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Processes and Programs
• A process is a basic active entity in most

O/S models.
– an instance of a program whose execution has

started but has not yet terminated.
– each instance has its own address space and

execution state.
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A process is a program in execution.
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Program to Process
• When does a program become a process?

– O/S (loader) reads the program into memory
• assigns a process ID
• assigns a process state (i.e.,execution status of an

individual process)
• determines required system resources:

– CPU, memory, user and system stacks, file handles, I/O
devices
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Process  Table
• The O/S maintains info about each process

in a process table.
– Entries of this table are called process control

blocks (PCB) and contain information about:
• process state: registers, stack pointer, PC, process id,

etc.
• memory state: memory areas used by the process
• resource state: files, etc.

The O/S keeps tracks of the process Ids and
corresponding process states and uses the
information to allocate and manage
resources for the system.
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Process  States
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Running: executing instructions.

Ready  : waiting to be assigned to a processor.

Blocked: waiting for some event to occur.
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Context Switch
Context switch: the act of removing one process
from the running state and replacing it with another.

Context of a process: information that is needed
about the process and its environment in order to
restart it after a context switch.
– E.g., executable, stack, registers, program counter,

memory used for static and dynamically allocated
variables.

– all info kept in PCB
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Process Operations
• create a process
• destroy a process
• run a process
• suspend a process
• get process information
• set process information
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Process Creation
• A new process will be created using a new

one:
– synchronous: the new one must complete

execution before the old one can resume
– asynchronous: the new process is created

asynchronously, then the two processes may be
run in pseudo-parallel.

Parent: When a new process is created, it
may use the old one as “parent.”
– No parent exists in Windows NT.
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Spawning a new process
In general, spawning a (new) process should

involve:
a. creating the process
b.setting the process' context
c. allocating resources to the process
d. loading memory space with program to execute
e. starting execution of program

Note: a-d are one step in UNIX, d-e constitute
another step.
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system
#include <stdlib.h>
int system(char *command)

creates a new synchronous process.
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fork
#include <sys/types.h>
pid_t fork(void)

creates a new asynchronous process.
• splits the current process into two almost

identical copies.
– new process is the child
– process initiating the fork() is the parent

• A PID of 0 is returned to child, and PID of child is
returned to parent.
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Child and parent have same ..
a. file descriptors (e.g. standard input,

standard output)
b. execution priority
c. memory image (though child's is a copy)
d. register contents (e.g. PC value!)
e. signal handling
f. etc.

result of c and d is:
both child and parent will be executing (at least
initially) the same program at the same point
(i.e. machine instructions after the call to fork().
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Child and parent have
different …

• PID and PPID
• return value from fork()
• child gets 0
• parent gets child's PID
• typical coding logic:

if( (result=fork()) == 0 ) {/*child code*/ ... }
else if( result > 0 ) { /* parent code */ . . . }
else { /* error */ . . . }

• executing new program
• memory image of parent and child are

initially the same, until one (typically the
child's) is overwritten by a new memory
image (copy-on-write semantics)
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exec after fork
• It is common to replace one of these

processes (usually the child) so that it uses
a different program.
– exec overlays the image of the calling process

with the image of a new program.
– exec does not create a new process, and other

than the process' memory image, nearly every
other attribute of the process' context
remains the same

– if exec succeeds, it never returns.
Ex: suppose that a process creates a file

that it wants printed
– it does not have access to printer device, but
lpr has.
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• exec overlays (replaces) the address space
of the calling process with that of a new
program

• six variants (e.g. execl(), execve(), execl())
having different arguments and performing
different preprocessing
– (the six are collectively referred to as exec)

• on successful "return" from exec, the
process resumes execution at the entry
point of the new program
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Six versions of exec
• execl( char *pathname, char *arg0,

...,(char*) 0 );
• execv( char *pathname, char *argv[] );

• execle(char *pathname, char *arg0,
..., (char*) 0, char *envp[] );

• execve(char *pathname, char *argv[],
char *envp[] );

• execlp(char *filename, char *arg0,
..., (char*) 0 );

• execvp(char *filename, char *argv[] );
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Process  Suspension
• wait

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int* status)

– Waiting for a child
– If there is more than one child, wait() returns

on termination of any children

– Ex: suppose that parent wants to delete the
temp file printed by child after printing.

• sleep
unsigned int sleep(seconds)

– A process may suspend for a period of time
using the sleep command.
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• A process that calls wait() can:
– block (if all of its children are still running)
– return immediately with the termination

status of a child (if a child has terminated
and is waiting for its termination status to be
fetched)

– return immediately with an error (if it
doesn’t have any child processes)
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Example: wait.c

#include <sys/types.h>
#include <sys/wait.h>
void main( void )
{

int status;

if( fork() == 0 ) exit( 7 ); /* normal exit */
wait( &status ); prExit( status );

if( fork() == 0 ) abort(); /* generates SIGABRT */
wait( &status ); prExit( status );

if( fork() == 0 ) status /= 0; /* generates SIGFPE */
wait( &status ); prExit( status );

}
SIGABRT: Abort.
SIGFPE: Arithmetic exception.
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• waitpid
– can be used to wait for a specific child pid
– waitpid also has an option to block or not to block

pid_t waitpid( pid, &status, option );

– pid == -1 waits for any child

– option == NOHANG non-blocking
option == 0 blocking

• waitpid(-1, &status, 0) equivalent to wait(&status)
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Process Removal
• exit

int exit(status)_
– when a process executes the “exit” command it

terminates
– performs various cleanup operations, such as

flushing output buffers
• _exit

– calls exit() kernel function which causes the
termination of the calling process

– The exit status is by convention:
• 0: success
• nonzero: error, with value being error code
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• kill
– one process can send simple messages to

another using the “kill” command
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig)

• signal
– a process can catch certain signals by

installing a signal handler which is a
function invoked when the signal arrives.
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Orphan Processes
• a process whose parent is the init process

(pid 1) because its original parent died
before it did

• Every normal process is a child of some
parent, a terminating process sends its
parent a SIGCHLD signal and waits for
its termination code status to be
accepted
– The C shell stores the termination code of

the last command in the local shell variable
status
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Zombie processes
• a process that is “waiting” for its

parent to accept its return code
• a parent accepts a child’s return code

by executing wait()

A terminating process may be a (multiple)
parent; the kernel ensures all of its
children are orphaned and adopted by init
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Process Environment
• A process has an entry in a table of

processes. This table contains all sort of
information:

• Process ID
#include <sys/types.h>
pid_t getpid(void)

• User ID
#include <sys/types.h>
uid_t getuid(void)

• User name
char* getlogin(void)

• Current directory
char* getcwd(char* dir, int size)
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Error Handling
• All system calls return -1 if an error

occurs
– errno: global variable that holds the numeric

code of the last system call
– perror(): a subroutine that describes system

call errors
• Every process has errno initialized to zero at

process creation time
• When a system call error occurs, errno is set
• See /usr/include/sys/errno.h
• A successful system call never affects the

current value of errno
• An unsuccessful system call always

overwrites the current value of errno
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• perror()
void perror( char *str )

– perror displays str, then a colon (:), then an
english description of the last system call
error, as defined in the header file
/usr/include/sys/errno.h

Protocol:
• check system calls for a return value of -1
• call perror() for an error description

during debugging (see example on next
slide)
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perror() example
#include <stdio.h>
#include <errno.h>

int main( void )
{

int returnVal;
printf( "x2 before the execlp, pid=%d\n",getpid());

returnVal = execlp( "nonexistent_file", (char *)0);
if (returnVal == -1)

perror( "x2 failed" );
return( 1 );

}
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Signals
• Signals are unexpected/unpredictable events:

– floating point error
– interval timer expiration (alarm clock)
– death of a child
– control-C (termination request)
– control-Z (suspend request)

• Events are called interrupts
– When the kernel recognizes such an event, it sends

the corresponding process a signal
– Normal processes may send other processes a

signal, with permission (useful for synchronization)
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Race conditions
• A race condition occurs when multiple

processes are trying to do something with
shared data and the final outcome depends
on the order in which the processes run
– This is a situation when using forks: if any code

after the fork explicitly or implicitly depends
on whether or not the parent or child runs first
after the fork

• A parent process can call wait() for a child to
terminate (may block)

• A child process can wait for the parent to terminate
by polling it (wasteful)

– Standard solution is to use signals


