
1

UNIX Systems Programming
Processes

(Curry, chp.11)

Dr. Kivanç Dinçer
CENG-332 Lecture Notes

Spring 2000

2

Processes and Programs
• A process is a basic active entity in most

O/S models.
– an instance of a program whose execution has

started but has not yet terminated.
– each instance has its own address space and

execution state.
source

program compiler object
file

object
file

object
file

linker executable
image

executable
program

A process is a program in execution.

3

Program to Process
• When does a program become a process?

– O/S (loader) reads the program into memory
• assigns a process ID
• assigns a process state (i.e.,execution status of an

individual process)
• determines required system resources:

– CPU, memory, user and system stacks, file handles, I/O
devices

4

Process Table
• The O/S maintains info about each process

in a process table.
– Entries of this table are called process control

blocks (PCB) and contain information about:
• process state: registers, stack pointer, PC, process id,

etc.
• memory state: memory areas used by the process
• resource state: files, etc.

The O/S keeps tracks of the process Ids and
corresponding process states and uses the
information to allocate and manage
resources for the system.

5

Process States
running

ready blocked

quantum
expired

I/O
complete

I/O request

Running: executing instructions.

Ready : waiting to be assigned to a processor.

Blocked: waiting for some event to occur.

done

new
process
created

selected
to run

ab/normal
termination

6

Context Switch
Context switch: the act of removing one process
from the running state and replacing it with another.

Context of a process: information that is needed
about the process and its environment in order to
restart it after a context switch.
– E.g., executable, stack, registers, program counter,

memory used for static and dynamically allocated
variables.

– all info kept in PCB

7

Process Operations
• create a process
• destroy a process
• run a process
• suspend a process
• get process information
• set process information

8

Process Creation
• A new process will be created using a new

one:
– synchronous: the new one must complete

execution before the old one can resume
– asynchronous: the new process is created

asynchronously, then the two processes may be
run in pseudo-parallel.

Parent: When a new process is created, it
may use the old one as “parent.”
– No parent exists in Windows NT.

9

Spawning a new process
In general, spawning a (new) process should

involve:
a. creating the process
b.setting the process' context
c. allocating resources to the process
d. loading memory space with program to execute
e. starting execution of program

Note: a-d are one step in UNIX, d-e constitute
another step.

10

system
#include <stdlib.h>
int system(char *command)

creates a new synchronous process.

11

fork
#include <sys/types.h>
pid_t fork(void)

creates a new asynchronous process.
• splits the current process into two almost

identical copies.
– new process is the child
– process initiating the fork() is the parent

• A PID of 0 is returned to child, and PID of child is
returned to parent.

12

Child and parent have same ..
a. file descriptors (e.g. standard input,

standard output)
b. execution priority
c. memory image (though child's is a copy)
d. register contents (e.g. PC value!)
e. signal handling
f. etc.

result of c and d is:
both child and parent will be executing (at least
initially) the same program at the same point
(i.e. machine instructions after the call to fork().

13

Child and parent have
different …

• PID and PPID
• return value from fork()
• child gets 0
• parent gets child's PID
• typical coding logic:

if((result=fork()) == 0) {/*child code*/ ... }
else if(result > 0) { /* parent code */ . . . }
else { /* error */ . . . }

• executing new program
• memory image of parent and child are

initially the same, until one (typically the
child's) is overwritten by a new memory
image (copy-on-write semantics)

14

exec after fork
• It is common to replace one of these

processes (usually the child) so that it uses
a different program.
– exec overlays the image of the calling process

with the image of a new program.
– exec does not create a new process, and other

than the process' memory image, nearly every
other attribute of the process' context
remains the same

– if exec succeeds, it never returns.
Ex: suppose that a process creates a file

that it wants printed
– it does not have access to printer device, but
lpr has.

15

• exec overlays (replaces) the address space
of the calling process with that of a new
program

• six variants (e.g. execl(), execve(), execl())
having different arguments and performing
different preprocessing
– (the six are collectively referred to as exec)

• on successful "return" from exec, the
process resumes execution at the entry
point of the new program

16

Six versions of exec
• execl(char *pathname, char *arg0,

...,(char*) 0);
• execv(char *pathname, char *argv[]);

• execle(char *pathname, char *arg0,
..., (char*) 0, char *envp[]);

• execve(char *pathname, char *argv[],
char *envp[]);

• execlp(char *filename, char *arg0,
..., (char*) 0);

• execvp(char *filename, char *argv[]);

17

Process Suspension
• wait

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int* status)

– Waiting for a child
– If there is more than one child, wait() returns

on termination of any children

– Ex: suppose that parent wants to delete the
temp file printed by child after printing.

• sleep
unsigned int sleep(seconds)

– A process may suspend for a period of time
using the sleep command.

18

• A process that calls wait() can:
– block (if all of its children are still running)
– return immediately with the termination

status of a child (if a child has terminated
and is waiting for its termination status to be
fetched)

– return immediately with an error (if it
doesn’t have any child processes)

19

Example: wait.c

#include <sys/types.h>
#include <sys/wait.h>
void main(void)
{

int status;

if(fork() == 0) exit(7); /* normal exit */
wait(&status); prExit(status);

if(fork() == 0) abort(); /* generates SIGABRT */
wait(&status); prExit(status);

if(fork() == 0) status /= 0; /* generates SIGFPE */
wait(&status); prExit(status);

}
SIGABRT: Abort.
SIGFPE: Arithmetic exception.

20

• waitpid
– can be used to wait for a specific child pid
– waitpid also has an option to block or not to block

pid_t waitpid(pid, &status, option);

– pid == -1 waits for any child

– option == NOHANG non-blocking
option == 0 blocking

• waitpid(-1, &status, 0) equivalent to wait(&status)

21

Process Removal
• exit

int exit(status)_
– when a process executes the “exit” command it

terminates
– performs various cleanup operations, such as

flushing output buffers
• _exit

– calls exit() kernel function which causes the
termination of the calling process

– The exit status is by convention:
• 0: success
• nonzero: error, with value being error code

22

• kill
– one process can send simple messages to

another using the “kill” command
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig)

• signal
– a process can catch certain signals by

installing a signal handler which is a
function invoked when the signal arrives.

23

Orphan Processes
• a process whose parent is the init process

(pid 1) because its original parent died
before it did

• Every normal process is a child of some
parent, a terminating process sends its
parent a SIGCHLD signal and waits for
its termination code status to be
accepted
– The C shell stores the termination code of

the last command in the local shell variable
status

24

Zombie processes
• a process that is “waiting” for its

parent to accept its return code
• a parent accepts a child’s return code

by executing wait()

A terminating process may be a (multiple)
parent; the kernel ensures all of its
children are orphaned and adopted by init

25

Process Environment
• A process has an entry in a table of

processes. This table contains all sort of
information:

• Process ID
#include <sys/types.h>
pid_t getpid(void)

• User ID
#include <sys/types.h>
uid_t getuid(void)

• User name
char* getlogin(void)

• Current directory
char* getcwd(char* dir, int size)

26

Error Handling
• All system calls return -1 if an error

occurs
– errno: global variable that holds the numeric

code of the last system call
– perror(): a subroutine that describes system

call errors
• Every process has errno initialized to zero at

process creation time
• When a system call error occurs, errno is set
• See /usr/include/sys/errno.h
• A successful system call never affects the

current value of errno
• An unsuccessful system call always

overwrites the current value of errno

27

• perror()
void perror(char *str)

– perror displays str, then a colon (:), then an
english description of the last system call
error, as defined in the header file
/usr/include/sys/errno.h

Protocol:
• check system calls for a return value of -1
• call perror() for an error description

during debugging (see example on next
slide)

28

perror() example
#include <stdio.h>
#include <errno.h>

int main(void)
{

int returnVal;
printf("x2 before the execlp, pid=%d\n",getpid());

returnVal = execlp("nonexistent_file", (char *)0);
if (returnVal == -1)

perror("x2 failed");
return(1);

}

29

Signals
• Signals are unexpected/unpredictable events:

– floating point error
– interval timer expiration (alarm clock)
– death of a child
– control-C (termination request)
– control-Z (suspend request)

• Events are called interrupts
– When the kernel recognizes such an event, it sends

the corresponding process a signal
– Normal processes may send other processes a

signal, with permission (useful for synchronization)

30

Race conditions
• A race condition occurs when multiple

processes are trying to do something with
shared data and the final outcome depends
on the order in which the processes run
– This is a situation when using forks: if any code

after the fork explicitly or implicitly depends
on whether or not the parent or child runs first
after the fork

• A parent process can call wait() for a child to
terminate (may block)

• A child process can wait for the parent to terminate
by polling it (wasteful)

– Standard solution is to use signals

