
1

UNIX Systems Programming
Interprocess Communication

(Curry, chp.13)

Dr. Kivanç Dinçer
CENG-332 Lecture Notes

Spring 2000

2

Pipes
• Two processes can communicate with

each other by exchanging data

• Pipes is a special pair of file descriptors that,
rather than being connected to a file,
is connected to another process.
– provides an interface bw two processes
– provides a unidirectional communications medium

3

Creating Pipeline Commands
• Once a pipe is created, there is very little

difference bw a pipe file descriptor and a
regular file descriptor.

% eqn report > out1
% tbl out1 > out2
% troff out2 > out3 eqn report | tbl | troff | psdit | lp
% psdit out3 > out4
% lp out4
% rm out1 out2 out3 out4

A filter is a program that will read from its
standard input and write to its standard
output.
– programs written in this way can be joined together

in pipelines by the shell.

4

#include <stdio.h>
FILE *fopen(const char *command, const char *type);
#include <stdio.h>
FILE *fopen(const char *command, const char *type);

Single Pipe Creation
where type is r (open the file for reading) or w (for writing)

returns NULL if error occurs
– creates a new process and executes the command.
– creates a pipe to that process and connects it to process’stdin or

stdout.
– returns a file pointer to the calling process.

– closes the stream and frees up the buffers associated with it.
– also issues a call to waitpid to wait for the child process to

terminate, then returns child’s termination status to the caller.

See Example 13-1: popen is quite inefficient (it starts a copy of the shell,) system
calls and library routines are more efficient than using popen.

#include <stdio.h>
int *fclose(FILE *stream);
#include <stdio.h>
int *fclose(FILE *stream);

5

Advanced Pipe Creation

• returns 0
• return –1 if failure and places the reason for failure in errno.
• creates two file descriptors:

– fd[0] is open for reading
– fd[1] is open for writing
– The two file descriptors are joined like a pipe, such that data

written to fd[1] can be read from fd[0].

• After creating a pipe, the calling process normally
calls fork to create a child process.
– The two processes can then communicate, in one direction,

using the pipe.
– A pipe is a half-duplex communications channel.

#include <unistd.h>
int pipe(int fd[2]);
#include <unistd.h>
int pipe(int fd[2]);

6

Closing a Pipe
• If the write end of a pipe has been closed,

– any further reads from the pipe will return 0, or end-of-
file.

• If the read end of a pipe has been closed,
– any attempt to write to the pipe will result in a SIGPIPE

signal being delivered to the process attempting the
write.

Each pipe has a buffer size, this size is defined by
the constant PIPE_BUF, in limits.h.
– A write of this many bytes or less is guaranteed not to

be interleaved with the writes from other processes
writing the same pipe.

See Example 13-2: pipedate: we create a pipe and execute date ourselves.
See Example 13-3: pipemail: uses the pipe for the parent to send data to the child.

7

FIFOs (Named Pipes)
• Major limitation of pipes:

– they can only be used bw related processes

path provides a pathname to the FIFO to be created
The mode argument contains a set of permission bits to set the FIFO
returns 0 or –1 and sets errno if fails.

Opening a FIFO:
– default: O_NONBLOCK not specified: an open for

reading/writing only blocks until another process opens the
FIFO for writing/reading.

– O_NONBLOCK is specified: an open for reading returns
immediately, an open for writing returns an error if FIFO
has not been yet opened for reading.

See Example 13-4 & 13-5: a server and a client using FIFOs to communicate, server
prints any data it receives from the client.

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *path, mode_t mode);

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *path, mode_t mode);

8

UNIX-Domain Sockets
vs. named pipes:
• similar in providing an address in the file system that

unrelated processes may use to communicate
• FIFOs are accessed just like any other file. UNIX-

domain sockets are implemented using the Berkeley
networking paradigm, usually called the socket
interface (create, destroy, transfer, … functions)

IPC with sockets follow the Client-Server Model:
• The server is responsible for satisfying the requests

made of it by other processes, called clients.
– a server usually has a well-known address.

9

Creating a Socket

• domain specifies the domain, or address family, in
which addresses should be interpreted.
– It imposes certain restrictions on the length of

addresses, and what they mean.
– AF_UNIX domain is used for UNIX-domain sockets.

• protocol specifies the protocol number that
should be used on the socket, usually the same as
address family.
– PF_UNIX protocol is used for UNIX-domain sockets.

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol)

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol)

10

• type specifies the communications channels
supported by sockets:
– SOCK_STREAM (virtual circuit)

• a bi-directional continuous byte stream that guarantees the
reliable delivery of data in the order in which it was
sent.The circuit remains intact until the conversation is
complete.

– SOCK_DGRAM
• used to send distinct packets of info called datagrams. No

guarantees on order or delivery.
> returns a socket descriptor (a non-negative integer similar to

a fd) or –1 and errno.

creates an unamed pair of sockets and placed their
descriptors in sd. Each socket is a bidirectional
communications channel.

returns 0 or –1 and errno.

#include <sys/types.h>
#include <sys/socket.h>
int socketpair(int domain, int type, int protocol,int sv[2])

#include <sys/types.h>
#include <sys/socket.h>
int socketpair(int domain, int type, int protocol,int sv[2])

11

Server-Side Functions: bind, listen, accept

1- Naming a socket
• A server process must provide a socket with a

name, so that client programs can access it.

Note: address must not be already in use!

Note: file should not already exist!

#include <sys/types.h>
#include <sys/socket.h>
int bind(int s, const struct sockaddr* name, int addlen)

#include <sys/types.h>
#include <sys/socket.h>
int bind(int s, const struct sockaddr* name, int addlen)

struct sockaddr_un {
short sun_family; always AF_UNIX
char sun_path[108]; system pathname of socket

};

struct sockaddr_un {
short sun_family; always AF_UNIX
char sun_path[108]; system pathname of socket

};

12

Server-Side Functions: bind, listen, accept
2- Waiting for Connections
• Server must notify the O/S when it is ready to accept

connections from clients on that socket.

backlog specifies the # of connection requests that may be
pending at any given time.

3- Accepting Connections

• returns a new sd to communicate with the client.
– old sd continue to accept additional connections.

• When connection is accepted, if name is not null,
O/S stores the address of the client there and
length in addrlen.

returns –1 and errno if fails.

int listen(int s, int backlog)int listen(int s, int backlog)

int accept(int s, struct sockaddr *name, int *addrlen)int accept(int s, struct sockaddr *name, int *addrlen)

13

Client-Side: Connecting to a Server

• connects the socket ref’d by s to the server at
addr described by name.

• addrlen specifies the length of addr in name.
returns 0 or –1 and errno.

A client may use connect to connect to a datagram
socket to the server as well.
• Not necessary
• But it does enable the client to send datagrams on

the socket w/o having to specify destination addr
for each datagram.

int connect(int s, struct sockaddr *name, int addrlen)int connect(int s, struct sockaddr *name, int addrlen)

14

Client-Side: Transferring Data
1- simply use read and write.
2- use send and recv

flag effect how the data is sent or received.
MSG_PEEK: If specified in a call to recv, the data is

copied into buf as usual, but it is not consumed.
Another call to recv will return the same data.

int recv(int s, char *buf, int len, int flags)
int send(int s, const char *buf, int len, int flags)
int recv(int s, char *buf, int len, int flags)
int send(int s, const char *buf, int len, int flags)

15

Transferring Data using
Datagram-Based Sockets

• client does not (generally)call connect
– There is no way for the O/S to determine

automatically where data on these sockets is to
be sent.

• server does not call listen or accept
The sender must tell the O/S each time where the
data is to be delivered, and the receiver must ask
where it came from.

returns # bytes actually received/sent or –1.

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen)

int send(int s, const char *buf, int len, int flags,
struct sockaddr *to, int tolen)

int recvfrom(int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen)

int send(int s, const char *buf, int len, int flags,
struct sockaddr *to, int tolen)

16

Destroying the
Communications Channel

1- Close a socket with the close function
– if the socket refers to a stream-based socket, the
close will block until all data has been transmitted.

2- Use shutdown function

shuts down either or both sides of the communications channel

• how is 0: shut down for reading, all further reads from the
socket return eof.

• how is 1: shut down for writing, all further writes to the
socket will fail.

• how is 2: shut down both sides

int shutdown(int s, int how)int shutdown(int s, int how)

