
1

1

Systems Programming

Chapter 4
Macro Processors

2

Macro (Instruction)
• a macro represents a commonly used group of

statements in the source programming
language
– simply a notational convenience for the programmer

• expanding the macros: the macro processor
replaces each macro instruction with the
corresponding group of source language
statements
– Ex: On SIC/XE, it is necessary to save the contents

of all registers before calling a subprogram and
restore them on return:

• corresponding instructions can be made two macros:
LOADREGS and SAVEREGS.

3

• The functions of a macro processor
essentially involve the substitution of one
group of characters of lines for another.
– Except in a few specialized cases, the macro

performs no analysis of the text it handles
• looks at the form, not the meaning of statements

• Most common use of macro processor is in
assembler language programming, but
macro processors can be used with high-
level programming languages, O/S command
languages, etc.

Macro processors usually work in one pass and not
directly related to the machine architecture.

4

Conditional Macro Expansion
• Most macro processors can modify the

sequence of statements generated for a
macro expension, depending on the
arguments supplied in the macro invocation
– great power and flexibility

• Implementation is easy : macro processor
maintains a symbol table that contains the
current values of all macro variables
processed. This table is used to look up the
current value of a macro variable whenever
it is required.

5

ANSI C Macro Language
• Definitions and invocations of macros

are handled by a preprocessor
– not integrated with the rest of the

compiler

Preprocessor Compiler

source
code

object
code

6

#include preprocessor directive
• causes a copy of a specified file to be

included in place of the directive
• Two versions:

– #include “filename”
preprocessor searches in the same directory as
the file being compiled for the file to be
included

– #include <filename>
used for standard library header files, the
search normally performed through pre-
designated directories

2

7

#define preprocessor directive
• creates symbolic constants and

macros
#define PI 3.14159

identifier replacement-text

replaces all subsequent occurrences of the
symbolic constant PI with the numeric
constant 3.14159.

8

#define preprocessor directive
• A macro is an operation defined in a #define

preprocessor directive
– without arguments – processed like a symbolic

constant
– with arguments – arguments are substituted in the

replacement text, then the macro is expanded

#define ABSDIFF(X,Y) ((X) > (Y) ? (X) – (Y) : (Y) – (X))

ABSDIFF(I+1, J-5)

Common programming error: Forgetting to enclose macro
arguments in parentheses in the replacement text.

9

Conditional Compilation
• enables the programmer to control

the execution of preprocessor
directives and the compilation of
program code
– Each of the conditional preprocessor

directives evaluates a constant integer
expression

10

Uses of Conditonal
Compilation

• To make sure that a macro is defined at
least and at most once.
#ifndef NULL or #if !defined(NULL)
#define NULL 0
#endif

• to control the inclusion of debugging
statements
#define DEBUG 1
#if DEBUG == 1 or #ifdef DEBUG

code prevented from compiling
#endif

11

#error and #pragma
#error tokens
• prints an implementation dependent

message including tokens specified in the
directive
#error 1 – out of range error

#pragma tokens
• causes an implementation defined action
• A pragma not recognized by an

implementation is ignored
– Borland c++ recognizes several pragmas that

enable the programmer to take full advantage
of the Borland’s compiler

12

Predefined Symbolic
Constants

• __LINE__ line number of current source code line
• __FILE__ presumed name of source file
• __DATE__ compilation date as Mmm dd yyyy
• __TIME__ compilation time as hh:mm:ss
• __STDC__ int constant 1, to indicate that

implementation is ANSI compliant

3

13

Assertions
• assert macro is defined in assert.h

– tests the value of an expression
– if value of expr is 0, becomes false

• prints an error message and calls abort
function of stdlib.h to terminate program
execution
assert (R != 0);
x = y / R;

• if symbolic constant NDEBUF is defined
subsequent asserts will be ignored.
– Use #define NDEBUG when assert is no longer

needed

14

and
• # stringizing operator

– argument substitution is performed in the usual
way, but the resulting string is enclosed in
quotes

#define DISPLAY(EXPR) printf(#EXPR ”= %d\n”,EXPR)
vs.

#define DISPLAY(EXPR) printf(#EXPR ”= %d\n”,EXPR)
TRY: DISPLAY(I*J+1)

• ## concats two tokens
#define TOKENCONCAT(x, y) x##y
TRY: TOKENCONCAT(O, K)

15

MACRO PROCESSOR
DESIGN OPTIONS

• Recursive macro extension
• General-purpose macro processors
• Macro processing within language

translators
– Line-by-line macro processor
– Integrated macro processor

16

Recursive Macro Expansion
• Invocation of one macro by another

• It is not difficult if the macro
processor is being written in a
programming language that allows
recursive calls
– macro processor recursively processes

the macros until all are resolved.
Try:
DISPLAY(ABSDIFF(3,8))

17

General-Purpose Macro
Processors

• not dependent on any particular
programming language, but can be
used with a variety of different
languages
– Advantages:

• programmer does not need to learn about a
different macro facility for each compiler or
assembler language

• costs involved in producing a different macro
processor for each language is not needed

18

General-Purpose macro
processors are not common

• large number of details that must be
dealt with in a real programming
language

• a special-purpose macro processor can have
these details built into its logic and
structure

• a general-purpose facility on the other hand,
must provide some way for a user to define
the specific set of rules to be followed.

4

19

• Implementation problems related to the
differences among langauges
– There are several situations in which normal

macro parameter substitution should not occur
• e.g., different comment styles: /* */ or //

– Grouping statements in languages highly differ
• e.g., { }, begin end

– Tokens and rules for forming tokens differ
• e.g., = and :=

– syntax used for macro definitions and macro
invocation statements should be similar to
language to make it more readable and
writeable.

20

Macro Processing within
Language Translators

• The macro processors that we have
discussed so far are preprocessors.

• A line-by-line macro processor: combines
macro processing functions with the
language translator itself.
– macro processor reads the source program

statements and performs all of its functions as
previously described

– However, the output lines are passed to the
language translator as they are generated

21

• Advantages:
+ avoids making an extra pass over the

source program
+ more efficient – some of the data structures

can be combined
+ makes it easier to give diagnostic messages

related to the source statement containing
the error

22

• Integrated macro processor: instead
of passing information macro-
processor and translator, they are
combined as one unit.
– can potentially make use of any

information about the source program
that is extracted by the language
translator
• special rules of the language are handled by

the translator
– ex: If macro involved substituting for the variable

name I in the FORTRAN statement DO 100 I = 1

23

Disadvantages of integrated and
line-by-line macro processors

• must be specially designed and
written to work with a particular
implementation of an assembler or
compiler

• the costs of macro processor
development must be added to the
cost of the language translator

• the assembler or compiler will be
considerably larger and more complex

