
33

Chapter 2

The World-Wide Virtual Machine

The World-Wide Virtual Machine (WWVM) is a software system that connects a

heterogeneous collection of networked computational resources and provides users with a view of

a single metacomputing platform. It naturally supports both message-passing and dataflow

computing paradigms. Web technologies combined with HPCC technologies form the basis of the

WWVM architecture. This chapter describes that architecture and the implementation details.

2.1 Motivations

Recent advances in both network bandwidths and microprocessor performance are radically

altering high-performance computing environments. There is a strong trend toward building

virtual computing platforms [GNW, RYH 94] from heterogeneous resources distributed on a

network.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 34

Such virtual computers with their enormous computing power and storage capacities can be

used to attack many computationally challenging problems such as the Grand and National

Challenges [HPCC 96, Gran 91], whose computing and storage requirements are beyond the

capacity of a single dedicated parallel (or super) computer.

Grand Challenges are major problems of science and society whose solutions require a

1000-fold or greater increase in the power and speed of supercomputers and their supporting cast

of networks, storage systems, supporting software, and virtual environments. The emerging

World-Wide Web (WWW) infrastructure is expected to make great contributions to the building

of virtual computing environments that will allow large computational problems to be solved

more cost effectively by using the aggregate power, features, and memory of many network-

WWVM
Server

Site 1

Site 2

Site 3

WWVM
Server

WWVM
Server

NCSA
Web Server

NCSA
Web Server

CGI
Scripts
CGI

Scripts

HelperHelper

BrowserBrowser

UNIX Mac PC

HelperHelperHelperHelper

Master
Site

HTTP Links Between
WWVM Sites

Local Links (UNIX
domain or TCP/IP
sockets, fork/join
mechanisms,
direct file access) BrowserBrowser BrowserBrowser

WWVM
Server

WWVM
Server

Figure 2�1. Overview of the client-server relationship in the WWVM architecture.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 35

connected computers. The WWW brings to every type of machine in the world a standard open

interface through which we can manipulate individual machines on a network.

The WWVM exploits remote resources on the Internet or on local or wide-area networks in

order to provide a seamless virtual metacomputing environment (Figure 2-1). It may contain

different types of architectures and is very suitable for solving parallel problems as well as

metaproblems consisting of many constituent subproblems, each of which is suitable for a

specific type of computer architecture. Yet, the metaproblem as a whole is outside the scope of a

single computer architecture. It is important to run the load on the most suitable computer for a

particular problem in order to use such an environment as efficiently as possible.

Modified Parallel Virtual Machine (PVM) [GBD+ 93] daemons, along with Common

Gateway Interface (CGI) [CGI 96] extended Web servers [HTTPD 96], form the basis of the

WWVM’s communication layer. The communication layer supplies the functions to

automatically start up tasks and coordinates communication and other functions between tasks. It

also takes care of necessary data conversions from computer to computer, as well as low-level

communication issues. The user perceives a single, unified system, and the details of the network

and individual machines that make up the virtual machine are not directly visible. CGI modules

construct the coordination and configuration engines, while a Web-based interface (accessible by

using Web browsers) constitutes the front end of the machine. Web servers not only may become

computation nodes of this machine, but may also behave as an interface to other machines located

behind firewalls in the same organization performing the configuration operations on their behalf,

so that they can be included in the WWVM configuration.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 36

2.2 A Taxonomy of Computing Systems

Ekmecic et al. [ETM 95] presents a taxonomy to distinguish computing systems according to

the supported execution modes and the number of presented machine models. The type of

parallelism supported by a machine represents the execution mode (EM), whereas the machine

architecture and processor speed define the machine model (MM). For example, scalar, vector and

dataflow processing represent different execution modes. A Sun SPARC and an SGI Challenge,

or two Sun workstations with different processor speeds, are considered to represent different

architectures.

According to these two criteria, computer systems can be divided into four disjoint classes, as

shown in Figure 2-2:

High Performance
Computing

Systems

High Performance
Computing

Systems

MESM
(Multiple Execution/

Single Machine)

Mixed-Mode

MESM
(Multiple Execution/

Single Machine)

Mixed-Mode

SESM
(Single Execution/
Single Machine)

Homogeneous

SESM
(Single Execution/
Single Machine)

Homogeneous

SEMM
(Single Execution/
Multiple Machine)

SEMM
(Single Execution/
Multiple Machine)

MEMM
(Multiple Execution/
Multiple Machine)

Mixed-Machine
(metacomputing)

MEMM
(Multiple Execution/
Multiple Machine)

Mixed-Machine
(metacomputing)

Loosely Coupled
Loosely CoupledTightly CoupledTightly Coupled

Figure 2�2. A taxonomy of the computing systems according to execution mode and
machine model.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 37

1. SESM (single-execution mode, single-machine model) – homogeneous systems without any

elements of heterogeneity, such as uniprocessors and many of the parallel or distributed

systems (massively parallel processors (MPPs), homogeneous workstation clusters.)

2. SEMM (single-execution mode, multiple-machine models) – quasi-heterogeneous systems in

which different nodes represent different architectures and speeds, but still support only one

execution mode. Examples include [AVA 92, Haddad 94, SchH 94].

3. MESM (multiple-execution modes, single-machine model) – same as the classical mixed-

mode heterogeneous systems.

4. MEMM (multiple-execution modes, multiple-machine models) – same as the classical mixed-

machine heterogeneous systems.

It should be noted that Freud and Siegel [FreS 93] earlier defined the MESM and MEMM as

mixed-mode and mixed-machine heterogeneous computing systems, respectively. Heterogeneous

computing systems provide a variety of architectural capabilities, orchestrated to perform an

application whose subtasks have usually diverse execution requirements.

A mixed-mode heterogeneous computing system is a single parallel-processing machine that

is capable of operating in either the synchronous SIMD or asynchronous MIMD mode of

parallelism, and can dynamically switch between modes at instruction-level granularity with

generally negligible overhead [FCS 91]. Most famous examples of mixed-mode systems include

PASM [Siegel 86], TRAC [Sejn 80], OPSILA [AugB 86], and Triton/1 [Herter 93].

A mixed-machine heterogeneous computing system is a heterogeneous suite of independent

machines of different types interconnected by (usually) a high-speed network. Unlike mixed-

mode machines, switching execution among machines in a mixed-machine system requires

measurable overhead, because data may need to be transferred among machines. In mixed-

machine systems, the set of subtasks may be executed as an ordered sequence and/or

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 38

concurrently on multiple machines. Examples of mixed-machine systems include the ones given

in [KMC 93, MFS 94, ScoP 94], Nectar [Arno 89], and any architecture that might be lying under

software systems such as PVM [Sund 90], SmartNet [Freu 93], Mentat [Grim 91, Grim 92, Stra

92], and Schooner [Homer 91, HomS 92, HomS 94].

Heterogeneous computing systems are also distinguished by the manifestation of

heterogeneity: temporal and spatial [FreS 93]. Temporal manifestation of heterogeneity implies

that the heterogeneous system is executing in one mode at one moment and in some other mode

at some other time. Spatial manifestation of heterogeneity means that a heterogeneous system

supports different execution modes at the same moment, but at different machines. The

Microprocessor
& Cache

Microprocessor
& Cache

Local Memory

Commodity Network (e.g., ATM, Ethernet)

Microprocessor
& Cache

Microprocessor
& Cache

Local Memory

Network Interface

Microprocessor
& Cache

Microprocessor
& Cache

Local Memory

Network Interface

Custom-Designed Network

Network InterfaceNetwork Interface

BridgeBridge

Local
Disk

Local
Disk

Microprocessor
& Cache

Microprocessor
& Cache

Local Memory

Network InterfaceNetwork Interface

BridgeBridge

Local
Disk

Local
Disk

M
e
m
o
r
y

B
u
s

M
e
m
o
r
y

B
u
s

M
e
m
o
r
y

B
u
s

M
e
m
o
r
y

B
u
s

(b)

(a)

Figure 2�3. A comparison of the (a) MPP and (b) cluster of workstations architectures.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 39

heterogeneity of execution modes can be manifested in both the temporal and spatial domains.

The heterogeneity of machine models is manifested exclusively in the spatial domain.

Mixed-machine heterogeneous computing has also been referred to as metacomputing [KPS+

93, KMC 93]. The concept of metacomputing is relatively recent [NSF 92, Burns 92, Jova 92,

Mars 92, NCSA 91] and is reflective of the rapid advances in computer hardware and networks.

In 1992 the National Science Foundation (NSF) accepted a proposal to integrate the four NSF-

sponsored supercomputer centers into a single metacomputing facility. The central concept of the

metacomputing proposal was that problems should be able to migrate to the appropriate computer

architecture(s) without regard for where the computers are physically located.

Incorporating many different types of computers to achieve a task is a time-consuming and

tedious job if done manually. The specific benefits of various architectures (scalar, vector, SIMD,

MIMD, etc) should be leveraged to address complex grand challenge problems by providing the

capability to implement distributed solutions in a transparent manner. Scientists require access to

several computers to solve complex problems, yet they want to spend their time doing science.

They are generally not interested with details of computers and accompanying technologies,

therefore the metacomputer should be simple to use.

The WWVM can be considered as an MEMM or a metacomputer for solving metaproblems.

The nodes of the WWVM can be a single supercomputer, a workstation farm, or even another

WWVM configured as a message-passing machine. When WWVM includes only a set of

identical workstations in its configuration, it behaves like a SEMM system; when the

workstations are from different vendors, it is representative of an SESM system.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 40

The last two configuration modes (i.e., SEMM and SESM) are usually known as cluster

computing systems. Cluster computing refers to a cluster of workstations connected through a

low-cost commodity network such as Ethernet, FDDI, or ATM, and has become an attractive

alternative parallel-computing platform. The total computational power of such an assembly of

machines can be enormous. In contrast to a tightly- coupled network interface that is connected to

the memory bus of a node in distributed-memory parallel computers, the network interface is

loosely coupled to the I/O bus in a workstation cluster. Each node of a cluster of workstations is

a complete workstation minus the peripherals except for a local disk. As shown in Figure 2-3, a

complete workstation Unix operating system resides on each node, as compared to some MPPs

where only a microkernel exists. Currently, clusters of workstations are more useful for attacking

Configuration Coordination Job Execution

Configuration Coordination Job Execution

Configuration Coordination Job Execution

Web Interface Layer

pvmd pvmd pvmd pvmd pvmd

UDP

HTTP

Local Hosts

Slave WWVM Site

Main WWVM Site

Local Control & Data
Messages

Control Messages

TCP or UNIX TCP or UNIX

Local HostsData Messages

Slave WWVM Site

Figure 2�4. System architecture of the virtual machine.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 41

problems of larger granularity than the MPPs with custom-designed fast interconnections;

however, as faster network technologies develop, this difference tends to fade away.

2.3 System Architecture

WWVM design has a modular structure with three layers: the Web interface layer, the middle

layer, and the virtual machine layer (Figure 2-4).

The Web interface layer provides a link between the application programmer and the

WWVM server site. The middle layer serves as “glue” between the Web interface layer and the

virtual machine layer. It is the core of the WWVM operation. The virtual machine layer combines

the WWVM servers on the Internet or other machines coordinated by those servers (if any) to

form a parallel virtual computer. Below, the functions and implementation of each layer are

explained in detail.

2.3.1 Web Interface Layer

The Web interface layer consists of a Web-based graphical user interface (GUI) and interface

layer modules. The user may choose computational services, supply program code, and configure

the WWVM using Netscape or another JavaScript- and Java-enabled Web browser of choice. The

GUI is implemented using Web/HTML forms with JavaScript functions and Java applets. The

interface layer modules handle the communication between the WWVM server site and the GUI

displayed through the Web browser. They translate users’ requests and responses into internal

data structures, and replies of the server into a form that can be displayed to the user in a

meaningful way. In short, this layer provides a link between the application programmer and the

WWVM server site. A screen snapshot of the WWVM browser display for configuring of the

WWVM by adding machines from the selected two hosts is illustrated in Figure 2-5.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 42

Users can list the files in their WWVM accounts on different sites or edit files through an

editor embedded in the Web-based front end. They manipulate pushbuttons and check boxes to

designate the type of services to be performed, such as compiling and linking node programs with

runtime support libraries, and then executing the resultant code. They can also specify the service

Figure 2�5. A snapshot of the Web front-end for WWVM configuration services.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 43

parameters to be used, such as the platform to be used for compiling and executing the programs

or the number of nodes to be used during execution.

The Web interface layer also supports options such as adding or deleting new nodes and

forming a user-specific virtual machine configuration. Users can browse through the Web sites

volunteering to become part of the virtual machine and add some of them to the current

configuration. In fact, these Web sites are the ones with which they are known to be

collaborating and for which they have a special Web password.

When a metaproblem is to be defined, the user is presented with a “metaproblem description

editor” with which to specify the tasks of a metaproblem and the dependencies (i.e., data and

control relationships) among them. Individual tasks may be written in any language (and in any

programming paradigm) supported by the platform that task will later be assigned to.

Since Chapter 3 concentrates on the Web-based graphical user interface design and

implementation, this subject is not further elaborated on here.

2.3.2 Middle Layer

The middle layer consists of three subsystems: configuration, coordination, and job

execution. The configuration subsystem is responsible for communicating with the virtual

machine layer components and initiating and changing the configuration of the virtual machine. It

gets the resource requirements (such as the required number of nodes to execute the given

program) from the interface layer routines. It also determines current workloads of connected

nodes and helps users choose less heavily loaded nodes automatically or semi-automatically. It

may initiate new computation nodes to allow scheduling of new tasks to them by the virtual

machine layer.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 44

There are two different ways to select the computational nodes on which tasks will be

launched. The user either specifies each and every machine that will become a computational

node of the virtual machine, or indicates specific architecture types on which particular tasks will

execute.

The middle layer’s main role is the processing of compilation and linking requests through its

job execution subsystem. A series of CGI scripts are executed to carry out the requested

compile/link/load/execute cycle, and executable files are placed in machine-specific directories

accessible to participating computation nodes. Customized makefiles supplied by the user can be

Master
Coordinator

Master
Coordinator

Data
Files

Data
Files

WWVM ServerWWVM Server

ExecuteExecute

Data
Files

Data
Files

WWVM ServerWWVM Server

Computation
Process

Computation
Process

Fork

ExecuteExecute

Data
Files

Data
Files

WWVM ServerWWVM Server

Computation
Process

Computation
Process

Fork

ExecuteExecute

Data
Files

Data
Files

WWVM ServerWWVM Server

Computation
Process

Computation
Process

Fork

TCP/IP
Connection

HTTP
Connection

Site 1

Site 2

Site 3

Master Site

Figure 2�6. Dataflow Architecture of the WWVM.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 45

used for the compilation. The underlying virtual machine layer notifies the compilation

subsystem about the status of dispatched tasks upon the normal or abnormal termination, and the

middle layer presents the result of compilation back to the user through the interface layer. The

user can then alter the input program (to correct bugs, perhaps), select a new code, or change the

service options before resubmitting the form for recompilation.

The coordination subsystem prepares the environment for the compilation subsystem. It

conveys the source programs to appropriate computation nodes so that they can be compiled

using a proper compiler and linked with architecture-specific versions of the runtime libraries.

This is especially important for heterogeneous systems or for nodes that do not share the same file

system. The coordination subsystem transfers executable files directly if both nodes have the

same architecture.

The coordination subsystem is also responsible for the operation of the WWVM as a dataflow

machine. It constructs a dataflow graph by analyzing the task and dependency description

information supplied by the user. The language used in writing the task's code, the types of

message-passing libraries used (if any), and machines and domains that will be used to launch

this task are all derived from this task description information.

Furthermore, when a complex metaproblem is to be solved, the coordination subsystem maps

the individual tasks of the metaproblem onto different nodes of WWVM and manages overall

coordination and synchronization of the tasks executed on each domain. It is responsible for

starting up tasks and transferring data and status information between the source and destination

nodes.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 46

2.3.3 WWVM Virtual Machine Layer

The WWVM can be configured either as a dataflow machine or as a message-passing

machine. This configuration is reflected in the way that the virtual machine layer connects the

underlying computational resources [vonL 97]:

The tightly coupled model makes use of message-passing technologies for enabling fast

communication of data and messages between processing nodes. The targeted programs are

usually of medium grain. The loosely coupled model combines the use of several supercomputers

and workstation clusters. Message or data exchange among the processing components of this

computer is done with the help of files. The targeted programs are usually of coarse grain, and

each subtask of the main problem is named as a task (job) with different processing requirements.

In the dataflow mode, message exchanges are usually infrequent, and message sizes are large.

The processing time of tasks overrides the inter-task message passing time.

2.3.3.1 Dataflow Model: Loosely Coupled Computational Resources

The key point of the dataflow model is that all inputs must be present in order for a task to be

executed. Within the dataflow model of computing [Sharp 85, Papa 91], there are two basic

approaches to evaluation:

• Demand-driven approach (pull-model) in which data is pulled towards the sink or output

stage as it is needed.

• Data-driven approach (push model) in which the arrival of data pushes information towards

the output stage.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 47

The WWVM uses a combination of the demand-driven approach and the data-driven

approach in its dataflow mode of operation (Figure 2-6). A dataflow application needs to be

divided into separate tasks with each task an independent computation entity (i.e. subproblem)

that reads its inputs from a data file (either from the user through the Web-interface or from the

output of another task) and writes its outputs to another data file or to the Web-based output

console. Each task has its own separate source code, simplifying the process of porting individual

tasks to different architectures.

WWVM uses a coordination language called Task Dependency Description Language that

helps the programmer describe the main tasks of the problem and the interaction between these

components to the coordination subsystem. This is similar to the language given in [BWD+ 93,

TopH 96, THF+ 97]. The tasks are described as shown in Figure 2-7 using a task description

editor that is embedded into the Web interface. The TASK keyword describes a task named T1 that

has an executable called TASK1.EXE on SUN4 and ALPHA platforms. Heterogeneous systems, or

systems that do not share the same file system, interpret this ARCHITECTURES statement and

handle the transfer of the source codes to the appropriate processing nodes before compilation or

execution. The executable codes between compatible machines can be directly transferred

between servers. From the above description, the WWVM can identify that the source file,

GAUSS.HPF, is written in HPF. In order to execute it, a file called TASK1.IN should be ready,

and that saves its output into TASK1.OUT1 and TASK1.OUT2 once it is executed.

<TASK = �T1�;

 EXECUTABLE = �task1.exe�; SOURCE = � GAUSS.hpf :: HPF�;

 ARCHITECTURES = �SUN4�, �ALPHA�;

 INPUT = �matrix.dat :: task1.in’’; OUTPUT= "reverse.dat::task1.out1’’, �stdout::task1.out2� >

Figure 2�7. Description of dataflow tasks.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 48

All tasks in a partitioned independent subgraph can be executed in parallel. Closely correlated

tasks with similar platform requirements are brought together and can be launched on the same

computation node. For such tasks the inputs from other nodes are read in at once before

beginning to execute them, and all of their outputs are saved back into the output files when

execution is finished. Therefore, most of the time they can use faster means of data- and message-

passing mechanisms than the tasks that were scheduled on different nodes.

Once the task and task group descriptions are parsed and analyzed, an acyclic directed graph,

the Task Dependency Graph, similar to the one in Figure 2-8 is constructed. The edges in the

graph represent the precedence relationships between the nodes. These edges do not illustrate

each individual input-output relationship between two nodes, since adding all of the

communication edges would make the graph unreadable. This tree, augmented with platform

T1T1

T5T5 T6T6

T7T7

T2T2

T3T3

T4T4

T8T8

End Node

Start Node

 Computing Task

Control Node

Data Dependency Link
(Communication Edge)

 Control Link

Independent
Subgraph

Previous
Site

Following
Site

Figure 2�8. Definition of a problem and its task flow graph.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 49

specifications, will later be distributed to all the WWVM servers that will participate in the

execution of the problem. The local WWVM servers launch a task, once all of its inputs are ready

after being notified by the WWVM.

Visual Programming Tools

At this point it is appropriate to mention a few of the graphical programming tools that is able

define a program using a visual editor. The Heterogeneous Network Computing Environment

(HeNCE) [BDG+ 92, BDG+93] is an automated tool for the development of heterogeneous

applications. It was developed at Oak Ridge National Laboratories and built upon the PVM

message-passing libraries. HeNCE provides a graphical interface called htool for graphical

performance monitoring and for creating applications by supplying a set of C or Fortran function

calls and a data-dependency graph. It also provides source-file distribution and compilation on

remote hosts connected by PVM. It lacks the virtual management facilities of XPVM. CODE

[BAS 85, NewB 92] is a visual tool that can provide architecture-independent parallel programs

from any sequential program with the help of the user, who needs to specify the dataflow among

serial parts. A parallel program is displayed as a directed graph where nodes represent sequential

programs and arcs illustrate the flow of data between those nodes. The Abstract Visualization

System (AVS) [Upson 93, AVS 92] helps to generate a static dataflow network of autonomous

processes by a visual editor. A global control manager coordinates the passing of data from one

process’s output ports to another process’s input ports by using interprocess communication or a

remote procedure call mechanism. A module’s operation is fired as soon as all the required inputs

are presented at its input ports.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 50

Implementation of the Dataflow Computing Model

Implementation of the dataflow computing model in the WWVM can be discussed on two

levels: within a domain controlled by a single WWVM server, and among multiple domains.

Completion of a task fires its successors, but they themselves pull the data to be used. We also

assume that, within a domain, all platforms are using a shared file system. If one is not available,

then several servers need to be started, one per file system.

Within a single domain the WWVM supports the dataflow computing model by using a

mechanism very similar to a UNIX process called fork and join. The WWVM server employs a

CGI module that analyzes the task-dependency graph, forks a new computation process to

perform a task whose inputs are ready, and notifies the responsible server when the process is

completed.

On the other hand, when a problem is distributed among several domains, the WWVM

servers running on those domains should coordinate with each other in order to complete the

tasks in an orderly manner. They use HTTP protocol for passing control messages. All the servers

are distributed to the complete task-dependency graph and the code of the tasks for which they

are responsible. The target WWVM compute servers fetch the inputs for the tasks assigned to

them and notify the WWVM master coordinator selected to coordinate the computation of a

specific problem when they are done.

Control flow is coordinated in a distributed manner. For performance purposes, no specific

WWVM server is preassigned as a master coordinator responsible for coordinating the

dependency relationships among different machines. The selection of the master coordinator is

explained by the following example. Assume that a task such as the one given in Figure 2-8 is

waiting for several other tasks that are presently executing on different domains. The WWVM

server that is the closest common parent in the task dependency graph (e.g., T1) takes the

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 51

responsibility of collecting the status information of the tasks in subtrees. Once all prior tasks are

completed, the dependent task is started. This kind of operation distributes the control mechanism

to many servers and prevents some servers from becoming hot spots.

Pulling the data from appropriate tasks is done in a distributed manner. Each task gets its own

data file from the supplying task's server location itself, either by using a customized form of

URL_GET if it is on a remote server, or local copy or symbolic link mechanisms if it is on a local

file system. It is assumed that the data is passed to other nodes on different machines by writing

it to directories that can be accessed by WWW servers and reading it using Web-based access

mechanisms on the other sites.

2.3.3.2 Message-Passing Model: Tightly Coupled Computational Resources

Besides the dataflow model, WWVM can also support the message-passing model by tightly

coupling the computational resources. WWVM’s virtual machine abstraction was built by using

the PVM system’s communication daemons. This virtual machine consists of the PVM daemons

that reside on different nodes of the WWVM system. The PVM daemon structure was slightly

modified to fit into the WWVM framework without affecting the interface seen from the outside.

This gave the WWVM the ability to use existing codes written with PVM without making

changes in them. This section will first give a brief overview of the PVM system and then discuss

the capabilities of the virtual machine layer and the implementation details.

The Rationale Behind Using PVM

The Parallel Virtual Machine (PVM) is a software system that permits a heterogeneous

collection of networked computing systems to be used as a single coherent, flexible, and

concurrent computational resource [Sund 90, Sund 92]. PVM was adapted to the WWVM

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 52

environment instead of writing a communication layer software in order to eliminate the long

initiation times and uncertainty associated with starting from scratch. As will be seen in Chapter

4, WWVM supports MPI and other message-passing paradigms such as Express and TCGMSG

on top of its original PVM layer.

The choice of PVM over other message-passing libraries was not an arbitrary one − it was

chosen for a number of reasons. First, PVM is a de facto message-passing parallel processing

system that has gained widespread acceptance. It has been adopted by hardware vendors such as

Cray and IBM, and efficiently implemented on specific hardware platforms. PVM was the most

widespread message-passing library at the time this thesis work was conducted. Although it was

expected that MPI would quickly become a message-passing standard, there was not a single,

fully working MPI implementation available. In contrast, a public domain, full version of PVM

implementation was readily available. In addition, the architectural details and implementation of

PVM were well documented in a book (see [GBD+ 93]) that made it easy to understand and

modify the PVM code.

Second, PVM supports dynamic processes and allows both SPMD and MPMD models of

task parallelism. MPI and many other message-passing systems support only the SPMD mode of

parallelism, where the number of processes is constant from the beginning of an application to the

end. A third reason for choosing PVM was its unique process-management facilities. The

execution environment may quickly change in the WWVM due to its Web-based processing

components. The number, location, and capability of available machines and network cannot be

predicted ahead of time. Worse, a program’s execution environment may vary for different

invocations. WWVM must deal with the dynamics of such a rapidly changing environment. The

use of PVM allows programs to be developed for a uniform and predictable virtual machine. The

dynamics of the underlying architecture is dealt with at runtime system level by exploiting the

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 53

PVM’s dynamic process capability. New machines can be added to the current configuration,

and PVM gracefully adapts to the new configuration. The last two properties are important in a

dynamic environment based on Web and networked computing resources. Servers or individual

machines may become available at any time or disappear abruptly. The WWVM needed to have

explicit control over these configuration changes and be able to adjust gracefully to the changes

in machine configuration.

Use of PVM also adds to the scalability property of the WWVM. PVM relies on UDP (User

Diagram Protocol) for the underlying communication protocol between different daemons.

Although UDP does not guarantee delivery of information as TCP (Transport Communication

Protocol) does, this property is implemented internally by PVM. Using UDP instead of TCP

affords three advantages: UDP consumes less system resources (file ids, etc.) and less Internet

bandwidth, and it is faster than TCP. Since the number of hosts that may join into the WWVM

configuration on the Internet is practically limitless, using UDP as the underlying communication

protocol in WWVM is clearly more suitable than using TCP.

There are many direct advantages of using PVM daemons, some of which follow:

• Fault Detection and Recovery. The PVM's fault tolerance mechanisms ensure that the virtual

machine will never run in a partitioned state, and as long as the master pvmd does not crash

the virtual machine stays alive. A host failure is detected if an acknowledgment for a request

to that host’s PVM daemon is not returned. If a slave daemon cannot reach its master, it

shuts down gracefully. When a host failure is detected, it is deleted from host tables, and all

pending or future requests to that host return an error. Furthermore, even if application

programs crash, pvmds continue to run in order to aid debugging.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 54

• Data Coercion. Messages are converted to a standard network format using XDR [XDR 87]

before sending, and are converted back to the new local format after receiving when data is to

be communicated between two hosts having incompatible data formats or binary data

representation.

• Reliable Message Delivery. The PVM provides a buffering mechanism for holding messages.

It delivers them in a reliable fashion and preserves their order.

• Portability and Scalability. The PVM has been ported to many different Unix platforms and

runs under many different operating systems. Installing the PVM does not require any special

system privileges. Most important, the PVM’s decentralized and localized host and task

management provides the capability of adding hundreds of hosts and running thousands of

tasks.1

All these factors make the PVM very suitable for use in a Web-based metacomputing system.

One general disadvantage to using PVM is its low performance as compared to MPI and others.

However, this does not constitute a problem in the context of WWVM, since the targeted

problems are computation-intensive.

PVM System Architecture

The PVM system includes system-level daemons, called pvmds, which reside on each host in

the heterogeneous computing system, and a simple but complete library of interface functions.

The pvmds provide services to both local and remote processes on other platforms in the

heterogeneous computing system. They coordinate communication by serving as a message

router and controller, spawn processes on the same machine, do authentication, and detect and

1 In the current version of PVM, up to 4095 (i.e., 212 – 1) hosts, where 12 is the length of the host id are
allowed.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 55

report host failures. Together, the entire collection of pvmds forms a virtual machine by enabling

the heterogeneous computing system to be viewed as a single computer.

The basic unit of computing in the PVM is called a task and is analogous to a Unix process.

The tasks can communicate by passing messages to other tasks through calls to PVM library

functions. Library functions run in the same address space with the user's application.

Tasks that cooperate either through communication or synchronization are organized into

groups called computations. The PVM supports direct communication, broadcast, and barriers

within a computation.

Figure 2-9 shows a logical view of a typical application. An application generally starts with

an input and partitioning task that controls how the problem is going to be solved. This task

specifies how other tasks cooperate to solve a problem and creates several computations. Tasks

pvmd

pvmd

pvmd
pvmd

Host 1

Host 2

Host 3

Output

Input

Master Host

Task

Computation

TCP connection

UDP connection

Figure 2�9. Logical view of a typical message-passing application on the WWVM.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 56

within each computation share data and communicate with each other. To communicate with a

particular task, a task sends a message to its pvmd, which in turn forwards it to the pvmd on the

destination host, which then passes it to the appropriate task. The application also has a dedicated

task to handle output and user display. The other tasks in the application forward their output to

this task for display. Their output is delivered to the pvmd on the master host through their local

pvmd. In the WWVM the task responsible for output and user display passes all incoming items

to the WWVM interface layer routines. These routines format the output in a suitable way in

order to display it to the users via the Web-based interface.

Configuration of the Virtual Machine

Adding new computation nodes or deleting existent ones can change the configuration of the

WWVM. Adding a new node is achieved by starting a communication daemon on the new

machine. Once a daemon is started on a node it stays alive until that machine is removed from

the machine configuration. A pvmd configures itself as a master or slave, depending on its

command line arguments. The first pvmd started is designated as the master, and only the master

can start and add new slave pvmds to the configuration or delete them. Reconfiguration requests

originating on a slave host are forwarded to the master. Other than the configuration process,

master and slave pvmds are equal. A host table describes the configuration of the virtual machine

by keeping the name, address, and communication status of each node. An initial host table is

compiled and maintained by the master daemon and is distributed to all other daemons at start-up

time. It is updated in every reconfiguration and kept synchronized across all pvmds.

Starting a slave pvmd requires initiating a process on a new host, and enough configuration

information is passed to it for it to be added as a peer process. To assume the task of starting a

new slave, the master pvmd delegates its authority to its shadow copy, and continues to wait for

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 57

messages from others. The shadow pvmd never talks to other pvmds or tasks, but only

communicates to its master via the normal pvmd-pvmd interface. The slave pvmd gets its

parameters from the shadow pvmd via the command line and configuration messages. It creates

and binds sockets to talk to other tasks and other pvmds, and it opens an error log file

/tmp/pvml.uid,where uid is the user identifier or id of the WWVM account owner.

The shadow pvmd uses rsh, rexec or manual startup to start each pvmd, pass its

parameters, and get a line of configuration data back. Both rsh and rexec require a valid user

account and password on each new host. The user id and password should be typed in the middle

of the process. If the master machine is made to be trustworthy by the destination machine by the

system administrator or by creating a .rhost file on the destination host, then this requirement

can be released from the rsh. Similarly, if the user places his password in a .netrc file, then

rexec skips the user authentication. However, these solutions hinder the security of local

systems and make them more vulnerable to chain attacks. If a user’s password is broken, the

intruder may easily access his other accounts. Another disadvantage of using rsh or rexec is

that when there is a single host that starts remote shells executing on other hosts, the number of

open files quickly exceeds the limits of the operating system. Furthermore, the simultaneous

execution of a large number of copies of the same executable file may overload the file server,

causing multiple lost requests.

Using rlogin or telnet with a chat script may be another alternative for starting

communication daemons on remote hosts. However, although this allows the accessing of hosts

even behind firewalls, it is very slow and even PVM implementers have to refuse this alternative,

since it is hard to make the chat program work reliably. Instead of using rlogin or telnet,

we connected to a WWVM Web server already running on the remote host and started the slave

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 58

pvmd in a very fast and reliable fashion. A question may come to mind in regard to the possibility

of connecting to an already running pvmd or pvmd server, or to the inetd. The reason we do not

do that is that it would require the system administrator to install PVM on each host.

The quickly spreading Web technology has made it possible to run dedicated, secure Web

servers responsible for WWVM configuration on each remote site. Servers extended with CGI

functionality were used to start up local slave pvmds, and they carry some of the configuration

functions over these scripts. In our Web-based computing environment the user has no real

accounts on each machine that would become a node of the WWVM. The WWVM takes care of

accessing remote hosts and configuring the virtual machine in the way the user specifies. The user

Master Daemon

Slave Daemon Slave Daemon
Slave

Configuration
Manager

Slave
Configuration

Manager

Interface
Layer

Routines

Master
Configuration

Manager HTTP
Documents

WWVM ServerWWVM Server

WWVM Server

Site 1 Site 2

Web Client
(user)

4

8

6

5

3

9

2 1

7

Master Site

Figure 2�10. Steps for adding new hosts across the network to the virtual machine.

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 59

may access the whole system by entering a WWVM password that opens doors to all other

systems.

Handling WWVM Configuration Changes

The configuration subsystem is located at the master WWVM server site and gets the user’s

reconfiguration requests from the Web interface layer routines. It is used to add nodes to the

machine, delete nodes from it, or to monitor the general configuration of the machine (see Figure

2-10). The configuration module passes the new configuration information to the Web interface

layer routines after each configuration change. If the machine where the configuration manager

is located participates as a slave node of the WWVM, then it accepts the incoming requests from

the master site (or from other slave sites) and takes the necessary actions.

The reconfiguration operations are handled as follows:

• Adding new nodes. When a new node is going to be added to the configuration, the master

site configuration module sends an ADD_NODE command to the local communication daemon

and asks for the configuration parameters that are required to add new daemons (Steps 1-3 of

Figure 2-10). Once this information is obtained, it opens an HTTP connection to the slave

site’s Web server (Step 4), automatically starts its slave site configuration module, and passes

the master site configuration parameters to it. The slave site configuration module starts a

local communication daemon and passes the incoming parameters to it (Step 5). In response,

the daemon sends it its own configuration parameters (Step 6), which are forwarded to the

master site as an HTML document (Step 7).

CHAPTER 2 – THE WORLD-WIDE VIRTUAL MACHINE 60

Upon receiving the document from the slave site, the master site configuration manager

passes the information in the document to its local PVM daemon (Step 8), which completes

the ADD_NODE operation.

• Deleting nodes. The master site configuration module instructs its local communication

daemon to delete the specified node from the virtual machine. The daemon removes the

address of the removed machine from its host table and broadcasts it to all other nodes.

• Displaying the current machine configuration. The master site communication daemon

always has the current virtual machine configuration in its host table. It promptly conveys to

the configuration module information such as the hosts, architecture types, and speeds of

individual machines recorded in its host table.

These three types of operations are sufficient for configuration changes. In the next chapter

other WWVM implementation details, which are mostly related to Web technologies, are

discussed.

