
1

1

Systems Programming

Chapter 2
Assemblers

2

Homework #1 (Due: Feb 10th)
• Download the SIC simulator (via anonymous ftp)

(faculty/beck/SystemSoftware.tar) from
rohan.sdsu.edu and install it on a system of your
choice.

• Do Chapter 1’s Exercises: 1, 3, 6, 8, 10, 12.
• Do Chapter 2’s Exercises: S1: 1, 2; S2:3, S3:2
• Test your codes using the SIC simulator.
• Get a screen dump of your runs and submit them

along with your codes printed on paper (Be wise in
using the paper and toner: use small fonts, draft/toner saving/multi-
page output/full duplex modes if possible!)

3

Outline
• Design and implementation of assemblers

– fundamental functions:
• translating mnemonic operation codes to their

machine language equivalents
• assigning machine addresses to symbolic labels

– machine dependence
• different machine instruction formats and codes

• Design of basic assembler for SIC
– a starting point for building more advanced

assemblers
• Machine-independent features
• Features of an assembler not reflected in

the assembler language, such as number of
passes.

4

• Figure 2.1
• Main routine reads records from an input

device (identified with device code F1) and
copies them to an output device (code 05)
– Main routine calls subroutine RDREC to read a

record into a buffer
– and subroutine WRREC to write a record from

the buffer to the output device

Why the buffer is necessary?

5

• STCH BUFFER, X STORE CHARACTER IN BUFFER

indicates indirect addressing

• Comment lines start with “.”

• Figure 2.2:
– End of each record is marked with a null character

(“00”)
– The end of the file to be copied is indicated by a

zero-length record

6

A Simple SIC Assembler
• Figure 2.2
• “Loc” column gives the machine address for each

part of the assembled program

• Assemblers
– do translation of source code to machine code
– process assembler directives
– write the generated object code onto some

output device

2

7

Translation Process
Source program à Object code
1. Convert mnemonic operation codes to

their machine language equivalents
2. Convert symbolic operands to their

equivalent machine addresses
3. Build the machine instructions in the

proper format
4. Convert the data constants specified in

the source program into their internal
machine representations

5. Write the object program and the
assembly listing

8

Translation of addresses…
Consider the statement
10 1000 FIRST STL RETADR 141033

forward reference
If we attempt to translate the program line

by line, . . . ?

9

Processing Assembler
Directives

• Also called as pseudo-instructions
• They provide instructions to the

assembler itself.

Are they translated to machine code?

10

Some Assembler Directives
• START: specify name and starting address

for the program
• END : indicate the end of the source

program and (optionally) specify the first
executable instruction in the program.

• BYTE : Generate character or
hexadecimal constant

• WORD : Generate one-word integer
constant

• RESB : Reserve the indicated number of
bytes for a data area

• RESW : Reserve the indicated number of
words for a data area

11

Writing Object Code
• Object program will later be loaded

into memory for execution.
• Simple object program format

contains three types of records:
– Header record: program name, starting

address, and length
– Text records: translated instructions

and data
– End record: marks the end of the

program and specifies the address
where the execution is to begin

12

• Header record:
– Col. 1 H
– Col. 2-7 Program name
– Col. 8-13 Starting address of object

program
– Col. 14-19 Length of object program in

bytes

The term column is used rather than byte
to refer to positions within object
program records

3

13

• Text record:
– Col. 1 T
– Col. 2-7 Starting address for object

code in this record
– Col. 8-9 Length of object code in this

record in bytes
– Col. 10-69 Object code

14

• End record:
– Col. 1 E
– Col. 2-7 Address of first executable

instruction in object
program

15

• Figure 2.3

• Note that there is no object code
corresponding to addresses 1033-
2038.

16

Pass 1 (define symbols)
1. Assign addresses to all statements

in the program
2. Save the values (addresses)

assigned to all labels for use in Pass
2.

3. Perform some processing of
assembler directives (such as
determining the length of data
areas defined by BYTE, RESW, etc.)

17

Pass 2 (assemble instructions and generate
object program):

1. Assemble instructions (translating
operation codes and looking up
addresses.)

2. Generate data values defined by BYTE,
WORD, etc.

3. Perform processing of assembler
directives not done during Pass 1.

4. Write the object program and the
assembly listing.

18

Assembler Algorithm and
Data Structures

• Our assembler uses two internal
tables:
– The Operation Code Table (OPTAB)

• used to look up mnemonic operation codes
and translate them to their machine language
equivalents

– The Symbol Table (SYMTAB)
• used to store values (addresses) assigned to

labels

4

19

• LOCCTR – Location Counter
– used to help in the assignment of

addresses
• initialized to the beginning address
• Incremented after processing each

statement (How?)
• Whenever we reach a label, the current value

of LOCCTR gives the address to be
associated with that label.

20

• Usage of OPTAB
– Pass 1: to look up and validate operation

codes in the source program
– Pass 2: to translate the operation codes

to machine language

How does the usage change for a machine
that has instructions of different
lengths?

21

• Usage of SYMTAB
– includes the name and value (address) for each

label in the source program, together with flags
to indicate error conditions

– may also contain other info about the data area
or instruction labeled

– Pass 1: labels are entered into table as they
are encountered along with their addresses

– Pass 2: symbols used as operands are looked up
in table to obtain the addresses to be inserted
in the assembled instructions.

22

• OPTAB is usually organized as a hash
table, with mnemonic operation code
as the key.
– in most cases, OPTAB is a static table

• SYMTAB is usually organized as a
hash table for efficiency of insertion
and retrieval.
– selection of a suitable hashing function ?

23

Pass 1 – Pass 2
Communication

• Two alternatives:
– Both passes can read the original source

program as input
– Pass 1 can generate an intermediate file

that contains
• each source statement together with its

assigned address, error indicators, etc.

• Logic flow of two passes
– Figure 2.4 a/b

24

Program Relocation
• Multiprogramming: we may load and run

several programs at the same time.
– more productive use of hardware

• Relocation: we must be able to load
programs into memory wherever there is
room, rather than a fixed address at
assembly time.
– if we knew in advance exactly which programs

were to be executed concurrently in this way,
… ?

5

25

• Actual starting address of the program is
not known until load time.

• Program in Figure 1 is an example of an
absolute program (or absolute assembly) –
it must be loaded at address 10000 in
order to execute properly.

55 101B LDA THREE 00102D
load register A from memory address 102D

What happens if we load our program at address
2000?

26

• Some parts should remain the same
regardless of where the program is loaded:
85 102D THREE WORD 3 000003

• Looking at the object code alone, it is in general
not possible to tell which values represent
addresses and which represent constant data
items.
– Assembler cannot make the necessary changes in the

addresses used by the program
– But assembler can identify for the loader those parts of

the object program that need modification
An object program that contains the information

necessary to perform this kind of modification
is called a relocatable program.

27

• Figs 2.5 – 2.6 – 2.7

• Note that no matter where the
program is loaded, RDREC is always
1036 bytes past the starting address
of the program.

28

Solving the relocation
problem

1. When the assembler generates the
object code for the JSUB instruction we
are considering, it will insert the address
of RDREC relative to the start of the
program (this is why LOCCTR is initialized
to 0)

2. The assembler will also produce a
command for the loader, instructing it to
add the beginning address of the program
to the address field in the JSUB
instruction at load time.

29

Col 1M
Col. 2-7 Starting location of the address

field to be modified, relative to the
beginning of the program

Col. 8-9 Length of the address field to be
modified, in half bytes.

For the JSUB instruction we are using,
modification record would be:
M00000705

Modification Record

why?

30

• The only parts of the program that require
modification at load time are those that
specify direct (as opposed to relative)
addresses.

• Fig. 2.8 – The load addresses in the Text
records are interpreted as relative, rather
than absolute, locations.
– there is one Modification record for each

address field that needs to be changed when
the program is relocated

6

31

Machine-Independent
Assembler Features

• Implementation of Literals
• Implementation of Expressions
• Program blocks and control sections

32

Literals
• It is often convenient for the

programmer to be able to write the
value of a constant operand as a
part of the instruction that uses it.

– no definition and label are required
• Fig 2.9
45 001A ENDFIL LDA =C’EOF’ 032010

215 1062 WLOOP TD =X’05’ E32011

33

Immediate operand vs. Literal vs.
• The operand value is assembled as part of

the machine instruction (Imm.Op)
• The assembler generates the specified

value as a constant as the target address
for the machine instruction. (The effect of
using a literal is exactly the same as if the
programmer had defined the constant
explicitly and used the label assigned to
the constant as the instruction operand)
– Most assemblers recognize duplicate literals

and store only one copy of the specified data
value.

34

Literal Pools
• All of the literal operands used in a

program are gathered together into
one or more literal pools.
– Normally literals are placed into a pool

at the end of the program.
– In some cases, however, it is desirable

to place literals into a pool at some other
location in the object program
• LTORG assembler directive: creates a literal

pool that contains all of the literal operands
used since the previous LTORG (or beginning
of the program.)

35

Handling Literal Operands
• Literal Table LITTAB: Basic data structure

– contains literal name, operand value and length,
address assigned to the operand when it is
placed in a literal pool

– often organized as a hash table, using the
literal name or value as the key

PASS 1: search LITTAB for the literal, if not in,
add into the table
If a LTORG directive or end of program is
encountered, each literal currently in the table
is assisned an address (unless done before)

PASS 2: For each literal operand encountered,
search for the operand address from the table,
insert the data values at appropriate places in
the object program
Generate a modification record if required.

36

Symbol Defining Statements
• Up to now, user-defined symbols were

used to mark labels.
– Their value is their address!

• EQU assembler directive is used to
define symbols and specify their
values:

symbol EQU value

7

37

Uses of Symbolic Names
1-to establish symbolic names that can be

used for improved readability in place of
numerica values

+LDT #4096

MAXLEN EQU 4096 //into SYMTAB
+LDT #MAXLEN

How does this affect resulting object code?
source code?

38

Uses of Symbolic Names
2-in defining mnemonic names for

registers in a machine with a number
of general-purpose registers; e.g., R0,
R1, R2,…

BASE EQU R1
COUNT EQU R2
INDEX EQU R3

Names reflect the logical function of
registers in the program.
We skip ORG (ORiGin) directive that assigns values to
symbols indirectly for the time being.

39

Restrictions in symbol
defining assembler directives

All symbols used on the right-hand side
of the statement must have been
defined previously in the program.

Consider:
ALPHA RESW 1
BETA EQU ALPHA

vs.
BETA EQU ALPHA
ALPHA RESW 1

WHY ?

40

Expressions
• Assemblers allow arithmetic expressions

formed using the operators +, -, *, and /.
• Individual terms of the expressions:

– constants
– user-defined symbols
– special terms

• such as “*” - the current value of the location
counter: represents the value of the next
unassigned memory location.

106 BUFEND EQU * //address of next byte
//after the buffer area.

41

• The values of terms:
– absolute term: constants
– relative terms: labels on instructions and data

areas, references to the location counter value
• The values of expressions:

– absolute expression: an expression that
contains

• only absolute terms
• relative terms provided that they occur in pairs and

the terms in each such pair have opposite signs.
(None of the relative terms may enter into a * or /
operation)

– relative expression: an expression in which all
of the relative terms except one can be paired
as described above and the remaining unpaired
relative term must have a positive sign.

42

Why so many rules?
• Hint: A relative term or expression

represents some value that may be
written as (S+r), where

– S is the starting address of the
program

– and r is the value of the term or
expression relative to the starting
address.

107MAXLEN EQU BUFEND-BUFFER

What about BUFEND+BUFFER, 100-BUFFER, 3*BUFFER ?

8

43

Symbol Table revisited
To determine the type of an

expression, we must keep track of
the types of all symbols defined in
the program:
Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1036
MAXLEN A 1000

44

Gaining flexibility
• So far all example programs were treated

as a unit.
– How come? There were subroutines and data

areas within the code !
• We will see two features that allow more

flexible handling of the source and object
programs:
– program blocks: refer to segments of code that

are rearranged within a single object program
unit

– control sections: refer to segments that are
translated into independent object program
units.

45

Program Blocks
• allow the generated machine instructions

and data to appear in the object program in
a different order from the corresponding
source statements
– USE assembler directive indicates which

portions of the source program belong to
the various blocks

– may also indicate a continuation of a
previously begun block.

– Figure 2.11: unnamed default block, CDATA
block, CBLKS block.

46

• The assembler will (logically) rearrange
these segments to gather together the
pieces of each block.

• Pass 1: maintains a separate location
counter for each program block
– initialized to 0 at the beginning
– saved when switching to another block
– restored when resuming a previous block

Block name Block# Address Length
(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

47

• Pass 2: The assembler needs the
address for each symbol relative to
the start of the object program.
– simply adds the location of the symbol,

relative to the start of its block, to the
assigned block starting address.

Figure 2.12 – MAXLEN does not have a
block number !!

48

20 0006 0 LDA LENGTH 032060

LENGTH’s relative location is 0003 within program block 1
(CDATA) whose starting address is 0066
Desired target address: 0003 + 0066 = 0069

Advantages of the separation of the program
into blocks:

• improved program readability : definitions
of data areas are placed in the source
program close to the statements that
reference them.

– human factors and machine configurations
conflict!

9

49

Fig.2.13 – Corresponding
Object Program

• It does not matter that the Text
records of the object program are
not in sequence by address
– the loader will simply load the object

code from each record at the indicated
address.

50

Control Sections and
Program Linking

• A control section is a part of the
program that maintains its identity
after assembly
– each such control section can be loaded

and relocated independently of the
others

– different control sections are most
often used for subroutines of a program
• programmer can assemble, load, and

manipulate each of these control sections
separately (flexibility!)

51

Linking them together
• External references: Instructions in one

control section might need to refer to
instructions or data located in another
section
– Because control sections are

independently loaded and relocated, the
assembler is unable to process these
references in the usual way.

– The assembler generates information
for each external reference that will
allow the loader to perform the required
linking.

52

Fig.2.15
• 5 START COPY – first control section
• 109 RDREC CSECT – second section
• 193 WRREC CSECT – third section

Symbols defined in one control section may not
be used directly by another section: they
must be identified as external references
for the loader to handle:

• EXTDEF (external definition) – names
external symbols

• EXTREF (external reference) – names
symbols used here but defined elsewhere

53

How to handle external
references?

15 0003 CLOOP +JSUB RDREC 4B100000

The assember inserts an address of zero and
passes information to the loader – to be
inserted at load time!

160 0017 +STCH BUFFER,X 57900000

190 0028 MAXLEN WORD BUFEND-BUFFER 000000

External reference

External reference

54

• The assembler
• must remember in which control

section a symbol is defined.
• must allow the same symbol to be

used in different control sections.

• Any attempt to refer to a symbol in
another control section must be
flagged as an error unless the symbol
is identified as an external reference.

10

55

• So far we have seen how the assembler
leaves room in the object code for the
values of external symbols.

• Now we will see how the assembler informs
the loader about the empty locations to be
filled out.
– Define record: gives info about external

symbols that are defined in the section
– Refer record: lists symbols that are

used as external references by the
control section.

56

Define record:
• Col 1 D
• Col 2-7 Name of external symbol defined
• Col 8-13 Relative address of symbol

within this control section
• Col 14-73 Repeat above info for others
Refer record:
• Col 1 R
• Col 2-7 Name of external symbol

referred to
• Col 8-73 Names of other external ref symbols

57

Modification record (revised):
Col 1M
Col. 2-7 Starting address of the field to

be modified, relative to the beginning
of the control section

Col. 8-9 Length of the field to be
modified, in half bytes.

Col 10 Modification flag (+ or -)
Col 11-16 External symbol whose value is to

be added to or subtracted from the
indicated field

