
1

UNIX Systems Programming
Networking with Sockets

(Curry, chp.14)

Dr. Kivanç Dinçer
CENG-332 Lectures

Spring 2000

2

Network Protocol Suites
Nearly every UNIX system is connected to some type of network
• TCP/IP (Transmission Control Protocol/Internet Protocol)

– The de facto standard network protocol suite in use today is
TCP/IP (Transmission Control Protocol/Internet Protocol)

– developed by the Internet Engineering Task Force
– funded by the US Defense Advanced Research Projects Agency

(DARPA)
• DARPA also provided principal funding for development of

Berkeley UNIX –
• BSD Unix was the first O/S that supports internetworking

via TCP/IP- Berkeley networking paradigm: socket interface
– used world-wide by hosts connected to the Internet

• OSI (Open Systems Interconnect)
– standardized by International Standards

Organization (ISO)
– fairly popular in Europe, never caught in US.

3

Networking Concepts – Host Names
• Each host on the network has a unique host name.

– On the Internet, a host name must be a fully qualified
domain name.

Internet Domain Name System (DNS) allows the
host name space to be subdivided into a number of
logical areas, or domains.
– easy to administer: each organization can

administer its own name space.
• In old days, entire host name space was controlled by

the Network Information Center
• 9M hosts on the Internet in 1996.

– allow host names to be reused in different
areas of the name space.

• On top-level each country has a two-letter domain
– edu, mil, gov, com are also top-level domains.

4

Networking Concepts – Host Addresses

Host addresses, network addresses or
Internet addresses:

• are usually written in dotted-quad notation
– each byte of the address is converted to an

unsigned decimal number and separated from
the next by a period.

– e.g., 0x7b2d4359 à 123.45.67.89
• consists of two parts:

– a network number: used by the nw routing sw to
decide how to deliver data from one network to
another

• subnetwork number: which part of the network
– and a host number

int gethostname(char* name, int len)int gethostname(char* name, int len)

5

Network Address Classes
• Class A: 1 byte network # and 3 bytes host #
• Class B: 2 byte network # and 2 bytes host #
• Class C: 3 byte network # and 1 bytes host #

/etc/hosts
– lists host name and address pairs
– usually used for local area addresses
– Network Information Service (Yellow Pages) provides a

different interface to this file

6

Translation bw host names and
addresses

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
struct hostent* gethostent(void)
struct hostent* gethostbyname(const char *name)
struct hostent* gethostbyaddr(const char *addr,int len,int type)
int sethostent(int stayopen) //open db and sets ptr to first entry
int endhostent(void) //close db

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
struct hostent* gethostent(void)
struct hostent* gethostbyname(const char *name)
struct hostent* gethostbyaddr(const char *addr,int len,int type)
int sethostent(int stayopen) //open db and sets ptr to first entry
int endhostent(void) //close db

struct hostent {
char *h_name; official host name
char **h_aliases; pointers to other names of host
int h_addrtype;
int h_length;
char **h_addr_list; list of addresses for that host

}

struct hostent {
char *h_name; official host name
char **h_aliases; pointers to other names of host
int h_addrtype;
int h_length;
char **h_addr_list; list of addresses for that host

}

7

Networking Concepts –Services and
Port Numbers

• On any given host on the network, a number
of network services may be provided
– remote login, file transfer, e-mail delivery, …

• Port number:
– a small integer used to identify the service to

which data is to be delivered
– each service is assigned a port number
– In order for two hosts to communicate using

some service, they must agree on the port
number to be used for that service.

8

Well-known ports:
– All standards Internet protocols use.
– FTP: 21, HTTP: 80, …
– stored in /etc/services

#include <netdb.h>
struct servent* getservent(void) udp or udp
struct servent* getservbyname(const char *name, char *proto)
struct hostent* getservbyport(int port,char* proto)
int setservent(int stayopen) //open db and sets ptr to first entry
int endservent(void) //close db

#include <netdb.h>
struct servent* getservent(void) udp or udp
struct servent* getservbyname(const char *name, char *proto)
struct hostent* getservbyport(int port,char* proto)
int setservent(int stayopen) //open db and sets ptr to first entry
int endservent(void) //close db

struct servent {
char *s_name; official name of service
char **s_aliases; pointers to other names of service
int s_port;
char *s_proto; protocol to use

}

struct servent {
char *s_name; official name of service
char **s_aliases; pointers to other names of service
int s_port;
char *s_proto; protocol to use

}

9

Network Byte Order
When implementing integer storage on a computer,

manufacturers have two choices:
• Big-endian:

– most significant byte in the lowest memory address
– SUN, Motorola

• Little-endian
– Intel, DEC

• A 32-bit integer value as stored on a big-endian
machine looks different than one stored on a little-
endian machine.
– To copy data from one type of host to the other, it is

necessary to transform the data into the proper format.

10

• Network byte order (big endian)
– insures that all traffic arriving at a host from the

network will be in the same format
– Berkeley networking paradigm specifies that each

network program must perform these byte order
conversions itself.

• These are usually implemented as C preprocessor macros

– Character strings do not need to be converted
– Floating-point numbers are converted to integers or

strings and then exchanged.

#include <sys/types.h>
#include <netinet/in.h>
u_long htonl(u_long hostlong); //converts 32-bit value to nw byte order
u_short htons(u_short hostshort);
u_long ntohl(u_long netlong);
u_long ntohs(u_short netshort);

#include <sys/types.h>
#include <netinet/in.h>
u_long htonl(u_long hostlong); //converts 32-bit value to nw byte order
u_short htons(u_short hostshort);
u_long ntohl(u_long netlong);
u_long ntohs(u_short netshort);

11

Creating a Socket

• domain specifies the domain, or address family, in
which addresses should be interpreted.
– It imposes certain restrictions on the length of

addresses, and what they mean.
– AF_INET domain is used for Internet addresses.

• protocol specifies the protocol number that
should be used on the socket, usually the same as
address family.
– PF_INET protocol is used
– if 0, the system will figure it out.

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol)

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol)

12

• type specifies the communications channels
supported by sockets:
– SOCK_STREAM (virtual circuit)

• a bi-directional continuous byte stream that guarantees the
reliable delivery of data in the order in which it was
sent.The circuit remains intact until the conversation is
complete. Implemented in the Internet domain using
Trasmission Control Protocol (TCP).

– SOCK_DGRAM
• used to send distinct packets of info called datagrams. No

guarantees on order or delivery. Implemented in the
Internet domain using Datagram Protocol (UDP).

> returns a socket descriptor (a non-negative integer similar to
a fd) or –1 and errno.

13

Server-Side Functions: bind, listen, accept

1- Naming a socket
• A server process must provide a socket with a

name, so that client programs can access it.

Note: address must not be already in use!

int bind(int s, const struct sockaddr* name, int addlen)int bind(int s, const struct sockaddr* name, int addlen)

struct sockaddr_in {
short sin_family; always AF_INET
u_short sin_port port number
struct in_addr sin_addr; host address assoc’d w/port

};

struct sockaddr_in {
short sin_family; always AF_INET
u_short sin_port port number
struct in_addr sin_addr; host address assoc’d w/port

};

14

Server-Side Functions: bind, listen, accept
2- Waiting for Connections
• Server must notify the O/S when it is ready to accept

connections from clients on that socket.

backlog specifies the # of connection requests that may be
pending at any given time.

3- Accepting Connections

• returns a new sd to communicate with the client.
– old sd continue to accept additional connections.

• When connection is accepted, if name is not null,
O/S stores the address of the client there and
length in addrlen.

returns –1 and errno if fails.

int listen(int s, int backlog)int listen(int s, int backlog)

int accept(int s, struct sockaddr *name, int *addrlen)int accept(int s, struct sockaddr *name, int *addrlen)

15

Client-Side: Connecting to a Server

• connects the socket ref’d by s to the server at
addr described by name.

• addrlen specifies the length of addr in name.
returns 0 or –1 and errno.

A client may use connect to connect to a datagram
socket to the server as well.
• Not necessary
• But it does enable the client to send datagrams on

the socket w/o having to specify destination addr
for each datagram.

int connect(int s, struct sockaddr *name, int addrlen)int connect(int s, struct sockaddr *name, int addrlen)

16

Client-Side: Transferring Data
1- simply use read and write.
2- use send and recv

flag effect how the data is sent or received.
MSG_OOB:The data is sent as out-of-band data. This data

“jumps over” any other data that has been sent and not
received.
- e.g., to handle interrupt characters in a remote login
session.

MSG_PEEK: If specified in a call to recv, the data is copied into
buf as usual, but it is not consumed. Another call to recv
will return the same data.

int recv(int s, char *buf, int len, int flags)
int send(int s, const char *buf, int len, int flags)
int recv(int s, char *buf, int len, int flags)
int send(int s, const char *buf, int len, int flags)

17

Transferring Data using
Datagram-Based Sockets

• client does not (generally)call connect
– There is no way for the O/S to determine

automatically where data on these sockets is to
be sent.

• server does not call listen or accept
The sender must tell the O/S each time where the
data is to be delivered, and the receiver must ask
where it came from.

returns # bytes actually received/sent or –1.

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen)

int send(int s, const char *buf, int len, int flags,
struct sockaddr *to, int tolen)

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen)

int send(int s, const char *buf, int len, int flags,
struct sockaddr *to, int tolen)

18

Destroying the
Communications Channel

1- Close a socket with the close function
– if the socket refers to a stream-based socket, the
close will block until all data has been transmitted.

2- Use shutdown function

shuts down either or both sides of the communications channel

• how is 0: shut down for reading, all further reads from the
socket return eof.

• how is 1: shut down for writing, all further writes to the
socket will fail.

• how is 2: shut down both sides

See Examples 14-1, 14-2, 14-3.

int shutdown(int s, int how)int shutdown(int s, int how)

