
150

Chapter 5

WWVM Data and Performance

Visualization Systems

Visualization has been the cornerstone of scientific progress throughout history. Virtually all

comprehension of science and technology calls on our ability to visualize. Visualization is a

proven, standard technique for facilitating human comprehension of complex phenomena and

large volumes of data. It can be thought of as the last step of solving computational problems or a

form of assessment of the results. In fact, the ability to visualize is almost synonymous with

understanding. This chapter presents the capabilities of the WWVM’s Java-based implementation

of the visualization engine. This engine has a data visualization component for plotting the results

produced by a program and a performance visualization component for a post-mortem analysis of

parallel message-passing programs. Compared to many other platform-specific data and

performance visualization tools, WWVM visualization displays can be observed using personal

computers in addition to Unix workstations. The only requirement is to have a

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 151

high-bandwidth network that is able to move large amounts of data as fast as needed. Like other

parts of the WWVM user-interface, the visualization engine components are embedded into the

Web-browser interface.

In addition to the specific display types, a mechanism called “data wrappers” was provided

that offers the means for users’ programs written in traditional languages such as C, Fortran, or

HPF to interact with Java visualization applets. This mechanism allows users to define their own

visualization displays and to do interactive computation steering. Data wrappers provide a

convenient way to display the data structures of users’ programs.

The aim of both performance and scientific data visualization is to gain insight into

underlying phenomena by graphically depicting data. The behavior of parallel programs on

C CompilerC Compiler

Annotated
C+MPI Code
Annotated

C+MPI Code

MPI
runtime
libraries

MPI
runtime
libraries

Pablo
runtime
libraries

Pablo
runtime
libraries

Executable
File

Executable
File

WWVM
Job Execution

System

WWVM
Job Execution

System
Output Data

Trace Data

WWVM
Performance and

Data
Visualization
Subsystems

WWVM
Performance and

Data
Visualization
Subsystems

Visualization
Applets

Visualization
Applets

To Client-Side
Browser

WWVM Server Site

Figure 5�1. Preparing visualization traces for an MPI-based message-passing program
written in C.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 152

advanced computer architectures is often extremely complex, and performance monitoring of

such programs can generate vast quantities of data. It therefore seems natural to use visualization

techniques to gain insight into the behavior of parallel programs so that their performance can be

understood and improved. On the other hand, scientific visualization is concerned with exploring

data and information graphically in order to understand it. Through a combination of tools and

techniques this work seeks to bring new dimensions of insight into problem solving by using

current Web technology.

5.1 Performance Visualization System

Performance visualization provides insight into the factors affecting performance and

provides some indication of how to improve it. The substantial effort of parallel programming is

justified only if the resulting codes are adequately efficient. In this sense, all types of performance

tuning are extremely important to the development of parallel software. Performance

improvements are much more difficult to achieve with parallel programs than with sequential

programs. One way to overcome this inherent difficulty is to bring in graphical tools. COMET

[Kumar 88], IPS [MilY 87], PARAGRAPH [HeaE 91], PAWS [PGA+ 91], and TRACEVIEW [MHJ

91] are among these tools.

WWVM employs a Java-based performance visualization component that provides a detailed,

dynamic, graphical animation of the behavior of message-passing parallel programs, as well as

graphical summaries of their performance. This component helps to visualize execution traces (in

Self-Defining Data Format - SDDF [Aydt 96]) generated from Fortran or C codes with MPI

message-passing calls instrumented with Pablo trace collection (instrumentation) library calls

(Figure 5-1). Pablo [RAM+ 92, Noe 96] of the University of Illinois at Urbana-Champaign is a

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 153

well-recognized performance instrumentation and analysis environment designed to organize and

visualize information collected from programs executing on parallel machines.

The performance visualization system provides many different visual perspectives from

which to view the same performance data. Any single visualization or perspective can only

display a portion of the relevant behavior. Viewing the same underlying phenomenon from

diverse perspectives gives a better-rounded impression and is more likely to yield useful sights

[LCF 90].

5.1.1 Postmortem Analysis

The WWVM performance visualization component is currently used only for postmortem

visualization. A majority of the performance visualization tools for distributed-memory and

network computing platforms, such as Pablo, and IPS, are trace-based. These systems require an

application to be recompiled, then run while the trace data is gathered for the entire application,

and finally analyzed postmortem using the trace data. Following the same lines, the WWVM

performance visualization component uses an SDDF trace file created during the execution of the

parallel program and saved for later study.

Real-time performance visualization is generally not desirable because of three major

impediments. First, it is difficult to extract performance data from the distributed-memory and

networked computing platforms and to send it to the outside world during execution without

significantly perturbing the application program being monitored. It should also be remembered

that computation time on many state-of-the-art parallel platforms has a high cost. Second, the

network bandwidth between the parallel platform and the graphical workstation, as well as the

drawing speed of the workstation, is usually inadequate to handle the extremely high data

transmission rates required for real-time display. Finally, even if these other limitations were not

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 154

a factor, human visual perception would be hard pressed to digest a detailed graphical depiction

as it flies by in real time. Real-time visualization requires higher bandwidth, while postmortem

display requires greater storage volume.

In designing the performance visualization system, the principal goals were to build a system

that is easy to understand, easy to use, and portable from platform to platform. The system has an

easy-to-use, interactive, mouse- and menu-oriented user interface so that the various features of

the package are easily invoked and customized. Another important factor in ease of use is that

the user’s parallel program need not be extensively modified to obtain the data on which the

visualization is based. The performance visualization system currently takes its input data from

execution trace files in the SDDF format produced by Pablo, which enables the user to produce

such trace data automatically. We have tried to keep the user’s learning curve for JPVS very

short, even at the expense of limiting the flexibility of its data processing and graphical display

capabilities.

One of the weaknesses in previously built performance visualization systems is that they are

dependent on a high-powered graphical UNIX workstation at the client end. On the other hand,

the performance visualization component is based on the Java AWT and thus runs on a wide

variety of scientific workstations and personal computers from many different vendors. It also

inherits a high degree of such portability from Pablo, which runs on parallel architectures from a

number of different vendors (e.g., Intel, Meiko, Ncube, and Thinking Machines). Therefore, the

package is capable of displaying execution behavior from different parallel architectures and

parallel programming paradigms.

The visualization component provides 16 different visual perspectives, since no single view is

likely to provide full insight into the complex behavior and large volume of data associated with

the execution of parallel programs. It includes modules for visualizing processor utilization, inter-

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 155

processor communication overhead, input/output behavior, and overall task performance. The

information conveyed by the displays and charts are as self-evident as possible, and they facilitate

understanding. The type of information conveyed by a diagram is obvious, or at least easily

remembered once learned. The choice of colors used takes advantage of existing conventions to

reinforce the meaning of graphical objects, and are consistent across views.

5.1.2 Displays

In this section we describe the individual displays provided by the WWVM performance

visualization component. The provided displays fall into one of four basic categories: utilization,

communication, input/output, and task information.

Utilization displays are concerned primarily with processor utilization. Good parallel

performance requires, among other things, that the computational work be spread evenly across

the processors, that each processor do its share concurrently, and that additional work beyond that

required by a serial algorithm be minimized [HMR 95]. Utilization displays are helpful in

determining the effectiveness with which the processors are used and how evenly the

computational work is distributed across the processors. Well-known utilization displays such as

the utilization summary, concurrency profile, utilization count, utilization Gantt Chart, and

Kiviat diagram were implemented. Communication displays depict interprocessor

communication, and they are particularly helpful in determining the frequency, volume, and

overall pattern of communication. WWVM supports communication animation, communication

matrix, and space-time diagrams. Input/output displays show the input/output events, which are

the events that involve reading from or writing to the disk. Task displays, such as depicted in the

Gantt chart use information provided by the user. With the help of the Pablo instrumentation

system they depict the portion of the user’s parallel program that is executing at any given time.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 156

Specifically, the user defines “tasks” within the program by using special Pablo routines to mark

the beginning and end of each task and assign it a user-selected task name. The scope of what is

meant by a task is left entirely to the user: a task can be a single line of code, a loop, an entire

subroutine, or any other unit of work that is meaningful in a given application.

Here we will first describe the displays common to all or several of the basic categories. The

processor states and operations may change, but the basic structure of the display and

representation stays the same. Then, we will describe a few special displays. The current limit for

most of the displays is 32 processors, which was adequate for the platforms on which this

software was tested.

5.1.2.1 Common Displays

Gantt Chart

The Gantt chart depicts the operations performed by individual processors by a horizontal bar

chart in which the color of each bar indicates the status of the corresponding processor as a

function of time. The Gantt chart provides the same basic information as the Count display, but

on an individual processor, rather than aggregate, basis.

Event Count Display

This display shows the aggregate number of processors in each separate stage as a function of

time. Since the categories are mutually exclusive and exhaustive, the total height of the composite

is always equal to the total number of processors.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 157

Figure 5�2. A snapshot of a sample performance visualization session.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 158

Animation

In this display, the parallel system is represented by a graph whose nodes (depicted by

numbered ellipses) represent processors. The status of each node is indicated by a different color,

so that the ellipses can be thought of as the “front-panel lights” of the parallel computer. When

the event traces involve communication events, the graph is further extended with arcs (depicted

by lines between the ellipses) representing communication between processors. A line is drawn

between the source and destination processors when each message is sent, and erased when the

message is received. Thus, both the colors of the nodes and the connectivity of the graph change

dynamically as the simulation proceeds. The lines represent the logical communication structure

of the parallel program and do not necessarily reflect the actual interconnectivity of the

underlying physical network.

Concurrency Profile

For each possible number of processors, this display shows the percentage of execution time

during the run that exactly N processors were in a given state. The percentage of time is shown

on the vertical axis, and the number of processors is shown on the horizontal axis.

Summary Display

This shows the cumulative percentage of execution time that each processor spent in each

stage over the entire run. For example, when this display is used in the context of the processor

utilization summary, it provides feedback on the overall efficiency of the program and load

balance across processors.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 159

Trace Display

This is a non-graphical display that prints an annotated version of each trace event as it is

read from the SDDF trace file. It is primarily useful in the single-step mode for debugging or

other detailed study of the parallel program on an event-by-event basis.

Clock Display

This display provides digital clock readings during the graphical simulation of the parallel

program. The current simulation time is shown as a numerical reading, and the proportion of the

full trace file that has been completed thus far is shown by a colored horizontal bar.

Statistical Summary

This is a non-graphical display that gives numerical values for various statistics summarizing

processor utilization and communication, both for individual processors and aggregated over all

processors. Representing raw data by statistical summaries, such as standard deviations, means,

the percentage of busy, overhead, and idle time; total count and volume of messages sent and

received; maximum queue size; and maxima, minima, and averages for the size and overhead

incurred for both incoming and outgoing messages conveys the general trends rather than the

detailed behavior.

5.1.2.2 Specific Displays

Kiviat Diagram

This display gives a geometric depiction of the utilization of individual processors and the

overall load balance across processors. A spoke of a wheel represents each processor. The recent

average fractional utilization of each processor determines a point on its spoke, with the hub of

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 160

the wheel representing zero (completely idle) and the outer rim representing one (completely

busy). The distance from the hub corresponds to the percentage of use. Poor load balance across

processors causes the polygon to be strongly skewed or asymmetric.

Communication Spacetime Diagram

In the Spacetime Diagram, the processor number is on the vertical axis and time is on the

horizontal axis, which scrolls as necessary as time proceeds. Processor activity (busy/idle) is

indicated by horizontal lines, one for each processor, with the line drawn solid if the

corresponding processor is busy (or doing overhead), and blank if the processor is idle. Messages

between processors are depicted by slanted lines between the sending and receiving processor

activity lines indicating the times at which each message was sent and received.

Communication Matrix

This display shows the communication pattern among processors by using a square array,

with sending and receiving processors along the two dimensions, respectively, for each message.

At the end of the simulation, the Communication Matrix display shows the cumulative statistics

(e.g., communication volume) for the entire run between each pair of processors, depending on

the particular choice of color code.

5.1.2.3 Parameters

The execution behavior and visual appearance of the visualization displays can be customized

in a number of ways to suit each user’s taste or needs. The individual items in the parameters

menu are described in this section.

Time Unit: The time unit chosen determines the relationship between simulation time and

the timestamps of the trace events. By convention, Pablo provides event timestamps with a

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 161

resolution of microseconds. Consequently, a value of 100 for the time unit in JPVS, for example,

means that each “tick” of the simulation clock corresponds to 100 microseconds in the original

execution of the parallel program.

Start Time and Stop Time: By default, the system starts the simulation at the beginning of

the trace file and continues to the end of the trace file. By choosing other starting and stopping

times, however, the user can isolate any particular period of interest for visual scrutiny without

having to view a possibly long simulation in its entirety.

Trace Node and Trace Type: These parameters determine which trace events are printed in

the Trace display window. This feature allows the user to focus on events for a specific node

and/or of a specific type, since looking at every event for every processor can be tedious and time

consuming. The default value for both parameters is all.

5.1.3 Interaction with Pablo

Pablo is a performance analysis environment designed to provide performance data capture,

analysis, and presentation across a wide variety of scalable parallel systems. Pablo helps to

predict application or system behavior on massively parallel systems by means of post-execution

analysis. By recording dynamic activity at the application level, one can identify and remove

performance bottlenecks. To gain insight from this data and to tune both application and system

software, the data is processed and presented in ways that not only show trends but also allow

detailed exploration of small-scale behavior.

The Pablo environment consists of three primary system components: portable software

instrumentation, portable performance data analysis (with a trace data meta-format coupling the

instrumentation with the data analysis), and support for mapping performance data to both

graphics and sound. From these three components, we adopted only the first one to use in the

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 162

WWVM. The performance visualization component replaces the functions of the other two

components. The Pablo instrumentation component [Noe 96] can be further subdivided into three

subcomponents:

• a graphical interface for interactively specifying source code instrumentation points;

• modified C and Fortran parsers that receive the instrumentation specifications from the

graphical interface and emit instrumented source code (i.e., source code with embedded calls

to a trace capture library);

• and a trace capture library that can record performance data generated by the instrumented

source code when it is executed on distributed-memory parallel systems. All the

idiosyncrasies of extracting data from a particular parallel machine generating event

timestamps, as well as buffering data, are isolated in the Pablo trace capture library.

The Pablo graphical interface and the parsers cooperate to enable insertion of trace library

calls at the selected instrumentation points in the user’s code. The WWVM environment instead

lets the users instrument an application source code by manually inserting calls to the Pablo

performance data capture library. This minimizes the amount of software that needs to be ported

into Java.

Pablo’s only modification to the source code is the insertion of calls to the trace capture

library. At execution time, the inserted instrumentation code invokes tracing routines supplied by

the trace capture library, producing performance data in a standard trace format. It is possible to

move an instrumented program to another parallel system that allows the same application data to

be captured there, thus permitting cross-architecture performance comparisons. The Pablo trace

capture library is scalable with the size of the system being studied and is also extensible,

allowing users to add environment functionality as needed.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 163

Although performance analysis occasionally requires a knowledge of architecture-specific

data semantics, the Pablo design philosophy presumes that embedding this information in either

the trace data format or the analysis software modules will preclude cross-platform portability

and extensibility. For this reason, the performance data format is semantics-free (i.e., there are no

predefined event types or data sizes).

5.1.3.1 Pablo Self-Describing Trace Data Format

The Pablo Self-Describing Data Format (SDDF) is a trace description language or data meta-

format that specifies both the structure of data records and data record instances. SDDF does not

restrict the user to a predefined record set, but allows description of general data records.

In SDDF, a header that can be interpreted by a simple parser determines the structure and

semantics of the data in a trace file. This approach brings greater flexibility for filtering out

unnecessary data.

Self-describing data files include a group of record definitions (i.e., the header) and a

subsequent sequence of tagged data records. The tag identifies the type of the record, allowing the

data record byte stream to be interpreted by using a particular record definition. The SDDF

format supports the definition of records containing scalars and arrays of the base types found in

most programming languages (i.e., byte/character, integer, and single and double-precision

floating point) and multi-dimensional arrays whose sizes, but not number of dimensions, can

differ in each record instance.

The Pablo portable trace data format links the Pablo instrumentation software, which captures

dynamic performance data, and the JPVS, which analyzes and visualizes the performance data.

On a distributed-memory parallel system with hundreds or thousands of processors, the size

of an event trace file can quickly reach many gigabytes. For the sake of compactness and efficient

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 164

processing, a binary version of SDDF also exists. On the other hand, the necessity of portability

(even across machines with different byte ordering, floating point formats, or word lengths) and

human-readability dictates an ASCII version of SDDF. Simple tools are provided for quick

conversions from one representation to the other.

The ASCII and binary versions of the SDDF meta-format describe three classes of records:

• Stream attribute records contain information pertinent to the entire trace file such as the

machine platform, or generation date of the trace file. Each stream attribute consists of a key

and an attribute, both of which are arbitrary strings of characters.

• Descriptor records describe record layouts or structures. Each descriptor record associates a

record name with a description of the fields that will appear in all data records having that

name. In addition, descriptor records can contain both record and field attributes that provide

descriptive information about records and fields.

• Data records contain actual event trace information. In the ASCII version of SDDF, a data

record is interpreted by matching the record name in the data record with the name of a

previously defined descriptor record. In the binary version of SDDF, records are matched to

definitions via integer tags.

Figure 53 shows a sample SDDF file in the ASCII format. This file contains a stream

attribute (the trace file generation date), two record descriptors (message send and message

receive), and four data records. The integers “1” and “2” near the message send and receive

record descriptors are the record tags used to match data records to definitions in the binary

version of SDDF. The message send field “Source” is a one-dimensional array whose actual size

will be specified in each instance of the message send data records. Using the record descriptors,

the first data record shows that processor 0 sent 512 bytes to processors 1 and 3 at time 100.10.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 165

5.2 Data Visualization System

Data visualization has proved effective in exploring many types of science and engineering

data and facilitating human comprehension of large amounts of complex data. The data

visualization component of the WWVM is an interactive tool for drawing 2-D data plots (Figure

5-4). Its implementation in Java makes it platform-independent. It can accept data from programs

executed in the context of WWVM as well as from ASCII files in tabular format (i.e., tables of

columns of numbers) at user-specified URL addresses. All the options of the plotted graph are

customizable through a GUI.

SDDFA
 /*
 * “run date” “January 1, 1997”
 */ ;;
 #1:
 // “event” “message sent to other processors”
 “message send” {
 double “timestamp”;
 // “Source” “Sending processor”
 int “source”;
 // “Destination” “Destination processor(s)”
 int “dest”[];
 // “Length” “Message length in bytes”
 int “length”;
 };;
 #2:
 // “event” “message received from other processors”
 “message receive” {
 double “timestamp”;
 // “Me” “my processor id”
 int “myid”;
 // “Source” “Sending processor”
 int “source”;
 // “Length” “Message length in bytes”
 int “length”;
 };;

 “message send” {100.100000, 0, [2]{1, 3}, 512};;
 “message send” {100.100100, 1, [2]{0, 2}, 512};;
 “message receive” {110.102000, 1, 0, 256};;
 “message receive” {110.110000, 2, 1, 512};;

Figure 5�3. A sample SDDF file in ASCII format.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 166

Currently the system supports line and scatter plots, bar charts, area graphs, and contour

graphs. The graphs can be annotated with a title and axis labels in various font styles and colors.

Users can view multiple data sets within the same window, the same data set in different

windows, or different data sets in different windows.

Figure 5�4. A snapshot of a sample 2-D Data Visualization session.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 167

It is also possible to delete previously drawn plots, replace the currently selected plot with

another plot, or print out the currently selected plot. Furthermore, it is possible to save the current

configuration of the system (i.e., files selected, plot and graph customization choices, etc.) into a

configuration file, and retrieve this file for later use.

Extensions to the data visualization system is planned that will make it possible to plot

arbitrary GNUPlot [WieK] files and save the current system configuration in a GNUPlot file

format.

The data visualization component can access data files spread over the Internet on Web or

FTP sites via Java’s built-in network routines. Moreover, it can be used to plot data files in a

WWVM user’s account without hindering users’ security and privacy. The data visualization

component is built as a Java applet that can communicate with a back-end CGI file access module

at the WWVM server site in order to obtain users’ directory information. The contents of the

directory are shown to the user through an extended network-capable version of the Java file

dialog display. The selected file can then be sent to the applet through the socket connection. To

save the current configuration, the data flows in the reverse direction towards the server.

5.2.1 Customize Plot Menu

5.2.1.1 Data Format

Data files are ASCII files with numeric data arranged in one or more columns separated by

blank space. Lines beginning with a number sign (i.e., “#”) are treated as comments and ignored.

In all cases the numbers on each line of a data file must be separated by blank space dividing the

line into columns. The user can select the format of data within a file. In the case of XY Plots,

chosen x and y values from a line are plotted as a series of XY values to be plotted against y- and

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 168

x-axises. In Y Plots, WWVM data visualization component interprets the input data as a series of

Y values to be plotted against a set of constantly-spaced x-axis intervals. Contour plots are done

similarly.

5.2.1.2 Plot Styles

 This option allows the customization of line colors and styles. Currently, plots may be

displayed in one of six styles: lines, scatter points, lines with points, area plots, bar charts, and

contour graphs. Line plots connect data points with lines so that changes or trends within the data

can be observed. Scatter plots show the data points as markers so that groupings of data can be

easily seen. When a dot type of marker is selected, there is a tiny dot at each point; this is useful

for scatter plots with many points. Area plots fill in the data points with solid color so that similar

and dissimilar data points are easily viewed. Bar charts display data in vertical bars so that it will

be easy to compare data values. The contour style is used to draw contour graphs.

5.2.2 Customizing Graph Menu

The following are the customizing options of the graph menu:

Graph Background Color option sets the window background color.

Font Type and Color option selects the font and font color used in the graphics window for

drawing the title and x- and y-axis labels.

Tics are drawn inwards on the left and bottom borders only. This is useful when doing impulse

plots.

Title option produces a plot title that is centered at the top of the plot. Using the optional

adjustment option, the title can be centered, or left- or right-justified at the top of the plot

window.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 169

X- and Y-axis labels option sets the x- and y-axis label that is centered along the x- and y-axis,

respectively. Vertical (i.e., rotated) text is centered vertically at the left of the plot.

X- and Y-axis range option sets the horizontal (vertical) range that will be displayed. If only one

value is provided, the range in the opposite direction is unaffected (or still autoscaled). To set a

range back to autoscale, give a star as the value.

X- and Y-axis zero-axis option draws the x- or y-coordinate zero-axis. By default, this option is

on.

5.3 Data Wrappers for Visualizing Program Data Structures

Data wrappers is a key base technology provided in the context of the WWVM that allows

client-side Java applets to interact with running parallel Fortran, C, and HPF codes for steering

computations or for monitoring and visualizing distributed data structures in a program.

Implementation of data wrappers as a small portable library makes it possible to link it with

programs written in different languages.

5.3.1 Implementation

The implementation of data wrappers was built upon the Parallel Tools (PTOOLS)

Consortium’s Distributed Array Query and Visualization (DAQV) system for [HacM 96, HMR

95, HacM 93, HacM 94] High Performance Fortran. DAQV supports a framework in which

visualization and analysis clients connect to an HPF application with DAQV control for program-

level access to array values and for computational steering. DAQV provides an OSF/Motif

compatible user interface that is implemented using Tcl/Tk. Data wrappers use the Java AWT in

the implementation of visualization and steering clients. DAQV’s event control mechanisms

were also modified to fit into the data wrappers framework.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 170

Data wrappers inherit the server/client-based architecture of the WWVM. They were

implemented as a software library containing distinct client- and server-side routines. The client-

side and server-side routines of the data wrappers establish a link using TCP/IP sockets in order

to convey data between both sides. Data wrappers use the External Data Representation (XDR)

format when passing data between such dissimilar machines to take care of data presentation

differences such as different byte order and floating-point format.

Client-side routines were completely implemented in Java, but server-side C routines and

interfaces to Fortran and HPF languages were adopted. The client-side routines are dynamically

linked with the visualization and/or computational steering Java applets and provide the means to

communicate with the user program residing at the server-side. Their basic function is to access

HTTP
 Connection

Visualization Java Applets
with wrapper calls

TCP/IP
Connection

(Carrying
Pipelined

Data and Control
Packets)

Client Site

Server Site

WWVM ServerWWVM Server
Annotated
User Code

Executable
Codes +

wrapper function
calls

Executable
Codes +

wrapper function
calls

Execute
Jobs
on

Parallel Platforms

Java-Enabled
Web Browser

Visualization
Applets

Applets

Figure 5�5. Operation of data wrappers for visualization and interactive computation
steering.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 171

the data elements in the user’s program and either to convey them to the client-side functions or

to modify their values based on the client-side commands.

Two basic models of interaction are supported between the client-side and server-side

functions: push and pull. The push model is implemented by inserting simple function calls into

the user’s program code. These calls initiate a send or receive operation to transfer data between

the server- and client-side. The push model is adequate if the programmer knows exactly what

arrays are to be visualized and when they are to be visualized. This model resembles the loosely-

synchronous, message-passing programming model implemented using blocking send and receive

operations. The pull model allows the program execution and selection of arrays for visualization

to be controlled through an external interface. A control client process, which is a kind of event

handler, is linked with the user’s program and runs on the server-site to direct the program

execution. It also configures communication links and initiates data transfers to visualization

clients. This model uses a sophisticated event protocol to interact with the control client. In the

case of HPF programs, the pull model requires one process to play the role of the control process

or the communication server. The data wrappers implement array access in a standard and

portable manner in the HPF context by using HPF intrinsics. Different array access functions

were written for different types of arrays with different ranks. The use of HPF for this purpose

brings efficiency and correctness.

The conceptual difference between these two models is where the decision to extract an array

originates. In the push model, the program pushes the data out, while in the pull model an

external client reaches in and pulls the data out.

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 172

5.3.2 Operation of Data Wrappers

In both models the user’s program should be annotated manually in order to insert the

required function calls into the data wrapper functions at the proper points. Similarly, the user

should insert the necessary functions at appropriate points in the Java applet in order to ensure

correct behavior.

The first step in annotating a program is to register the data items to be manipulated. The

registration process allows the data wrapper library to determine (at runtime) the arguments

required to invoke a data access or manipulation function and to set the parameters in order to

properly convey these data items over the socket connections. This information about each data

item is stored in internal data structures. There are two general classes of data in the system,

primitive data and aggregate data. Primitive data items are simple objects such as bytes, integers,

single- and double-precision floating-point numbers, and text strings. Aggregate data items are

vectors and two-dimensional arrays with an arbitrary number of elements of unsigned character

(byte), integer, single-precision floating-point, and double-precision floating-point at the moment.

For arrays, the rank, number of elements in each dimension, distribution and alignment

information (only in HPF) are set in addition to the name, value, and type of the data item. A

handle that is later used to access the properties of the data item is returned from registration

functions.

Generally, only the primitive data types are suitable for use as parameters for computational

steering. They can be associated with user interface widgets, and users are allowed to control

their values. For example, a text parameter can be viewed or set using a text field widget.

Second, the connections between the user’s program and the client-side should be established

using a socket initiation function by specifying a port number and the buffer size for messages to

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 173

be sent. In the context of the WWVM this port is determined automatically, depending on the

WWVM server being used.

Other functions that need to be called depend on the model being used. In the push model,

send() and receive() functions accomplish the transfer of the specified data items between

the client- and server-side. In the pull model, data client configuration takes place as part of the

interactive control (event) protocol, and instead of send() and receive() functions, a

yield() function is called which transfers the execution to the control client. The control client

reads the requests in an event queue waiting to be serviced and calls the proper functions for

accessing or setting specified data items. Once the events are serviced, the control is returned to

the user’s program, where it stays until the yield() function is again called. The responsibility

of calling this function routinely belongs to the user’s code.

5.3.3 Use of Data Wrappers for HPF Data and Performance

Visualization

Languages such as HPF allow the programmer to specify processor arrangements,

distribution and alignment of arrays, and execution of parallel loops. However, as programmers

are removed from the fundamental operation of the system, the gap gets bigger between the low-

level system information that is easy to monitor automatically and the application-level constructs

that are meaningful to the user.

Traditional performance visualizations are based on physical processor load, and low-level

message passing may not be very useful in the HPF context. HPF visualizations could be more

effective if they were dependent on HPF’s underlying programming and operating semantics.

Data wrappers can be used to explore the effects of data distributions by linking a program’s

performance to its performance behavior. Since the program’s performance directly depends upon

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 174

how its data structures are distributed, it is important to explain and illustrate the behavior of a

program by graphical visualizations. Data-related views show the progress of the program's

execution with emphasis on data alignment, distribution, and movement. A user can selectively

choose and view some of the arrays used in the program. The visualization of data structures is

especially important for languages like HPF, where data distribution determines the overall

program performance. Programmers should see not only when and where communication takes

place, but also which subarrays are moving between which processors.

Generic visualization displays based on universally available, low-level execution trace data

are inevitably only indirectly related to the application level. Any high-level abstraction that

relates to a particular application is likely to be application-dependent and require custom-written

data collection and display techniques, therefore most performance visualization tools have

featured only generic displays in order to avoid being explicitly application-dependent and

restricted in applicability. In this respect, data wrappers provide an easy way to use application-

specific visualization displays with Java applets. At the present time, data access patterns can be

determined by manually inserting calls to special functions after each array access that mimics the

owner-computes rule. These functions analyze the left- and right-hand sides of the array

assignments and determine the type of access and whether communication is required to process

the statement.

5.3.3.1 Related Work

The design and implementation the data wrapper libraries are influenced by a number of

related research projects. The research work integrating Pablo with the Fortran D compiler [Adve

95], Tau with the pC++ compiler [BHM+ 94], Connection Machine Prism environment [Prism

CHAPTER 5 – WWVM DATA AND PERFORMANCE VISUALIZATION SYSTEMS 175

96], and Breezy [BMM 95] (which provides high-level interaction with the pC++ system)

demonstrate the importance of providing high-level semantic context.

The GDDT tool [KGV 95] provides a static depiction of the effects of different distribution

methods in allocating parallel arrays on processors. The DAVis [Kemp 96] tool combines

dynamic data visualization and distribution visualization. The IVD tool [KarH 93] uses a data

distribution specification provided by the user to reconstruct a distributed data array that has been

saved in a partitioned form.

Kimelman et al. [KMS+ 94, KMS+ 95] introduces new high-level views of HPF program

behavior that show the communication activity in the context of the array distribution from

which the compiler derived the communication. The programmer can see where the

communication takes place, as well as what subarrays are moving between which processors.

The visual programming tool for Fortran D developed by Kondapaneni, Pancake, and Ward

[KPW 92] provides some aid in specifying data distributions and alignments.

The Program Visualization (PV) environment [KimS 92] by IBM integrates the generation of

visualization with language compilation. This environment supports the parallelization of

sequential Fortran codes and generates traditional performance visualizations such as control flow

and dependence graphs.

The work of Srinivas and Gannon [SriG 94] recognizes the importance of providing data

visualizations in terms of semantics of the application of new languages like HPF and pC++. The

proposed environment provides source code analysis facilities and visualization of data structures.

