
CS342 Operating Systems
Fall 2019

Project #1

Assigned: Oct 16, 2019, Wednesday.
Due date: Oct 30, 2019, Wednesday, 23:55.

• Submit through Moodle. Make sure you start submitting one day before the deadline. You

can overwrite your submission as many times as you wish. Late submissions will not be
accepted (no excuse; no email will be accepted).

• You can only learn if you think and do yourself.

Assignment

Part 1. Develop a program that will create N child processes, besides the main
process, to process N input files to find out the k largest integers in those files. N
input files will be processed concurrently by N processes. Each input file can contain
a very large number of positive integers. The result wil be written to an output file in
sorted order, from largest to smallest. k can be a number between 1 and 1000. N can
be a number between 1 and 5. Input and output files will be ascii text files. The
program will be invoked as followes:

findtopk <k> <N> <infile1> ...<infileN> <outfile>

Each child process will read and process one input file and write its result to an
intermediate file. When all child processes finish, the main process can read and
process those intermediate files.

You could read and write files using fscanf and fprintf, but in this project you will use
low-level I/O routines, read() and write(), so that you can practice low level I/O. You
will open a file using open() function and close the file using close() function. You can
read an input file one character at a time (or few characters). An input file will
contain integers seperated by whitespace characters (space, tab, newline). The
output file will contain one integer per line. You program will delete the intermediate
files when it terminates.

Part 2. Do the same project this time using POSIX message queues to pass
information from child process to the parent process. No intermediate files will be
used. The name of the program will be findtopk_mqueue in this case.

Part 3. Do the same project using POSIX threads. For each input file a seperate
thread will be created. The name of the program will be findtopk_thread in this case.
Thread global variables will be used to pass information from a thread to another
thread. No need to use message queues or intermediate files.

Part 4. Experimentation. Measure the running time of your programs for various k,
N, and filesizes (number of integers in a file). Report your results (in tables or
plots).Try to draw some conclusions. Fix k and number of integers in a file. For
example, k can be 1000, and number of integers in a file can be 1000000. Measure
the running time of your programs for N = 1, 2, and 3. Report your results. Try to
draw conclusions. Write a report at the end of experiments.

Submission

Put all your files into a directory named with your Student Id. In a README.txt file
write your name, ID, etc. The set of files in the directory will include README.txt,
Makefile, findtopk.c, findtopk_mqueue.c, findtopk_thread, report.pdf. When we type
make, all your programs should be complied and the related executables should be
generated. The tar and gzip the directory. For example a student with ID 21404312
will create a directory named “21404312” and will put the files there. Then he will tar
the directory (package the directory) as follows:

tar cvf 21404312.tar 21404312
Then he will gzip the tar file as follows:

gzip 21404312.tar}
In this way he will obtain a file called 21404312.tar.gz. Then he will upload this file
in Moodle.

Late submission will not be accepted (no exception). A late submission will get 0
automatically (you will not be able to argue it). Make sure you make a submission
one day before the deadline. You can then overwrite it.

Tips and Clarifications

• Work incrementally. Be persistent.

