
 1

CS342	Operating	Systems	-	Fall	2019	
Project	#3	

Dynamic	Memory	Management	
	
Assigned:	Nov	29,	2019,	Friday.		
Due	date:		Dec	15,	2019,	Sunday,	23:55.	
	
• Submit	through	Moodle.	Make	sure	you	start	submitting	one	day	before	the	deadline.	You	can	

overwrite	your	submission	as	many	times	as	you	wish.	Late	submissions	will	not	be	accepted	(no	
excuse;	no	email	will	be	accepted).			

• You	will	develop	your	project	in	Linux/C.	The	project	can	be	done	in	groups	of	2.	

1 Assignment	

1.1 Part	A	-	Memory	Management	
	
In	this	project	you	will	implement		a	thread-safe	memory	management	library.	It	will	be	used	
by	a	multithreaded	application	to	allocate	memory	dynamically.	Your	library	will	be	a	static	
library	(ending	with	.a).		
	
Your	 memory	 management	 library	 (libmemalloc.a)	 will	 manage	 a	 given	 chunk	 of	 free	
memory.	That	means	the	library	will	allow	a	multi-threaded	application	to	allocate	and	free	
memory	from	the	given	chunk.	The	chunk	of	free	memory	(a	contiguous	chunk	of	free	space)	
will	be	created	by	the	application,	and	a	pointer	to	the	chunk	and	the	size	of	the	chunk	will	
be	passed	to	the	library.	Then,		the	library	will	manage	the	chunk	space.	The	application	can	
make	requests	to	the	library	to	allocate	and	deallocate	memory.	
	
In	your	library	implementation	(memalloc.c),	you	will		use	hole-list	approach	(dynamic	
storage	allocation).	You	will	implement	3	methods	for	searching:	first-fit	(0),	best-fit	(1),	and	
worst-fit	(2).		
	
You	library	will	implement	a	set	of	functions	that	can	be	called	by	an	application	linked	with	
your	 library.	The	prototypes	of	 these	 functions	will	be	put	 into	a	header	 file	 (memalloc.h).	
These	prototypes	are	called	the	interface	of	your	library.	You	can	change	the	bodies	of	these	
functions,	but	not	the	prototypes.	The	 library	 	header	file	will	be	 included	(#include)	by	an	
application	 that	 would	 like	 to	 use	 your	 library	 to	 allocate	 memory	 dynamically.	 The	
application	needs	to	be	linked	with	your	library	as	well	(how	this	can	be	done	is	shown	in	the	
Makefile	below).	Your	 library	will	 implement	the	 	 following	functions	that	can	called	by	an	
application.	 In	 your	 library,	 	 can	 implement	 some	 other	 functions	 that	 you	 may	 need	
internally	in	your	library,	but	those	other	function	are	not	be	called	the	application.		
	
• int	mem_init	(void	*chunkptr,	int	size,	int		method).	This	initializes	the	library	to	

manage	the	provided	chunk	space.	The	chunkptr	points	to	the	chunk.	The	chunk	is	
created	outside	of	the	library	(i.e.,	by	the	application).	Application		can	use		sbrk	
function	(see	the	example	in	the	app.c	below)	or	malloc	to	create	the	chunk.	If	the	
application	uses	malloc	to	create	the	chunk,	it	will	be	the	only	place	the	application	uses	
the	malloc	function.	After	that	the	application	should	use	your	library	functions	for	
dynamic	storage	allocation.		The	size	parameter	is	the	size	of	the	chunk	to	manage	(to	
allocate	memory	from).	The	method	parameter	specifies	which	hole	search	method	will	

 2

be	used.		The	function	will	return	-1,	if	the	is	an	error	encountered,	otherwise	0	(success)	
will	be	returned.	
	

• void	*mem_allocate		(int	size).	Allocate	memory	for	an	object	(i.e.,	for	a	request).		The	
memory	should	be	allocated	from	the	chunk	specified	with	mem_init.	The	size	of	
allocation	is	given	as	a	parameter	(request	size).	The	allocated	memory	amount	should	
at	least	the	requested	size	(the	allocated	amount	inside	the	library	can	be	more	
depending	on	the	your	allocation	method).	The	function	will	returns	a	pointer	to	the	
beginning	of	the	allocated	usable	space,	so	that	the	application	can	use	the	pointer	to	
put	data	(object)	the	allocated	space.		
	

• void	mem_free	(void	ptr).		Free	the	allocated	space.	The	space	to	be	freed	is	pointed	by	
ptr.		
	

• void	mem_print	().		Print	the	current	state	of	the	memory	chunk:	which	portions	are	
allocated,	which	portions	are	free	(in	sorted	order	with	respect	to	address).	The	format	
for	printing	out	is	up	to	you.	This	can	be	used	for	debugging	and	testing	purposes.		

	
An	application	app.c	will	be	compiled	and	linked	with	your	library	as	follow:		
	 gcc	–Wall	–o	app		app.c	-L.		-lmemalloc	
	
We	can	run	the	application	as	follows,	for	example.	The	chunk	size	is	1024	KB	(kilobytes)	in	
this	example.		

./app	1024	
	
We	will	develop	test	applications	to	test	and	stress	your	library	implementation.	You	should	
also	develop	test	applications	to	test	your	library.		
	

1.2 Part	B	-		Experimentation	and	Report	
	
Do	some	timing	and	space	(fragmentation)	experiments	and	write	a	report	about	the	results.		
Experiment	with	various	hole	search	methods	(first,	best,	worst).	Put	tables	and/or	figures	
into	your	report	showing	the	results.	Try	to	interpret	the	results.		

2 Sample Code
	
Below	we	provide	some	sample	content	for	your	Makefile,	library	(memalloc.c),	header	file	
(memalloc.h)	and	an	application	(app.c).		

2.1 Makefile
	
all:	libmemalloc.a	app	
	
libmemalloc.a:		memalloc.c	
	 gcc	-Wall	-c	memalloc.c	
	 ar	-cvq	memalloc.a	memalloc.o	
	 ranlib	libmemalloc.a	
	
app:		 app.c	

 3

	 gcc	-Wall	-o	app	app.c		-L.	-lmemalloc	
	
clean:		
	 rm	-fr	*.o	*.a	*~	a.out	app	
	

2.2 memalloc.h
	
#ifndef	MEMALLOC_H	
#define	MEMALLOC_H	
	
int	mem_init(void	*,	int,	int);	
void	*mem_allocate(int);	
void	mem_free(void	*);	
void	mem_print	(void);		
	
#define	FIRST_FIT					0	
#define	BEST_FIT						1	
#define	WORST_FIT	2	
	
#endif	
	

2.3 memalloc.c
	
#include	<stdlib.h>	
#include	<stdio.h>	
	
//	printfs	are	for	debugging;	remove	them	when	you	use/submit	your	library	
	
int	mem_init	(void	*chunkpointer,	int	chunksize,	int	method)	
{	
	
	 printf("init	called\n");	
	
	 return	(0);	 	 //	if	success	
}	
	
void	*mem_allocate	(int	objectsize)	
{	
	
	 printf("alloc		called\n");	
	
	 return	(NULL);	 	 //	if	not	success	
}	
	
void	mem_free(void	*objectptr)	
{	
	 printf("free	called\n");	
	
	 return;	
}	

 4

	
void	mem_print	(void)	
{	
	 printf("print	called\n");	
	 return;	
}	
	

2.4 app.c
	
#include	<stdlib.h>	
#include	<stdio.h>	
#include	<unistd.h>	
#include	"memalloc.h"	
	
int	main(int	argc,	char	*argv[])	
{	
	 void	*chunkptr;	
	 void	*endptr;	
	 char	*charptr;	
	 int	ret;	
	 int	i;	
	 int	size;	
	 void	*x1,	*x2,	*x3;	 //	object	pointers	
	
	 if	(argc	!=	2)	{	
	 	 printf("usage:	app	<size	in	KB>\n");	
	 	 exit(1);	
	 }	
	
	 size	=	atoi(argv[1]);			//	unit	is	in	KB	
	
	 //	allocate	a	chunk		
	 chunkptr	=	sbrk(0);	//	end	of	data	segment	
	 sbrk(size	*	1024);	//	extend	data	segment	by	indicated	amount	(bytes)	
	 endptr	=	sbrk(0);	 //	new	end	of	data	segment	
	
	 printf("chunkstart=%lx,	chunkend=%lx,	chunksize=%lu	bytes\n",	
	 							(unsigned	long)chunkptr,	
	 							(unsigned	long)endptr,	(unsigned	long)(endptr	-	chunkptr));	
	
	 //test	the	chunk		
	 printf("---starting	testing	chunk\n");	
	 charptr	=	(char	*)chunkptr;	
	 for	(i	=	0;	i	<	size;	++i)	
	 	 charptr[i]	=	0;	
	 printf("---chunk	test	ended	-	success\n");	
	
	 ret	=	mem_init(chunkptr,	size,	0,	FIRST_FIT);	
	 if	(ret	==	-1)	{	
	 	 printf("could	not	initialize	\n");	
	 	 exit(1);	

 5

	 }	
	
	 //	below	we	allocate	and	deallocate	memory	dynamically	
	 x1	=	mem_allocate(600);	
	 x2	=	mem_allocate(4500);	
	 x3	=	mem_allocate(1300);	
	
	 mem_free(x1);	
	 mem_free(x2);	
	 mem_free(x3);	
	
	 return	0;	
}	
	

3 Submission	
	
Put	all	your	files	 into	 	a	directory	named		with	your	Student	 Id.	 In	a	README.txt	file,	write	
your	 name,	 ID,	 etc.	 Include	 a	 Makefile.	 Then	 tar	 and	 gzip	 the	 directory.	 For	 example	 a	
student	with	 ID	21404312	will	 create	a	directory	named	“21404312”	and	will	put	 the	 files	
there.	Then	he	will	tar	the	directory	(package	the	directory)	as	follows:		

tar	cvf	21404312.tar	21404312	
Then	he	will	gzip	the	tar	file	as	follows:		

gzip	21404312.tar}	
In	this	way	he	will	obtain	a	file	called		21404312.tar.gz.	Then	he	will		upload	this	file	in	
Moodle.		
	
Late	 submission	 will	 not	 be	 accepted	 (no	 exception).	 A	 late	 submission	 will	 get	 0	
automatically	(you	will	not	be	able	to	argue	it).	Make	sure	you	make	a	submission	one	day	
before	the	deadline.	You	can	then	overwrite	it.		

4 Tips	and	Clarifications	
	
• Your	library	will	be	a	static	library	(.a).	See	Makefile	provided	about	how	a	static	library	

can	be	created.		
• Do	not	use	malloc	or		similar	existing	allocation	routines	in	the	implementation	of	your	

library.	You	will	manage	the	chunk	space	with	your	own	functions	and	implementation.		
• You	will	keep	the	management	structures	also	in	the	chunk	space	itself.	You	can	use		

modest	amount	of	global	variables	(a	static	array,	etc.)	in	your	library	implementation.	
Most	book-keeping	information	should	be	part	of	the	chunk	itself,	and	you	should	not	
use	malloc	to	create	any	dynamic	structure.		

• Minimum	chunk	size	is	32	KB	and	maximum	chunk	size	is	32	MB.		
• Minimum	request	size	is	128	bytes	and	maximum	request	size	is	2048	KB.		
• Develop	your	program	in	a	64-bit	machine	(most	machines	are	64-bit)	and	64-bit	OS.	In	

that	case	memory	adresses	(pointers)	are	64	bits	long	(8	bytes).	Hence	we	use	long	int	to	
refer	to	a	memory	address	as	an	integer.			

• Do	not	forget	synchronization.		

