. The local shading

underlying the phenomena can be achieved using the normal direction. Although there

are various ways to calculate this normal direction, we utilize central differences [21,

22, 23].

2.3 Data-parallel Rendering

For the massive simulations that cannot fit into a single compute node, parallelization

comes to the rescue. Various works are proposed to distribute partitions of the simula-

tion data over a many-cluster environment. Distributing data pieces (clusters) between

nodes (i.e., data-parallel rendering or sort-last) is a popular method employed by recent

works [24, 25]. Work-load can also be distributed in an image plane where pixel re-

gions are assigned to different compute nodes [26, 27]. These methods are often called

image-order partitioning or sort-first. There are also hybrid approaches [28, 29], which

aim to address load-balancing issues by leveraging both perspectives.

The approaches that distribute clusters across compute nodes allow static and non-

replicated geometry assignment. The main caveat with these techniques is that partial

images generated by each cluster need to be composited to create a final image. Al-

though static geometry assignment makes sort-last methods popular, correct and ef-

ficient compositing remains challenging. This challenge is very much the case for

image-based compositors like IceT[30, 31], which produce a single intermediate im-

age per node, which is unsuitable for clusters with non-convex domain boundaries. Re-

cently, a work by Grosset et al. [32] tackled the sort-last compositing problem, which

reduces delays and communications by utilizing a spatiotemporally-aware compositor.

Their approach uses “chains” that determine the blending order of each strip of the

image. Usher et al. [33] describe Distributed FrameBuffers, an algorithm that breaks
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image processing operations into tiles of ranks via dependency trees. The Galaxy

framework [34] implements an asynchronous frame buffer, which exploits indepen-

dent pixel updates sent from a server while allowing incremental refinements to the

final image over time.

Like our work, many researchers proposed frameworks to reduce node-to-node

communications and optimize workloads while maintaining correctness.Ma [35] intro-

duces a data-parallel unstructured volume rendering method with the ability to handle

non-convex data boundaries properly. Like our shell-to-shell traversal, they also offer

traversal for convex and non-convex cluster boundaries via a hierarchical data struc-

ture. Their work also focuses on correct-order compositing for non-trivial meshes;

however, unlike our deep compositing, they opt for many smaller MPI messages be-

tween compute nodes. Although this might have been more efficient for the times

CPUs, modern GPUs generally perform better while processing large bulks of simi-

lar work(i.e., SIMD). Ma et al.’s work is later extended to utilize asynchronous load

balancing via object and image-order techniques [36]. However, this work uses cell-

projection techniques rather than ray-casting.

Childs et al. [37] layout a two-stage framework that first samples a m×n× k view-

aligned grid —where m and n denote the pixel resolution and k is the sample per

pixel— then composites these samples in the proper viewing order. Their pipeline

distributes the workload by sampling “small” and “large” elements by classifying ele-

ments via a parameter. First, small elements are sampled, and then large elements are

distributed across processors to be sampled more load-balanced. Binyabib et al. [38]

extend this framework by allowing successive samples to be partially composited be-

fore final image generation, thus reducing memory usage. Although the framework we

propose extends these frameworks by Childs et al. [37] and Binyabib et al. [38], in the

regard that ours can also handle jagged cluster boundaries, their grid-based sampler is

infeasible for our purposes as, in theory, it will waste precious memory resources for

large framebuffers.

Moreover, the 3D rasterization process required by Childs et al. will also be sen-

sitive to overdraw when millions of elements fall within the same grid cell. Finally,

both of these works’ image-order load balancing method requires large elements to be
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replicated or moved to some other nodes, thus requesting additional memory, which

may not always be present given an in situ scenario. Furthermore, we also acknowledge

that GPU architectures improve with new divergence handling methods and ray-tracing

(RT) cores, so the adaptations we propose in this work are necessary.

Unlike previous research, our technique is optimized for contemporary GPUs, low-

ering the costs of compositing and sorting operations. Because we ray-march through

each segment to determine partial samples, we do not need to buffer every sample

along with the rays. Finally, unlike previous approaches, ours does not necessitate

redistributing or reproducing pieces between nodes to present data.

2.4 In situ Rendering

File I/O has long been a bottleneck of high-performance computing. In situ visualiza-

tion combines computation and visualization to overcome this barrier, allowing users

to access a running simulation. In situ visualization has several advantages, including

examining data, running numerical queries, and generating graphical outputs while the

simulation is running. It also enables verification, allowing the simulation to be in-

terrupted or updated, saving time and computing resources. [39]. Due to our ability

to create correct pictures with little to no help from extra acceleration structures at

interactive rates, we believe our technique is appropriate for in situ applications.

Infrastructures such as Strawman [40] or Ascent [41] are used to generate high-

quality CFD simulations, which can be rendered by in situ many frameworks [42, 43].

Various new algorithmic improvements have been proposed to manage time-varying

data generated by simulations and traditional systems. Yamoka et al. [44] introduce a

method that adapts the timestep sampling rate according to variations in the probabil-

ity distribution function (PDF) via an approximation of the connected simulation. A

model by Aupy et al. [45] allows them to analyze simulations to create high-throughput

scheduling. DeMarle and Bauer [46] present a temporal cache technique that stores a

large amount of time-varying information generated by a running simulation and can

be stored later according to a pre-defined trigger. Marsaglia et al. [47] propose an
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error-bound in situ compression strategy that permits whole spatiotemporal simulation

data to be saved. In addition to what is presently retained in simulations, our proposed

method requires a few lightweight structures. Furthermore, based on recent develop-

ments from these approaches, we perceive no fundamental limitations that prevent our

method from being deployed alongside current in situ systems.

2.5 The Fun3D “Mars-Lander” Simulation Dataset

Our work is motivated by the Fun3D Mars Lander simulation data set containing a

collection of massive retropropulsion simulations with mixed elements and various

per-vertex scalar fields. The scalar fields come as an animation sequence with multiple

timesteps. While the scalar fields are animated, the mesh topology (vertex position and

connectivity) remains stationary over time, which is typical for such kinds of simula-

tions [48, 49, 50].

We aim to use the exact data distribution (geometry and clusters) generated by the

Fun3D system as provided [50] by NASA. Since such Computational Fluid Dynamics

(CFD) simulations produce non-trivially partitioned and non-convex data, they pose

significant challenges for visualization algorithms. Table 2.1 provides data set statistics

of two such data sets, i.e., the small and huge Mars Lander. Our approach is not directly

in situ but rather emulates such a scenario, and if the simulation code were adapted

accordingly, it would be directly applicable to in situ strategies, simulation steering,

and post hoc analysis.

Table 2.1: The Fun3D “Mars Lander” data set statistics. These data sets do not contain
hexahedral elements.

Element counts

Model Vertices Tetrahedra Pyramids Wedges Clusters Size (GB)

Small 145 M 766 M 47.5 K 32 M 72 14
Huge 1.2 G 6.12 G 285 K 256 M 552 112

The data-parallel partitions of finite elements, which we call clusters, are typically
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non-convex and come from different compute nodes touching each other at the bound-

aries. This has numerous implications for scientific visualization algorithms and their

particular implementation. Many out-of-the-box standard software solutions for DVR

fall short when handling such clusters [51, 52]. On top of that, data-parallel ren-

dering usually employs a compositing scheme that works best with convex clusters.

Another alternative to handle large-scale data can be compression-like big mesh com-

paction [53]; applications might use a data-parallel paradigm due to memory and band-

width limitations. However, long build times and extra complexity introduced with

multiple scalar fields/timesteps make it an unviable option for our purposes. Besides,

in an in situ scenario, there may be insufficient memory and computation resources

available to achieve that type of data wrangling.
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Chapter 3

Volume Integration Using Ray
Marching

This chapter describes the MPI process steps that lead to partial images generated

via DVR integration. These partial images are later composited using the technique

described in Chapter 4. Our volume integration scheme handles non-convex cluster

boundaries and convex boundaries while ensuring robustness when it comes to dis-

continuities, holes, and self-intersections. We utilize a memory compaction scheme

proposed by Aman et al. [17, 16] and extend it to work with other volume primitives.

We also review an extension of our scheme for specific secondary effects for single

GPU setups. The overview of our framework is as follows:

1. Each node generates connectivity information, shell-BVH, and XOR-compacted

geometry representation required by our ray-marcher (see Section 3.1).

2. Rendering starts at each node by tracing two rays through each shell to create

segments (Section 3.2). Figure 3.1 (a) illustrates the shell-to-shell traversal.

3. Each node performs volume integration (cf. Figure 3.1 (c)) via ray-marching,

creating one RGBA-Z tuple; i.e., fragment per each segment, resulting in poten-

tially multiple fragments for each pixel (Section 3.3). Figure 3.1 (d) depicts an

integrated volume output using the shells from Figure 3.1 (b).
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(a) (b)

(c) (d)

Figure 3.1: Overview of the volume integration process. (a) Shell-to-shell traversal
for non-convex elements is depicted in this diagram: rays with front-face culling are
sent to identify exit faces, and backward rays are cast from exit faces to seek entry
faces across the shells. The same MPI rank is responsible for the blue and light blue
clusters; however, the yellow cluster is in a different rank; hence, the shells of the two
blue clusters are traced in order, whereas the shells of the yellow cluster are traced
in parallel. (b) The shells of the first 46 clusters of Small Lander are visualized with
different base colors for each cluster. (c) The ray-marching between identified entry
and exit faces in (a). (d) DVR of the same subset given in (b).
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4. Finally, we apply a GPU-optimized “deep compositing” technique in which dif-

ferent ranks exchange their respective fragments and composite them in the

proper order (see Chapter 4).

3.1 Data Preparation

This section details connectivity generation, shell-BVH construction, and XOR-

compaction of the geometry, which will be utilized by the ray-marcher we describe.

Specifically, our ray-marcher uses this shell-BVH to find exit and entry points, XOR-

compacted geometry representation is utilized to construct volume elements, and con-

nectivity is used to select the following element index in the marching direction.

3.1.1 Connectivity Generation

Our approach needs to know the indices of the neighboring elements to execute el-

ement marching. We produce the connection information by matching the element

faces as a preprocessing stage. To maintain the elements and neighbor indices aligned

in memory, we separate the vertex indices and connectivity information and store the

neighbor indices in an external buffer. Although we chose this method of processing

connectivity, the buffer can take any shape or form as long as we can access the next

element from the current element via a shared face. As a result, this component may

be customized to meet the demands of a simulation or application.

3.1.2 Shell-Construction

Our approach handles convex and non-convex clusters while exploiting hardware ac-

celeration of NVIDIA GPU’s RTX cores. To construct the hardware-accelerated Op-

tiX [54] BVH, we compute the faces that form the boundaries of the clusters. These
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faces are called shell-faces. Shell-faces are easily identified after connectivity infor-

mation is calculated since the elements with missing neighbors should indicate which

of their faces lie in the boundary.

We utilize the approach described in Sahistan et al. [2] for shell construction. Since

our method handles mixed volume elements other than tetrahedra, we also process

quadrilateral faces by triangulating them. The Optix BVH we build over shell-faces

requires an index list that points to a vertex list. We group three previously identified

triangle indices with the encoded indices of the elements behind the shell faces facili-

tating ray-marcher with the entry element’s index. So the first three vertex index that

belongs to a triangle is used to create a bounding box for the OptiX framework; the

last index stored alongside the first three allows swift access to the volume element

behind during marching. The lower two bits of the fourth index signify the element

type (i.e., tetrahedron, pyramid, wedge, or hexahedron), and the remaining 30 bits is an

index into the list of elements; this index is required to start marching. This encoding

is similar to the BVH-node memory layout used by PBRT [55].

3.1.3 XOR-Compaction of indices

Exclusive-or (XOR) is a bitwise logical operation we exploit in our geometry rep-

resentation. We call this process xor-compaction and use the following property of

XOR operations: (a⊕ b)⊕ a = b where a and b are values of the same number of

bits. So this can be easily generalized to n integers if we know the XOR of n− 1 in-

tegers. Specifically, we can utilize this idea if it is guaranteed that we can access the

specific data values in order like doubly-linked-lists [57] or tetrahedral mesh traversal

via ray-marching [17, 16]. We propose a memory compaction scheme that exploits

this property of XOR operations for mixed element meshes that may include tetrahe-

dra, pyramids, wedges, and hexahedra. We can use previously calculated XOR fields

to minimize index information per element because some of the vertices are shared be-

tween neighboring elements. This scheme requires the previous element to be known;

this can easily be obtained from shell-BVH. After the first element is constructed, each
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struct Tet{

uint vx;

};

struct Pyr{

uint dx;

uint diag[2];

uint top;

};

struct Wed{

uint dx[2];

uint diag[2];

};

struct Hex{

uint v[8];

};

v0

v1v2

v3

vx

v1v0

v2v3

v4

dx top diag

v1v0

v3
v4

v2

v5

dx     diag

Figure 3.2: XOR-compacted memory layouts (top) and geometric illustrations of XOR
calculations for Tet, Pyr, and Wed (bottom). Hex does not have a compaction scheme.
uint stands for unsigned integer. The “⊕” symbol indicates the XOR operation. The
total sizes of each struct are 4, 16, 16, and 32 bytes for Tet, Pyr, Wed, and Hex, respec-
tively. The vertices are in VTK [56] ordering.
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step utilizes the march state to access the previous step’s information. We store a dif-

ferent XOR-compacted structure for each element, except hexahedra (cf. Figure 3.2).

The tetrahedra compaction results in one int size structs where the only field is vx

which is the XOR of all four vertex indices — vx= v0⊕v1⊕v2⊕v3 where v0,v1,v2,v3

are the vertex indices —. Assuming we know the exit face from the current element,

and since any element neighboring tetrahedra share three of their vertices with it, we

can use this 4-byte vx field to get the unshared vertex index by XOR’ing the three

shared vertex index of the current element and vx of the next tetrahedron. This scheme

allows us to reduce a naı̈ve 16-byte tetrahedron to 4 bytes.

The struct size would be 20 bytes with a naı̈ve pyramid implementation since the

pyramid has five vertices. Our scheme reduces the pyramid’s memory requirement to

16 bytes. We store one dx field that is the XOR of 0th and 2nd vertex indices (according

to VTK ordering), two vertex indices which happens to be the other diagonal of the

quad (1st and 3rd vertices), and a top vertex index, which is always the 4th vertex

(cf. Figure 3.2). To construct the next pyramid first, we check the entry face type to the

pyramid. If it is a quad face case is simple since the unknown vertex index is stored at

the top field. Otherwise, every triangle face should be made up of one of the diagonal

vertices explicitly stored, the top vertex, and one vertex encoded in the dx field. We can

determine which index to XOR with dx, thereby retrieving one of the missing vertices

by matching one of the vertices with one of the diagonal fields. The other missing

index for this case is the unmatched integer from diag[2].

Our 16-byte wedge struct is 8 bytes smaller than the naive implementation. It is

composed of two dx and two diag fields. dx fields contain two XORs: the first one

is the XOR of 2nd and 3rd vertex indices; the second one is the XOR of 1st and 5th

vertex indices. diag explicitly stores 0th and 4th vertex indices. Construction of the

next wedge during traversal starts similar to pyramids where we first classify the entry

face. If it is a triangular face, we know that both triangle faces are made up of explicitly

stored diagonal vertex indices and two vertices encoded in the different dx fields. The

last vertex index that needs to be fetched for this case is the other integer from diag[2].

If a ray enters the wedge by a quadrilateral face, it must contain one or both of the

indices stored in diag. So by matching diagonal vertices, we can understand which
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one of the three quadrilaterals we entered through. So, this case boils down to two

sub-cases. In the first sub-case, the ray enters from the quadrilateral, matching two

vertex indices in diag, so we have two missing vertices. To get those, we can XOR dx

fields with unmatched indices of the entry quadrilateral two times. In the second sub-

case —either one of the diagonals match with one of the quadrilateral face indices—,

we can immediately get one of the missing vertices from unmatched diag. Finally, we

can obtain the other missing vertices using one of the dx variables.

Since hexahedra have the worst ratio of shared vertices over all vertices (0.5), it

is challenging to realize a similar XOR-compacted scheme. Although it might be

possible to reduce down a couple of bytes from this structure, the naive size of 32

bytes gives better memory alignment when it comes to performance. Therefore, we

choose to store all hexahedra indices without compaction according to the VTK mesh

ordering.

3.2 Ray-segment Generation via Shell-to-Shell Traver-

sal

Many real-life data sets contain non-trivially shaped non-convex cluster shells with

holes and jagged edges. On top of that, these volumes are designed for simulations;

therefore, visualization is a secondary concern. For this reason, the outputs of these

programs tend to have tiny overlaps and discontinuities that may throw off element-

based ray-marchers, as we propose. Our marcher requires correct entry and exit infor-

mation to start and end properly. The traversal passing the wrong parameter may result

in infinite loops, incorrect early terminations, and undefined behaviors. Additionally,

as ray-segments boundaries define the fragment compositing order, false identification

of the entry and exit positions can also disrupt the compositing scheme we propose,

yielding an incorrect final image. To overcome these robustness issues, we offer a

shell-to-shell traversal scheme.

Each MPI rank identifies an exit and entry point using hardware-accelerated tree
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traversal and intersection for the given shell-BVH of the cluster. This concept is an

extension of Sahistan et al. [2], yet this approach handles entry to other types of primi-

tives than tetrahedra. Figure 3.1 (a) illustrates this process, and the steps are as follows:

1. We trace the ray through the shell-BVH with front-face culling from the ray

origin.

2. If a ray hits a shell face, we then mark that face as the exit face and create a

backward ray with the origin at the hit position.

3. We retrace this backward ray using front-face culling to find an entry face.

4. The found entry face contains four index values (cf. Section 3.1.2), and the last

one encodes the ID and the type of the element from where we start our ray-

marcher (cf. Section 3.3).

If we were to naı̈vely to find the closest hits to degenerate volume boundaries where

two neighboring faces might be intersecting or slightly apart instead of tightly inter-

locking, it would create incorrect ray segments, thus causing sampling and compositing

errors. Casting two front-face culled rays first to find an exit and then an entry face

allows us to handle traversal in real-life data sets robustly. We also check shell IDs

of entry and exit faces and the distance in-between them to improve the robustness

further. If the shell IDs of entry and exit faces intersected by the same routine do not

match, or the distance in-between is smaller than a certain ∆ threshold, we look for the

next closest intersection for the entry face.

3.3 Ray-segment Volume Integration

The segments generated by shell-to-shell traversal (cf. Section 3.2) needs to be sam-

pled. For each segment, rays sample equidistant points via linearly interpolating per-

vertex scalar values from the element containing them. Our method leaps from element

to element until the element that contains the sampling point is reached. The linear in-

terpolation coefficients are also used to check for point containment. If not all of these
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coefficients are between 0 and 1, we keep marching until that becomes the case. When

a sample is taken, a transfer function calculates transparency and color information

(RGBA) for that scalar value. The current sample’s RGBA values are composited over

the segment’s cumulative RGBA value. We terminate marching for that segment when

the ray goes opaque —early ray termination— or segment ends. Early terminated

rays are not followed up for that MPI rank; however, since depth ordering is unknown

among computer nodes before compositing, a copy of an early terminated ray may be

traced in another node. Although this might be wasteful, it is not a notable concern in

the distributed rendering domain, where more significant performance bottlenecks are

present.

Ray-marching processes begin with a cluster’s shell, comprising element informa-

tion encoded in pbrt-style [55] format. We can construct the first element beneath the

shell face using this information. After entering the shell, the connection buffer and

compressed element information are sufficient to retrieve and create the following el-

ements along the given ray segment. On the other hand, our compaction necessitates

traversing components sequentially without skipping. Since this causes sampling ar-

tifacts, the vertices cannot be in any order when an element is reconstructed from the

XOR-compacted form. As a result, our technique not only re-obtains vertex indices

for each element but also consistently positions them according to VTK mesh order-

ing [56].

To pick the next element in the ray’s path, we check intersections with the element’s

faces. To select the intersected face (exit face) for a given element, our marcher uses

an approach similar to “Projected Tetrahedra” [8]. However, we do not rasterize the el-

ements directly to the screen; instead, we use these projections to determine exit faces,

which is in line with Aman et al. [16, 17] and Sahistan et al. [2]. We do, meanwhile,

deal with primitives other than tetrahedra. The intersection routine projects the element

vertices to a ray-centric coordinate system to conduct 2D intersection tests to find the

exit face. Projection and 2D tests yield fewer floating-point operations compared to

3D intersection tests.

We also maintain a march state that bookkeeps the last intersected face type (trian-

gle or quad), current element’s type, index, and vertex indices for every marching step.
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Moreover, while traversing the volume, we follow a general rule of placing the entry

face indices in the same positions in the march state during marching. The rearranged

vertices allow us to ignore the entry face while selecting the exit face (since we now

know which vertices belong to the entry face). When the marcher advances to a new

element, we replace the previous entry face indices with exit face indices in the march

state. It is challenging to create an simple algorithm that can handle all conceivable

combinations because each volume element is unique in terms of shape and face lay-

out. As a result, our element marching deals with different elements on a case-by-case

basis.

Tetrahedral elements are handled similarly to [2]. However, we enable intermediate

places within the elements to be sampled, unlike Sahistan et al. To find the exit face for

tetrahedral elements, we transform the vertices to the previously specified ray-centric

coordinate system. After transforming each vertex, we use a maximum of two 2D left

tests to find the face containing point (0,0).

2D left tests can be used more within a pyramid to find the exit face. We use the

last intersected face type information kept in march state to simplify our left test cases

because the pyramids have one quad face. If the entry face is a quad face, we determine

the exit face among four triangles using projected vertices (similar to the tetrahedron

case). Otherwise, we check if the quad face has a point (0,0) before testing the other

three triangles for the same condition. Finally, we update the last intersected face type

accordingly.

Wedges are similar to pyramids in terms of determining the exit face. It is worth

mentioning that wedges have three quad faces; therefore, the exit face might be another

quad face, even if the intersected face type is a quad. We disregard the entrance face to

eliminate unnecessary left checks, as with other element types. We update intersected

face type once more after determining the exit face.

Hexahedra, like tetrahedra, are uniform but have more faces than tetrahedra. As a

result, finding the exit intersection demands the most left tests. Hexahedra require 13

left tests in the worst-case scenario, whereas wedges, pyramids, and tetrahedra require

7, 5, and 2 left tests, respectively.
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3.4 Extention to Single-node Secondary Effects

The application of secondary effects may increase depth perception and allow more

information to be conveyed about the phenomena depicted in the frame. The ray cast-

ing scheme described in this chapter can be generalized to other types of rays that

achieve secondary effects. Since the data-parallel paradigm distributes volume pieces

into many nodes, it complicates the generalization of the secondary effects. Although

attaining the described effects for distributed environments is possible, the scope of

this thesis does not include this concept. Hence we refrained from this discussion.

As a proof of concept, we implemented some secondary effects that will only work

on single GPU setups. These effects are volumetric gradients (cf. Section 3.4.1),

shadows (cf. Section 3.4.2), and ambient occlusion (cf. Section 3.4.3). Experiments

conducted for this section are performed on a workstation with an Nvidia Quadro

RTX8000 GPU and Ubuntu 18.04.

3.4.1 Gradient Calculation

Gradients are commonly used as surface normals for local shading. As our method sup-

ports traversal starting at arbitrary origins, central-difference gradients [21, 22, 23] can

be computed by marching six rays in orthogonal directions starting at the sample po-

sition, giving us accurate, high-quality gradients even if the gradient sample positions

∆x fall outside the tetrahedron that the current sample is inside. Figures 3.3 and 3.4

illustrate this effect using Phong model.

3.4.2 Volumetric Shadows

Another technique to increase depth perception is using arbitrary ray tracing to produce

shadows, allowing volumes to cast shadows on surfaces. We use shell-BVH to cast a

shadow ray from a given position to determine the illumination that reaches that spot.

If the shadow ray collides with a shell, we begin marching in tetrahedra to collect
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(a) (b)

Figure 3.3: Gradient-shaded depth cues: (a) Jets dataset with shading off (left) and
on (right) (113.3 fps vs. 70.45 fps). (b) Fusion dataset with shading off (left) and on
(right) (87.3 fps vs. 12.2 fps).

Figure 3.4: The Impact dataset. Left: with emission and absorption. Right: with
gradients.
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transmittance. If a shadow ray intersects a surface, we assume the surface is fully

opaque and cut the illumination off.

When a volume and surface mesh intersect, we cannot just start from the tetrahedron

containing the incident point as marching needs to start at a shell-face. However, we

can exploit the fact that the sequence of tetrahedra on the shadow ray’s path is irrelevant

because we are just interested in transmittance, not brightness emitted from the volume.

Therefore, we begin marching backward, starting from the closest back-facing shell to

the light. Rather than advancing in the direction of the shadow ray, we advance in the

direction of the actual light (that reaches the incident point). If the light source is inside

the volume, we begin to accumulate transmittance after passing by the light’s position.

Figures 3.5 (c, f) display this effect.

3.4.3 Ambient Occlusion

Ambient occlusion (AO) can help even more with depth perception and overall ren-

dering quality. We use the standard ray traced AO method, for example, proposed

in [19, 20]. Tracing the required shadow rays is technically very similar to tracing rays

towards point light sources located at a distance of r. We compute AO by averaging N

hemisphere samples, the effect of which can be seen in Figures 3.5 (b, e).
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(a) (d)

(b) (e)

(c) (f)

Figure 3.5: Shadows and ambient occlusion: (a) Plasma64 dataset rendered with emis-
sion and absorption at 141.5 fps, (b) with AO at 32.3 fps, and (c) with shadows at
104.1 fps. (d) Agulhas dataset rendered with emission and absorption at 42.4 fps,
(e) with AO at 4.5 fps, and (f) with shadows at 30.9 fps.
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Chapter 4

Deep Compositing

In Chapter 3 we describe volume integration process via ray marching. Specifically,

Section 3.2 describes how each rank finds entries and exits to volume segments and

Section 3.3 discusses how each rank integrates calculated segments, which returns

color and transparency tuples (RGBA values). In the scientific visualization domain,

the renderings must be accurate and should not contain any artifacts to allow users to

make correct observations. Efficiently determining the correct order and compositing

those tuples is a challenging task. While depth sorting convexly shaped clusters before

or after the integration offers a viable solution, this is not the case for non-convex clus-

ters. Rendering non-convexly shaped clusters may produce more than one segment

per ray, which disallows us to make assumptions we would have for the convex clus-

ters, thus further complicating the compositing process for many real-life datasets. To

address these challenges, we propose a deep compositing algorithm that takes a frag-

ment which is the RGBA tuple plus the depth of the entry position to that segment and

composites them for every pixel in the correct order in a GPU-efficient manner.

To further understand the compositing order problem consider pixel P and all of its

fragments F(P)
0 , F(P)

1 , . . . , F(P)
N(P) . The correct final color of P can be obtained by first

sorting these fragments by their depth and compositing them using over//under oper-

ators Ô(A,B) / Û(A,B) [58, 59]. Since our method may produce each given pixel’s

fragments on several ranks, the sorting cost is bounded by the communication costs of
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Figure 4.1: An illustration of the fragment generation process on an example scene of
two non-convexly partitioned clusters distributed across two nodes.

each rank. Even worse, the irregular shape of the shells means that any ray can enter

and leave the same shell multiple times at multiple distances, producing multiple—and

in some cases, many—fragments for the same pixel. Figure 4.1 illustrates the problem

our compositor tackles by providing an example scene that generates interleaved clus-

ters distributed across different nodes. Figure 4.2 shows how the average and the total

number of fragments are distributed for a view of the Huge Lander with growing rank

counts. As it can be observed from the case where the rank count is 16,—depicted

in Figure 4.3— each pixel may have more than one fragment generated from multiple

ranks.

As previously stated, simply depth sorting fragments on a single fragment does

not offer a feasible solution to our non-convex shells. Therefore, industry-standard

compositors like IceT [31] that utilize a single fragment for compositing can be con-

sidered a naı̈ve implementation. For our needs, the compositing needs to happen in

the visibility order of the fragments and not the clusters. Let ⊗ denote compositing

operation given any ray that produces two fragments F(A)
0 and F(A)

1 on the same rank

must also have had at least one other fragment F(B) on at least one other rank. One

way to visualize this is by considering a jagged shell of internal cluster A loaded on a

rank. The implication here is that the cluster(s) —in this case, cluster B— that fit into

the jagged cavity may be loaded on a different rank and rendered separately. This re-

quires deep compositing as F(A)
0 ⊗F(B)⊗F(A)

1 , which in general is different from both
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Figure 4.2: Box plots of average (left) and total (right) number of fragments generated
by individual ranks while rendering the Huge Lander. We take averages over non-
empty pixels where their opacity is greater than 0. The plots are for the rank counts
of 16, 32, 48, 64, and 80. Scattered points signify individual ranks’ average (left) and
total (right) fragment counts at a given MPI size.

F(B)⊗ (F(A)
0 ⊗F(A)

1 ) and (F(A)
0 ⊗F(A)

1 )⊗F(B). The following sections describe our

deep compositing algorithm in detail that solves this problem using GPUs efficiently.

4.1 Multiple Fragment Compositing

We describe a compositing scheme that allows multiple fragments to be composited

per pixel. A counter representing the number of fragments N and a pointer—-or

offset—- to a list of fragments F0, . . . , FN−1 are stored for each pixel. In a likeness to

parallel-direct-send [60, 61], we then divide the frame buffer into R distinct regions of

pixels—sub-screens—(where R is the number of ranks); each rank will be responsible

for receiving, compositing, and delivering the final composited results of one region

of pixels. Compositing starts when each pixel’s Fragment lists are collected. Then it

works in the following steps:

1) Generating a contiguous send buffer. Each rank computes a GPU-parallel prefix

sum over all its pixel’s fragment counts. This computation also yields the total number
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Figure 4.3: Heatmaps for the number of fragments for a view of the Huge Lander
rendered with 16 MPI ranks (first box given in Figure 4.2): On the left, fragments for
every 16 rank, and on the right, all heatmaps combined into one image.

of fragments on this rank. Using the prefix sum result as offsets, we allocate a single

contiguous memory region for these fragments. Then we compact the individual frag-

ments into this buffer. These buffers are organized so that each rank will contain all

fragments going to all other ranks in order.

2) Exchanging per-pixel fragment count ranges. Using the assigned range of

pixels—computed in the previous step—, each rank calculates the range of per-pixel

counters it needs to send to any other ranks. Each rank allocates a per-rank counter

buffer with a size R times the number of pixels in a sub-screen. So we end up with a

large buffer to house a count from each rank for all its pixels. Next, each rank com-

putes the offsets to store the counters from other ranks. We then execute a collective

MPI Alltoallv on these buffers, after which each rank has, for its assigned region of

pixels, the fragment counts from every other rank. With this information, we know

how many fragments will be received from each rank for any given rank.

3) Exchanging Fragment Lists. Having received all other ranks’ per-pixel fragment

counts for its sub-screen, a GPU prefix sum over those counters performed by each

rank, which can be seen as offsets into a compact buffer of all fragments for its range of
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pixels. Looking up the prefix sums at the correct offsets specifies how many fragments

each rank will receive from any other rank and how many fragments it will receive

altogether. Next, we create a receiving buffer of the necessary size, determine where

each rank’s fragments will go in this buffer, and then issue a second MPI Alltoallv that

moves each fragment collectively into the receive buffer of the rank assigned to the

sub-screen that contains matching fragment’s pixel.

4) Local Compositing. After the previous step, each rank now has two buffers con-

taining all fragment lists for its assigned pixels. One of the buffers —fragment buffer—

stores all fragments for that rank’s pixels received from all other ranks, ordered by rank

number and pixels within each rank. So for a specific MPI rank, this buffer stores all

fragments for that rank’s first pixel from rank 0, then all those for its second pixel from

rank 0, and so on, followed by all fragments from rank 1, then all fragments from rank

2, and so on. The other buffer —offset buffer— stores the results of prefix sum oper-

ations. It works as a look-up table that provides the offsets to where the fragment list

starts. For instance, if P is the number of pixels for which this rank is responsible, the

fragments from rank r for pixel j start at index offsets[r*P+j]. We launch a CUDA

kernel that, for each pixel p, looks up the R lists of fragments and composites them in

the visibility order using the indexing arithmetic.

5) Sending final results to master. Now, each rank houses a fully composited RGBA

value for their assigned sub-screen. To generate a complete image, we send these to

the master using a MPI Send; the master sets up R matching MPI Irecv s, that writes to

the appropriate part of the final frame buffer. After this, a final image is ready to be

displayed.

This method is a natural extension of the parallel direct-send technique described

by Grosset et al. [60] and Favre et al. [61], with the main difference that we not only

send one fragment per pixel but variable-sized lists of fragments. We term this method

deep compositing because it merged the concepts of image-based compositing with the

orthogonal concept of deep frame buffers [62].

29



4.2 Fragment List Management

While the compositing alone is simple to use from the host side, adequately setting up

the device-side inputs (fragment lists and counters) will necessitate the renderer to han-

dle device-side dynamic memory allocations for the per-pixel variable-size fragment

lists throughout rendering.

We also created a device interface for this library, which allows a renderer to simply

write new fragments into a pixel while the interface takes care of the proper storage of

those fragments — greatly simplifying the rendering code. This interface relieves the

renderer of this low-level fragment list management.

4.2.1 Two-Pass, Flexible-length Fragment Lists

The primary obstacle in creating this interface was the inability to increase device

memory allocation during rendering. Therefore we needed to set a cap on the number

of pieces a renderer could produce in a frame. First, we created a two-stage interface

that would execute the renderer twice. The interface’s first step would merely count

the number of pieces produced for each pixel, with no storage. After this stage, con-

structing a large enough buffer would compute a prefix sum over those counters, with

the prefix sum values acting as offsets inside the buffer. We could perform the identical

rendering in a second pass, but we would store the pieces at the specified offsets this

time.

4.2.2 Single-Pass, Fixed-Length Fragment Lists

The two-pass solution involves performing the shell traversal at least twice, which

may or may not be acceptable but allows for arbitrary-sized fragment lists (up to de-

vice memory, obviously). Therefore, we also created a second, single-pass device

interface where the renderer specifies the maximum permitted amount of fragments

per pixel before startup. We can utilize this information and preallocate lists to add
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fragments. Performing a single pass is straightforward but requires some form of over-

flow-handling if a render wants to submit fragments to a pixel whose list is already

complete. We currently implement two methods for this overflow handling: In the

drop method, we perform insertion sort into the existing list and drop the latest frag-

ment. In merge, we find the fragment with the lowest opacity and perform a over

compositing of this element onto the one in front of it (i.e., using the depth from the

previous one), then insert the new fragment into the list.
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Chapter 5

Experimental Results

We conducted our experiments on Frontera RTX nodes of Texas Advanced Computing

Center (TACC), where each of the 22 nodes had four NVIDIA Quadro RTX 5000

plugged into it. We utilize all four GPUs available per node for every data point of our

experiments.

5.1 Evaluation of the Framework

We evaluate our rendering framework on Small Mars Lander and Huge Mars Lander

data sets. Figure 5.1 shows images of the Small Mars Lander rendered using our

framework. Since Small Mars Lander has 72 clusters, we evaluate our framework

using 72 GPUs distributed over 18 compute nodes where each cluster is loaded on a

separate GPU. For Small Mars Lander, we achieve our peak performance using 72

GPUs yielding the average frame rate of 14.35 frames per second (fps). Since the

TACC supercomputer does not have more than 22 RTX nodes, we could not test one

cluster per GPU scenario for the Huge Mars Lander data set. Therefore, we scale up

to a maximum GPU count of 88, yielding 9.83 fps. However, we observe our average

peak performance of 10.25 fps for the Huge Mars Lander at 80 GPUs.
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Figure 5.1: Data-parallel rendering of the “Small Mars Lander” computational fluid
dynamic data set, which comprises 72 clusters of finite elements. The images are ren-
dered on 18 compute nodes and 72 NVIDIA Quadro RTX5000 GPUs of the Frontera
RTX partition at the Texas Advanced Computing Center (TACC). The image resolu-
tion is 1024×1024. The average frame rate of this image sequence is around 15.00 fps.

Moreover, we evaluate our deep compositing scheme’s correctness compared to a

single fragment compositing technique. Figure 5.2 shows an image rendered by single

fragment compositing and a heatmap that compares the difference between single frag-

ment compositing and our deep compositing. The single fragment compositing method

depicted is similar to the image-based single image per node compositing techniques

such as IceT [31].

0.00

0.25

0.50

0.75

Figure 5.2: Comparison of single fragment compositing and deep compositing. The
left image is the rendering with single fragment compositing (similar to IceT [31]).
The right image is the heatmap showing the L2 difference between single fragment
compositing and our deep compositing.
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5.2 Memory Overhead

We examine data distribution and memory footprints. Table 5.1 displays the minimum,

maximum and average counts per rank of volume elements and shell faces for our two

data sets. Figure 5.3 illustrates the average memory footprints of our extensive data

structures that may not be present in a simulation environment. Although connectivity

information will likely be in most simulation systems, we wanted to include connec-

tivity here for simulation systems like [63]. The MPI sizes (rank counts) in the table

are the sizes that experience the highest level of changes in rendering times presented

in Figure 5.4.
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Figure 5.3: Per rank average memory consumption of various buffers for increasing
MPI sizes: Small Mars Lander (left) and Huge Mars Lander (right). Average mem-
ory usage of XOR-compacted elements is stacked over average shell-BVH size, which
again is stacked over average connectivity buffer size, providing the total memory
usage introduced by these data. We also include a line that indicates the per rank aver-
age memory usage without XOR-based compaction (size of Shell-BVH + connectivity
buffer + non-compact elements).

5.3 Scalability

To assess the scalability, we test our approach for increasing the number of ranks (MPI

sizes). We also measure sub-process timings, specifically the segment integration and
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Table 5.1: Per rank statistics for selected MPI sizes for two test data sets. The first
column gives the MPI size with a number and data set as “small” for Small Mars
Lander and “huge” for Huge Mars Lander. Columns depict minimum, maximum,
and average volume element counts and minimum, maximum, and average shell face
counts per rank.

MPI Size
& data set

Elements Shell
min. max. avg. min. max. avg.

4-small 192.2 M 203.4 M 199.6 M 14.4 M 16.2 M 15.2 M
24-small 30.8 M 34.9 M 33.3 M 2.0 M 2.9 M 2.5 M
40-small 10.0 M 23.3 M 20.0 M 0.8 M 1.9 M 1.5 M
72-small 9.9 M 11.9 M 11.1 M 0.6 M 1.1 M 0.8 M
16-huge 365.2 M 414.6 M 399.2 M 21.4 M 25.1 M 23.0 M
32-huge 177.8 M 213.8 M 200.0 M 10.3 M 13.2 M 11.5 M
56-huge 93.8 M 121.0 M 114.1 M 5.4 M 7.3 M 6.6 M
88-huge 60.9 M 85.1 M 72.6 M 3.3 M 5.3 M 4.2 M

compositing times. We compute them using MPI Barrier s before and after integration

calls to synchronize the processes before starting and ending the timers. Since these

barriers stall early terminating integration processes, it increases the total rendering

time. For this reason, we measure the total rendering time and integration time in

different runs and derive the compositing time by subtracting the total time from the

integration time. We calculate the timings reported in Figure 5.4 by taking an average

for 20 sequential timesteps of the selected scalar field over 30 runs. Then we take the

mean of these 20 average values to form the data points for the given MPI sizes.

We compare our integration algorithm with a state-of-the-art OptiX accelerated

point query technique by Morrical et al. [7]. In order to fairly compare the two meth-

ods’ volume integration steps and their scalability on the setup presented, we use the

same sampling rate and fragment distribution as well as the same compositor —our

deep compositor—. Alongside fixing the sampling rate, we also disable the empty

space skipper to allow the compositor to operate on the same input. A direct compar-

ison of total rendering times of a frame for an increasing number of GPUs is given

in Figure 5.5. Speedups for the same results are given in Figure 5.6. The method of

Morrical et al. relies on an external hierarchical data structure to query the points, and

the memory cost of those data structures overflowed the memory for the GPU counts

between 16 and 40. Since they do not claim their method is in situ, we did not generate

element connectivity when running the respective method’s benchmarks.
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Figure 5.4: Results of the scalability benchmarks for Small Mars Lander (top) and
Huge Mars Lander (bottom) on RTX nodes of the Frontera system on TACC. Inte-
gration process timings are stacked over compositing process timings for the given
number of ranks to form total rendering times.
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Figure 5.5: Comparison of total rendering times between a state-of-the-art hardware-
accelerated point query method by Morrical et al. [7] and ours for an increasing number
of GPUs. Both use our deep compositor to composite nearly identical fragments.
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Figure 5.6: Comparison of speedups between a state-of-the-art method by Morrical et
al. [7] and ours for an increasing number of GPUs. We compute the speedup values
with respect to 4 GPUs for the Small Mars Lander and 40 GPUs for the Huge Mars
Lander.
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5.4 Fragment Distribution

We measure fragment counts generated by each GPU during ray segment generation

because it is crucial to assess workload distribution across compute nodes for com-

positing and integration steps. Figure 4.2 depicts a box plot showing the total and

average fragment counts for specific MPI sizes on the Huge Mars Lander. We also

visualize a series of “heat images” for the case where the rank count equals 16, il-

lustrating the fragments composited for a view of the Huge Mars Lander. Each small

image shows given nodes generated fragment counts, and the final image accumulates

them on top of each other.

5.5 Discussion

We evaluate our approach regarding memory consumption, rendering correctness, and

scalability. Among the data we precompute and store, the connectivity information

takes up the lion’s share with ratios around ≈ 62.72% for our test cases. We expect

this since our approach stores one integer for all faces of a given volume element.

XOR-compacted volume elements are the second-largest structure with ratios around

≈ 17.11%, closely followed by Shell-BVH sizes (≈ 12.74%) of the total memory con-

sumption. We observe that the total memory footprint of XOR-compacted representa-

tions is ≈ 72.49% smaller than their uncompacted versions. The presented framework

is memory-wise compatible with in situ scenarios because many modern simulation

systems already store connectivity information. Our XOR-compaction reduces the

space required for geometry information, and our shell-BVH sizes stay relatively small

despite the large counts of shell faces. When rendering Huge Mars Lander, this mem-

ory reduction allowed us to test with even fewer GPUs than Morrical et al.’s method [7]

(cf. Figure 5.5). Their method requires at least 40 RTX 5000 GPUs to render Huge

Lander, whereas ours can render it with 16 GPUs.

We observe that simple image compositing is not an option for non-trivially par-

titioned data sets like we present. As the error metric in Figure 5.2 confirms, single
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image compositing gives inaccurate results. Moreover, we found our compositing pro-

cess to create low overheads even with the GPU counts going up to 88. Although the

communication cost for compositing caused an increasing trend in terms of time, it

never surpassed 22.68% of the total rendering time, indicating that our deep composit-

ing method is highly scalable and generates correctly composited images interactively

(see Figure 5.4).

Although the proposed ray-marcher is suitable for the use-cases described, any other

ray-marcher that can adequately handle non-convex boundaries can be utilized. For

instance, point-query sampling techniques leveraging adaptive sampling or space skip-

ping [7, 15, 11] may produce much faster results. However, such methods rely heavily

on hierarchical data structures to sample the volume, which would create more ad-

ditional memory overhead. One could claim point-query sampling techniques negate

this memory over-head by not storing connectivity; however, as pointed out before,

many simulation environments have that data out of the box. Furthermore, point-

query sampling techniques that rely on taking few samples—like delta-tracking based

sampling schemes [64, 65]— may produce a noisy image that requires some time to

converge, whereas our marching method generates deterministic noise-free images.

For these reasons, we consider our marching algorithm to be more pragmatic in the

context of data-parallel rendering and deep compositing. The results provided in Fig-

ures 5.5 and 5.6 support our claims. As our approach gains more speedup from the

increasing number of GPUs, it also performs significantly better when taking an equal

number of samples.

Finally, examining data distributions from Table 5.1, we see that directly utiliz-

ing native partitioning of the data causes uneven load balancing for some MPI sizes.

Figure 4.2 reveals this phenomenon where the average number of fragments per rank

distribution varies. The effects of this phenomenon can also be observed in Figure 4.3,

where ranks 1, 4, and 14 have significantly fewer fragments than the others. Even

though native partitioning causes uneven workloads, our timing experiments (cf. Fig-

ure 5.4) display decent scalability with the increasing number of GPUs we utilized.

We smoothly achieve interactive rates with both of our data sets. For the small Mars

Lander that has 72 clusters, we benchmark 14.35 fps using 72 GPUs, and for the 552-

cluster huge Mars Lander, we measure 10.27 fps using 80 GPUs. We also observe an

39



ongoing downwards trend for the timings with the increasing number of GPUs, so it

is worth mentioning that our application can achieve even higher frame rates given a

more extensive hardware setup.

Furthermore, it is clear from Figure 5.4 that dominating term of rendering times

is volume integration via ray-marching. Nevertheless, we observe a sharp increase in

integration performance at n = 24 and n = 32 for Small and Huge Mars Lander, re-

spectively. At the same time, it is expected for an embarrassingly parallel ray-casting

algorithm to get faster with the increasing number of ranks; it is also likely for a com-

positing algorithm to slow down due to communication costs. We observe little to no

increase in timings with our deep compositing, where it nearly behaves like a constant.
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Chapter 6

Conclusions and Future Work

We introduce a GPU-based direct volume visualization framework that allows cor-

rect and interactive rendering even for non-convexly partitioned data. Our framework

presents a mixed element ray-marching algorithm to integrate ray segments along the

viewing direction. We achieved memory savings by exploiting XOR-based compaction

schemes on our finite element data structures. Furthermore, we illustrate a deep com-

positing algorithm that allows proper order compositing of the RGBA-Z values ob-

tained across multiple compute nodes.

Specifically, we demonstrate interactive frame rates for both of our datasets. With a

small lander, we used the exact number of nodes as the simulation does while achieving

≈ 15 FPS, and with the Huge lander, we used even fewer nodes than the original sim-

ulation while still getting the peak performance of ≈ 10 FPS. Alongside correctness,

our deep compositor displays little to no increase when increasing the node counts,

thus proving it is optimized for modern multi-GPU environments on multiple nodes.

Our framework scales well for increasing GPU counts while using native partition-

ing of non-convex data sets. We consider our framework suitable for both in situ and

post hoc applications.

Possible areas for further research are as follows. While we allow visualizations of

multiple scalar fields and timesteps, we do not use double/triple buffering techniques
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that can hide the buffer loading times. Our implementation naively takes one scalar set

on request (i.e., does not pre-fetch anything) [66]. To improve the time steps loading

performance, buffering and pre-fetching the time steps in GPU and main memory can

be employed [67]. Moreover, currently, we assume that the topology of the volumetric

data does not change through time, yet this may not be the case.

Our sampling method does not support bilinear elements since determining vertex

index order after element construction is difficult for them using our XOR-compaction.

Also, we would utilize another compaction scheme over connectivity information as

other works do [6, 17]. Image-based partitioning may increase our method’s efficiency;

however, it can get challenging with the in situ emphasis. Finally, integrating our

approach into existing frameworks is another future work, field testing our claims.
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