Recitation 2

Reminders:
Sorting Algorithms
INSERTION SORT

- Write a global function that takes an integer array and sort it in ascending order. It should traverse the array **from the last position to the first position**.

- Let’s define the function declaration, at first.

  ```c
  void reversedInsertionSort (int *theArray, int n);
  ```
Example:

Original List

| 23 | 78 | 45 | 8 | 32 | 56 |

Unsorted Part

Sorted Part

Pass 1

| 23 | 78 | 45 | 8 | 32 | 56 |

Unsorted Part

Sorted Part

Pass 2

| 23 | 78 | 45 | 8 | 32 | 56 |

Unsorted Part

Sorted Part

Pass 3

| 23 | 78 | 8 | 32 | 45 | 56 |

Unsorted Part

Sorted Part

Pass 4

| 23 | 8 | 32 | 45 | 56 | 78 |

Unsorted Part

Sorted Part

Pass 5

| 8 | 23 | 32 | 45 | 56 | 78 |

Sorted Part
What about its complexity?

- **Best Case:** $O(n)$
 - Occurs when the array is already sorted.
- **Worst Case:** $O(n^2)$
 - Occurs when the array is reversed sorted.
- **Average Case:** $O(n^2)$

What is the running time of the insertion sort if all keys are equal?

- $O(n)$
void reversedInsertionSort (int *theArray, int n) {
 for (int i = n-2; i>=0; i--)
 {
 int nextItem = theArray[i];
 int j = i;
 while (j<n-1 && theArray[j+1]<nextItem) {
 theArray[j] = theArray[j+1];
 j++;
 }
 theArray[j] = nextItem;
 }
}
Quick Sort (Pivot Selection)

a. Sorted Input (ascending)
 i. **Pivot**: The last element:

 ![Diagram of Quick Sort]

 Recurrence: $T(n) = T(n-1) + T(1) + O(n)$
\(O(n^2) \)
Quick Sort (Pivot Selection)

a. Sorted Input (ascending)
 ii. Pivot: the average of all keys

Recurrence: \(T(n) = T(n/2) + T(n/2) + O(1) \)
\[O(n \log n) \]
Quick Sort (Pivot Selection)

b. Sorted Input (descending)
 i. Pivot: The last element:

 17 16 15 14 13 12 11 10
 Unknown

 S2

 Pivot

 S2

 Unknown

 Pivot

Recurrence: $T(n) = T(1) + T(n-1) + O(n)$

Complexity: $O(n^2)$
Quick Sort (Pivot Selection)

b. Sorted Input (descending)

 ii. **Pivot:** the average of all keys

![Diagram showing Quick Sort with Pivot Selection]

- **Recurrence:** $T(n) = T(n/2) + T(n/2) + O(n)$
- **Complexity:** $O(n \log n)$
Quick Sort (Pivot Selection)

c. Random Input

- Choosing pivot; the first element, the last element or a random key does not matter.

- What if the split is always $\frac{1}{10} : \frac{9}{10}$?

 Recurrence: $T(n) = T(n/10) + T(9n/10) + O(n)$
\[n \log_{10} n \leq T(n) \leq n \log_{10/9} n \]

\[O(n \log n) \]
Average case analysis:

\[T(n) = \frac{1}{n} (T(1) + T(n-1)) \]
\[+ \frac{1}{n} (T(2) + T(n-2)) \]
\[+ \frac{1}{n} (T(3) + T(n-3)) \]
\[\ldots \]
\[\ldots \]
\[+ \frac{1}{n} (T(n-1) + T(1)) \]
\[+ O(n) \]

-solving by substitution method

\[T(n) = \frac{1}{n} \sum_{k=1}^{n-1} (T(k) + T(n-k)) + O(n) \]

\[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + O(n) \]

\[T(n) = O(n \log n) \]
Suppose that you remove the call to merge from mergesort algorithm obtain:

```plaintext
mystery (inout theArray:ItemArray, in n: integer) {
    //mystery algorithm for theArray[0...n-1]
    if(n>1) {
        mystery(lefthalf(theArray), n/2)
        mystery(righthalf(theArray), n/2)
    }
}
```

What does this algorithm do?
Radix Sort

radixSort(inout theArray:ItemArray, in n:integer, in d:integer)
{
 //sort n d-digit integers in the array theArray
 for (j=d down to 1) {
 Initialize 10 groups to empty
 Initialize a counter for each group to 0
 for (i=0 through n-1) {
 k=j th digit of theArray[i]
 Place theArray[i] at the end of group k
 Increase k th counter by 1
 }
 Replace the items in theArray with all items in group; 0,...,8,9
 }
}
Radix Sort (Cont’d)

- How many groups do we need for binary and hexadecimal radix sort?
 - 2 for binary (each digit can be either 0 or 1)
 - 16 for hexadecimal (each digit can be one of the symbols in set \([0-9] \cup \{A,B,C,D,E,F\}\))

- What is the suitable data structure for radix sort?
 - Hash table
EXERCISE

- Question: Write a method to print key values of all pairs of given array satisfying following condition.
- Condition: The sum of two integers in a pair is equal to given key.
- Example:

<table>
<thead>
<tr>
<th>Array:</th>
<th>Key:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 7 6 3 9 5 8 2 5</td>
<td>15</td>
</tr>
</tbody>
</table>

Output:
(12,3) (7,8) (6,9)

Naive approach: For each element, scan the whole array. $O(n^2)$
Efficient solution:

```plaintext
theMethod (in theArray:IntegerArray, in n:integer, in key:integer) {
    //sort theArray using any O(nlogn)-sorting algorithm.
    MergeSort (theArray, n);
    for (currentIndex = 0; currentIndex < n; currentIndex++) {
        currentKey = theArray[currentIndex];
        searchKey = key - currentKey;
        newIndex  = BinarySearch (theArray, n, searchKey);
        if (newIndex != -1)
            print ( currentKey, searchKey);
    }
}
```

\[T(n) = O(n \log n) \]