
176

Chapter 6

Concluding Remarks and Directions for

Future Research

6.1 Summary and Implications of Thesis

Recent progress of HPCC technologies is toward building high-performance parallel and

distributed computers from commodity workstations and networks. Supported by this trend, the

last couple of years have seen the concept of metacomputing reach widespread acceptance as an

effective alternative to other, more traditional computing paradigms. This is mainly due to the

rapidly falling price-performance ratios of networked computing resources and the emergence of

high-speed local- and wide-area networks. Such a metacomputing environment consists of a

hardware mixture ranging from clusters of workstations to parallel supercomputers, accessible as

a single operational unit via geographically distributed networks.

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 177

Although the World-Wide Web was initially designed to be used as an on-line multimedia

document retrieval system, it comes with a much more powerful infrastructure that could be used

for other purposes. The following four points about the Web infrastracture could contribute to

building metacomputing environments:

1. WWW is a network-based, distributed environment by definition.

2. Web (i.e., HTTP) servers provide a standard open interface to access every machine in a

similar way, regardless of its actual hardware architecture or software configuration.

3. Web servers can be configured to have full access to all the high-performance computational

resources on the same domain. With the addition of other server-side Web technologies, such

as CGI and LiveScript, they can be extended as computation and coordination servers instead

of document servers.

4. Graphical Web browsers can be thought of as portable, open, operating-system-independent,

graphical user interfaces. The new Web technologies offer fresh possibilities for the high-

performance computing community to adapt these interfaces to all the different computing

platforms (including PCs, Macintoshes, and Unix machines).

Given these factors, incorporating emerging Web technologies into high-performance

computing and communication technologies looks promising. Such an integrated system would

combine the strengths of both technologies and would help to transfer the last decade’s high-

performance experience onto a new platform. The focal point of this thesis is building a Web-

based metacomputing environment combining both technologies.

The World-Wide Virtual Machine (WWVM) combines geographically distributed high-

performance computing resources on local-area or wide-area networks or on the Internet and

provides a metacomputing environment. It provides users with the illusion of a single, large

machine that is remotely accessible over the Web using the Web browser interface. Delivering

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 178

computational applications over the Web in an interactive manner using off-the-shelf Web

browsers as the interaction medium is intuitive and has the potential to attract a large user

community, improve the rate of user acceptance, and avoid many of the pitfalls of software

distribution.

WWVM requires at least one active WWVM server to present in each site or computational

domain in order to coordinate the WWVM operations at that site.1 A WWVM server is a CGI-

extended form of a conventional Web server. Local WWVM servers running on these platforms

can access all the computational and information resources on the server machine and all other

machines connected to this server machine within an organization. Such a server’s duties

include, but are not limited to, acting as a computational server when required, helping to

configure and manage the local machines in that site, participating in code and data transfers

between the local site and other sites, and providing a uniform standard interface to the users.

Any individual machine that is part of the WWVM configuration can be used in stand-alone

mode. This allows choosing, for example, a specific workstation cluster to attack a particular type

of problem. In addition, a subset of the available hardware resources can be used at the same time

to build a virtual computing platform that can operate in two different modes: message-passing

mode for parallel processing and dataflow mode for distributed processing. The important points

of these three modes of operation are summarized below.

• Stand-alone mode. Web-based parallel programming environments (WPPEs), described in

Chapter 3, are small-scale applications of the stand-alone mode of operation to the education

domain. WPPEs are unusual among Web services, because they allow users to create, edit,

and execute files, rather than simply retrieve them by following hypertext links or by making

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 179

simple database queries. WPPE prototypes that provide support for high-level parallel

programming based on Fortran 90 and High Performance Fortran (HPF), as well as explicit

low-level programming with the MPI message-passing interface and traditional serial

programming, were field-tested at the Cornell Theory Center and at Syracuse University.

These prototypes contributed to our understanding of the critical issues related to user

interface design, preferred environment settings, and the facilities necessary in such an

environment.

• Message-passing mode. This mode allows the tight coupling of selected machines on local-

and wide-area networks as a single parallel-computing platform.2 It should be noted that the

bandwidth of the Internet that can currently be achieved inhibits the effective use of WWVM

as a parallel computing resource for communication-intensive applications. For this reason, it

is assumed that high-speed WANs are available for interconnection when two machines at

distant locations are to be connected. The provision of this mode required being built on the

software environments and with the distributed computing capabilities provided by the Web,

merely adding the low-level communication and coordination needs of parallel processing by

using modified PVM daemons. The computers on a network are usually from different

vendors, and through the use of PVM the WWVM system can cope with differences in the

architecture, data format, computational speed, machine load, and network load.

The WWVM message-passing mode provides multi-library and multi-language support.

Since the underlying communication layer is based on PVM, a high-level interface to MPI is

provided that emulates MPI functions in terms of PVM calls. Furthermore, message-passing

1 Since Web servers are locally managed, local sites may easily change management policies concerning
the use of the site’s resources. All hardware resources in a site should be accessible through a common file
system such as NFS or AFS.
2 This is similar to the IWAY effort, where MPI is extended to support inter-site communication.

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 180

wrappers from Express and TCGMSG message-libraries to MPI enable the running of

programs based on those two libraries on top of WWVM. HPF and Global Arrays shared-

memory programming models are also supported by the WWVM. The Syracuse Fortran

90D/HPF compiler and the PCRC runtime support libraries are used to compile and run HPF

programs.

• Dataflow mode. In the dataflow mode the independent tasks of a large problem are distributed

to several machines on different sites. According to the problem’s task dependency diagram,

the output of a task is fed into another task’s input by using HTTP-based data channels.

Since each task is independent in its operation, it is assigned to the type of machine that will

support its requirements (different programming paradigms, architecture types, etc.).

Therefore, an interface layer similar to the one found in the message-passing mode is not

required.

The dataflow model supports coarse-grained software integration, and is therefore insensitive

to deficiencies in the current Internet or to high overheads of Web software. Even under the

high communication cost and network delays, the dataflow model works fine for a subset of

high-performance computing applications.

WWVM also takes care of other metacomputing-related issues such as management of

heterogeneity, reliability and fault tolerance, dynamic load balancing, security, scalability and

expandability, communication across networks, functionality, and providing a shared file space

by moving data and core to the required site. These concepts were discussed in various sections

of Chapters 2 and 3.

The amount of trace data produced in parallel systems with multiple processors can be

overwhelming and difficult to interpret. Visualization is a proven method for dealing with large

volumes of complex data. Support for data and performance visualization is an important

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 181

component of a metacomputing environment. WWVM performance and data visualization

components were completely written in a platform-independent manner using Java, which

ensures that accessing the same displays can be done easily by using personal computers or

high-end workstations. Below is a summary of the main features of the performance and data

visualization components of the WWVM:

• Performance Monitoring and Visualization. The first step in the performance visualization

process is to instrument the program and collect the performance data that will provide

insight to the behavior of parallel programs (i.e., the internal course of events taking place) in

order to improve performance. This software instrumentation can be in the form of macros

inserted at compile time or embedded in system libraries (e.g., interprocessor

communication) and invoked at run time. The WWVM system uses the execution trace files

generated by the Pablo environment for performance analysis and visualization. Pablo

generates a self-describing data format (SDDF) trace file that includes a header describing the

structure and semantics of the data in it. The WWVM system uses a simple parser to interpret

the header and determine the execution trace record types. Analysis of the records provides

information about the impact of CPU utilization, network utilization, load balancing over the

whole system, and overhead induced by communication between the interacting processes

that are the main attributes of a distributed program behavior. WWVM provides multiple

windows that permit several simultaneous views of one parallel program, which allows an

analysis of the same program from a different perspective. These windows can be grouped

into four main categories: utilization, communication, task, and input/output, and they include

textual representations, time process diagrams (Gantt charts), and animations of program

execution.

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 182

• Data Visualization and Wrapper Functions. WWVM has a separate component for plotting

data stored in a file as two-dimensional graphics such as line graphs, scatter plots, bar charts,

and contour plots. In addition, application-specific displays of data can be constructed at real-

time using data wrapper functions. Data wrappers provide a general interface between

running message-passing and HPF applications on the server-side, and visualization and

control applets on the client-side. They help to interactively display data and control the flow

of the program. Two primary models of operation are supported. In the push model, the

control of the initiation of data transfers belongs to the parallel program. The parallel

programs push data to an external client-side Java applet that always waits for the data to

arrive over a communication channel. In the pull model an external client operating on the

server-site accepts requests issued by the Java applet and serves them.

6.2 Directions for Future Research

There are two key directions for future extension of the research presented in this thesis. First,

the WWVM framework can be extended to include Java-based computation in addition to the

message-passing and dataflow computation paradigms using traditional libraries and languages.

Second, the nature and scope of the WWVM architecture could potentially be expanded toward a

more layered, modular, and portable architecture and toward more comprehensive support tools.

The WWVM system represents a client-server computing model that employs at least one

CGI-extended Web server on each remote site that is responsible for coordinating the

computational activities in that domain and for providing a relationship with the rest of the

WWVM system. Local computations are in the form of programs written using traditional

languages such as C, Fortran, and HPF, and may use message-passing or dataflow computing

paradigms. However, the introduction of new client-side Web technologies such as Java

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 183

technology has enabled the production of a client-client computing model. With little effort, the

WWVM can provide an infrastructure that will perform the same tasks carried out by Java-based

metacomputing systems such as SuperWeb, Charlotte, and DAMPP. Platform-independent and

secure applets that report their completion status to a central WWVM server may be activated

through the Web browser interface. However, as discussed in Chapter 2, applicability of those

systems is limited to a very small number of specific massively-parallel scientific applications

with little or no inter-process (or inter-task) communication. Currently, the lack of Java

compilers, the slow speed of current Java interpreters, and the long latency of the Internet

negatively affect the loading of large Java applet class files by remote clients. Furthermore, the

task-launching mechanism in those systems requires a rendezvous between the server and clients.

The Java applets are transferred to and run on the client’s machine only when a client connects,

using his Web browser, to the server. In contrast, a central WWVM server can launch jobs on

volunteer sites that have already registered by sending job requests to the WWVM server on their

domain. Simultaneous start-up of as many tasks as required makes it possible to get timely

results. Since users’ identities are verified by using an authentication mechanism, Java

applications that are capable of doing input/output and inter-process communication could be

used instead of Java applets.

There is also a trend toward writing translators to convert legacy programs written in

traditional languages to Java. In the WWVM environment such a translator may enable the

distribution of tasks to Web clients that connect to the WWVM through a Web browser.

Other key capabilities and supporting tools of the WWVM that are subject to more

enhancements and extensions are discussed below in the rest of this section. As Web technologies

continue to evolve, the WWVM design will naturally take advantage of those new developments

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 184

as appropriate. An investigation is certain to be made of the most recent developments, such as

ActiveX, which can carry much of the work from the server-side to the client-side.

Use of Java-based Web servers looks more promising than their traditional counterparts

because of their extendibility, interoperability with other distributed computing technologies, and

platform-independent implementations. Currently, Java-based servers are still in the development

and testing stage and are not in widespread use. Only the Web servers that are well tested and

verified3 for security are used in the WWVM environment, since server software security is very

crucial in order to keep the integrity of the systems on which they are installed. A security flaw

may cause external hackers to take control of the entire WWVM system. On the other hand,

experimental Java servers still lack such a detailed security verification, which makes them more

vulnerable to security attacks.

Also intended for the future is the creation of a more flexible WWVM system that is easily

manipulated to meet the local system and software requirements. Extensions could include new

facilities for more intelligent scheduling of user jobs and for giving users more control of the

manipulation of submitted jobs.

Tools for choosing lightly-loaded computational servers for running users’ programs

automatically, submitting batch jobs from the same interface, and detecting and terminating run-

away user processes can be implemented. For these purposes, the use of EASY-LL looks

appropriate, at least on IBM platforms. EASY-LL is a scheduling mechanism for LoadLeveler4

jobs that was developed jointly by the Cornell Theory Center and IBM and is available to other

3 A few bugs hindering the security were previously discovered and eliminated in current implementations
of NCSA, CERN, and Apache servers used by WWVM.
4 LoadLeveler is a batch system IBM SP-2 and RISC System/6000 clusters that allows the system to be
divided into interactive and batch sites, and controls the scheduling of parallel and serial jobs on nodes.

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 185

sites for installation. It provides fair scheduling for both large and small jobs by means of a

"backfill" algorithm that allows small jobs to make use of idle nodes.

It is clear from users’ feedback that the ability to use an editor of their choice is a key

component with respect to usability. An important intention is to provide an integrated

development environment that alleviates the necessity for the user to learn a great deal of detailed

information in order to be successful. It is essential to provide a customized visual Java editor in

addition to the currently supplied CGI-based and conventional UNIX editors. This Java editor

could be used from home PCs as well as from UNIX workstations, while many UNIX editors can

only be called in X-Windows environments. Extended editor functions for the insertion of

appropriate data wrapper functions or performance instrumentation calls into users’ programs are

also planned.

WWVM’s visual file manager component requires little further development. With the arrival

of wider support for Java 1.1 by mainstream browsers, its drag-and-drop capability and keyboard

action shortcuts could be exploited to provide a more user-friendly tool for file operations. The

WWVM system currently lacks a visual interface for describing tasks and specifying data

dependencies between tasks, now defined using text descriptions. It would be more appealing to

develop a visual interface such as the one in WebFlow [FoxF 96b] that shows the system state

and task relationships.

Java should grow in importance as a pervasive client-side technology for building interactive

analysis and visualization capabilities. The present performance visualization capability is built

around the Pablo technology developed at the University of Illinois at Urbana-Champaign. This

utility comprises a set of Java applets to support the Pablo SDDF format. This capability could be

extended to include other performance analysis tools and to provide an interface that allows users

to choose their favorite tool.

CHAPTER 6 – CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH 186

Although basic data visualization capabilities have been included in the WWVM, more

advanced visualization features are still immature. A future target would be to enhance them in

order to support more general classes of scientific data representation that, for the most part,

require three-dimensional visualization capabilities. It would also be necessary to develop a

standard Java applet library to handle the various types of structures that are expected to be

encountered in modern scientific applications. This library could be used in constructing the

application-specific visualization applets and to help in the interactive steering of arbitrary

applications through the Web interface.

The initial prototype implementation for visualizing replicated and distributed HPF data

structures provides the basis for future work. In message-passing parallel codes there is no

explicit mechanism to specify array structures and their decomposition to which a tool can refer;

the user is the only source of information about the decomposed array. An interface that allows

the programmer to specify the structure and decomposition of arrays in a program will be

provided. Although functions use HPF's own intrinsic routines to access distributed data items,

portable runtime primitives need to be developed in order to collect distributed data items from

all processors in message-passing codes.

It would be interesting to investigate the possibility of applying the visualization concept

to providing an interface to other visualization systems in order to complement an existing

framework. Existing general and widely used visualization systems such as IBM Data Explorer,

AVS, and SGI Iris Explorer may be available in the target environment and should not be

excluded from tool integration. Those tools covering the range of visualization capabilities

needed by computational scientists and engineers can be interfaced with the WWVM. The user

would still be able to handle the controls from the browser, while the underlying visualization

application will run on a server with a more powerful rendering engine.

