Systems Programming

Examples of System
Software

— text editor: create/modify a program in
a high level language

— compiler: translate it to machine code
— loader/linker: load resulting code into

Chapter 1 memory and prepare for execution
Background — debugger: detect errors in program
. Examples of System
Outline P y

= Introduction to system software
= An overview of the material

» Relationship bw system software and
machine architecture

« Simplified Instructional Computer
(SI1C)

= Architecture of several computers

Software

— text editor: create/modify a program in
assembly language
—w/macro instructions to read and
write data, or to perform other
higher-level functions
—assembler/macro processor: translate it
to machine code
— loader/linker: load resulting code into
memory and prepare for execution
— debugger: detect errors in program

System Software

= a variety of programs that support
the operation of a computer

= makes it possible for the user to
focus on an application or other
problem to be solved, w/0 needing to
know the details of how the machine
works internally.

Examples of System
Software

= Operating system
— UNIX, DOS: textual user interface

— MacOS, Windows: GUI (graphical user
interface)

— takes care of all machine-level details
for us

= connect to network, use different kinds of
devices, perform input/output, etc.

We will . . .

= understand the processes that were
going on “behind the scenes” as you
used the computer

= gain a deeper understanding of how
computers actually work

Machine-Independent
Aspects

* Assembler

— general design and logic
= Compilers

— some code optimization techniques
* Linkers

— linking independently assembled
subprograms does not usually depend on
the computer being used

System Software and
Machine Architecture

System software Application software

* machine dependent * machine independent
« intended to support the « intended to support a
operation and use of the particular application

computer itself

Simplified Instructional
Computer (SIC)

= a hypothetical computer that has
been carefully designed to include the
hardware features most often found
in real machines

—unusual or irrelevant complexities of real
machines have been avoided

Machine-Dependent Aspects

 Assemblers:

— translate mnemonic instructions into machine
code

= the instruction formats, addressing modes, etc. are
of direct concern in assembler design

= Compilers
— generate machine language code

= number and type of registers and machine
instructions available

« Operating Systems
— manage the resources of a computer

Organization of Chapters

* Fundamental features of system
software being discussed

= Machine-dependent features

= Machine-independent features

* Major design options for structuring
a particular piece of software

* Examples of implementations on
actual machines

Simplified Instructional
Computer (SIC)

 Two versions
— standard model
— XE model

« They are upward-compatible: An
object program for the standard SIC
machine will also execute properly on
a SIC/XE system.

= Memory:
— 215 pytes, 3-byte words, byte addresses

* Registers:
— 5 3-byte long registers
Mnemonic Number Special Use

A 0 Accumulator; used for arithmetic operations

X 1 Index register; used for addressing

L 2 Linkage register; the Jump to Subroutine
(JSUB) instruction stores the return address

PC 8 Program Counter; the address of next
instruction to be fetched

SW 9 Status Word; contains a variety of

information, including a Condition Code (CC)

QUESTION

= How can you characterize a machine
architecture?

 Data formats:

— 24-bit Integers (2% complement form for
negatives)

— 8-bit ASCII chars
e Instruction formats:
— 24-bit instructions

‘ opcode ‘x‘ address
8 1 15
= Addressing modes:
Mode Indication Target Address Calculation
Direct x=0 TA = address
Indexed x=1 TA = address + (X)

SIC Machine Architecture

= Memory

« Registers

= Data formats
Instruction formats
Addressing modes
Instruction set
Input and Output

e Instruction Set:

— load and store registers: LDA, LDX, STA, STX,
etc.
— Integer arithmetic operations: ADD, SUB, MUL,
DIV
= all involve register A and a word in memory, with the
result left in the register
— COMP: compare the value in A with a word in
memory, set the condition code (CC) to indicate
the result (<, =, >)
— Conditional jump instructions: JLT, JEQ, JGT
— Subroutine linkage:
= JSUB jumps to subroutine, places return address in
register L
« RSUB returns by jumping to the address contained in
register L

e Input and Output:

— performed by transferring 1 byte at a time
to or from the rightmost 8 bits of register A

— Each device is assigned a unique 8-bit code.

— Test Device (TD) instruction tests whether
the addressed device is ready to send or
receive a byte of data and sets CC (< ready, =
not ready)

— Read Data (RD) reads a byte

— Write Data (WD) writes a byte

SIC Sample Arithmetic
Operations

« All arithmetic operations are performed using
register A, with the result being left in register A.
LDA ALPHA LQOAD ALPHA | NTO REQ STER A
ADD INCR | NCREMENT THE VALUE | N REQ STER A
SLB O SUBTRACT ONE
STA BETA STCRE I N BETA
LDA GAWWA LOAD GAMMA | NTO REG STER A
ADD INCR ADD THE VALUE CF | NCREMENT
SUB O SUBTRACT 1
STA DELTA STORE | N DELTA

ONE- WORD CONSTANT
ALPHA RESW ONE- WORD VARI ABLES

BETA RESW

DELTA RESW
INCR RESW

PR PP PRPR

SIC/XE Machine
Architecture

 More Memory

= Extra Registers

= Data formats - floating point numbers
= Additional Instruction formats

« More Addressing modes

= Extended Instruction set

= Input and Output — channels to overlap 1/0
and processing

SIC Looping and Indexing
Operations

« X is the index register.

LDX ZERO INTIALI ZE | NDEX REGA STER TO 0
MOVECH LDCH STR1, X LOAD CHARACTER FROM STRL | NTO REG A

STCH STR2, X STCRE CHARACTER | NTO STR2

TIX ELEVEN ADD 1 TO I NDEX, OOWPARE RESULT TO 11

JLT MOVECH LOCP | F INDEX | S LESS THAN 11

ADD INCR ADD THE VALUE CF | NCREMENT

STRL BYTE C TEST STRING 11- BYTE STRI NG CONSTANT
STRR. RESB 11 11- BYTE VAR ABLE

ZERO WRD O

ELEVEN WORD 11

SIC Sample Data Movement
Operations
e there are no memory-to-memory move
instructions

LDA FIVE LOAD CONSTANT 5 | NTO REG STER A
STA ALPHA STORE I N ALPHA
LDCH CHARZ LOAD CHARACTER *Z' |INTO REG STER A

STCH C1 STCRE | N CHARACTER VAR ABLE C1
ALPHA RESW 1 ONE- WORD VARI ABLE
FIVE WRD 5 ONE- WORD CONSTANT
CHARZ BYTE CZ ONE-BYTE CONSTANT Four ways of
Cl RESB 1 ONE- BYTE VAR ABLE defining storage

SIC Looping and Indexing Operations 2

= Add together corresponding elements of ALPHA and BETA, store
results in GAMMA.

LDA ZERO INITIALI ZE | NDEX VALUE TO 0
STA 1 NDEX
ADDLP LDX 1 NDEX LOAD | NDEX VALUE | NTO REG X

LDA ALPHA, X LOAD WCRD FROM ALPHA | NTO REG A
ADD BETA, X ADD WORD FROM BETA

STA GAMWA, X STORE THE RESULT IN A WORD | N GAMVA
LDA 1| NDEX ADD 3 TO | NDEX VALUE

ADD THREE
STA 1| NDEX
aowe K300 COVPARE NEW | NDEX VALUE TO 300

JLT ADDLP LOOP | F INDEX | S LESS THAN 300

INDEX RESW 1 ONE- WORD VARI ABLE FCR | NDEX VALUE

ARRAY VAR ABLES - 100 WORDS EACH

ALPHA RESW 100 : ONE- WORD CONSTANTS

BETA RESW 100 ZERO WRD O

GAMVA RESW 100 K300 WRD 300
THREE WRD 3

SIC Input/Output Operations

« Read 1 byte of data from device F1 and copy it to device 05.

INLOCP TD | NDEV TEST | NPUT DEVI CE
JEQ I NLOCP LOCOP UNTIL DEVICE | S READY
RD | NDEV READ ONE BYTE | NTO REG STER A
STCH DATA STCRE BYTE THAT WAS READ

QUTLP TD QUTDEV TEST QUTPUT DEVI CE
JEQ QuTLP LOOP UNTIL DEVI CE | S READY
LDCH DATA LOAD DATA BYTE | NTO REG STER A
W QUTDEV ~ WRI TE ONE BYTE TO QUTPUT DEVI CE

INDEV BYTE X FI’ I NPUT DEVI CE NUMBER

QUTDEV BYTE X 05 QUTPUT DEVI CE NUMBER
DATA RESB 1 ONE- BYTE VAR ABLE

RISC (Reduced Instruction Set Computers)

Developed in early 1980s to simplify the design
of processors

— faster, less expensive processors

— greater reliability

— faster instruction execution times

Fixed instruction length (usually 1 word)

— Single cycle execution for most instructions

All instructions, except Load and Store, are
register-to-register

— Memory access by Load and Store instrs only

— Have large number of general purpose registers
Number of machine instructions, instruction
formats, and addressing modes are small.
Examples: UltraSPARC, PowerPC.

S 10 Subroutine Lall arnd reCord rmput

Operations
* Read a 100-byte record from an input device into memory.

JSUB READ CALL READ RQUTI NE

READ LDX ZERO SUBRQUTI NE TO READ 100 - BYTE RECORD

RLOCP TD | NDEV TEST I NPUT DEVI CE
JEQ RLOCP LOCP UNTI L DEVI CE | S READY
RD | NDEV READ ONE BYTE | NTO REG STER A
STCH RECORD, X STORE DATA BYTE | NTO RECCRD
TIX K100 ADD 1 TO I NDEX AND COWPARE TO 100
JLT RLOCP LOOP | F INDEX | S LESS THAN 100
RSUB EXI' T FROM SUBROUTI NE

INDEV BYTE X FI’ I NPUT DEVI CE NUMBER

RECCRD RESB 100 100- BYTE BUFFER FOR | NPUT RECORD

ONE- WORD CONSTANTS
ZERO WRD O
K100 WRD 100

Main Machine Architectures

e CISC (Complex Instruction Set Computers)
— relatively large and complicated instruction set
- several different instruction formats and
lengths
— many different addressing modes
— requires complicated hardware mechanisms
— Examples: VAX, Pentium Pro

* RISC (Reduced Instruction Set Computers)

