
1

Systems Programming

Chapter 1
Background

Outline
• Introduction to system software
• An overview of the material
• Relationship bw system software and

machine architecture
• Simplified Instructional Computer

(SIC)
• Architecture of several computers

System Software
• a variety of programs that support

the operation of a computer
• makes it possible for the user to

focus on an application or other
problem to be solved, w/o needing to
know the details of how the machine
works internally.

Examples of System
Software

– text editor: create/modify a program in
a high level language

– compiler: translate it to machine code
– loader/linker: load resulting code into

memory and prepare for execution
– debugger: detect errors in program

Examples of System
Software

– text editor: create/modify a program in
assembly language
–w/macro instructions to read and

write data, or to perform other
higher-level functions

– assembler/macro processor: translate it
to machine code

– loader/linker: load resulting code into
memory and prepare for execution

– debugger: detect errors in program

Examples of System
Software

• Operating system
– UNIX, DOS: textual user interface
– MacOS, Windows: GUI (graphical user

interface)

– takes care of all machine-level details
for us
• connect to network, use different kinds of

devices, perform input/output, etc.

2

We will . . .
• understand the processes that were

going on “behind the scenes” as you
used the computer

• gain a deeper understanding of how
computers actually work

System Software and
Machine Architecture

System software
• machine dependent
• intended to support the

operation and use of the
computer itself

Application software
• machine independent
• intended to support a

particular application

Machine-Dependent Aspects
• Assemblers:

– translate mnemonic instructions into machine
code

• the instruction formats, addressing modes, etc. are
of direct concern in assembler design

• Compilers
– generate machine language code

• number and type of registers and machine
instructions available

• Operating Systems
– manage the resources of a computer

Machine-Independent
Aspects

• Assembler
– general design and logic

• Compilers
– some code optimization techniques

• Linkers
– linking independently assembled

subprograms does not usually depend on
the computer being used

Simplified Instructional
Computer (SIC)

• a hypothetical computer that has
been carefully designed to include the
hardware features most often found
in real machines
– unusual or irrelevant complexities of real

machines have been avoided

Organization of Chapters
• Fundamental features of system

software being discussed
• Machine-dependent features
• Machine-independent features
• Major design options for structuring

a particular piece of software
• Examples of implementations on

actual machines

3

Simplified Instructional
Computer (SIC)

• Two versions
– standard model
– XE model

• They are upward-compatible: An
object program for the standard SIC
machine will also execute properly on
a SIC/XE system.

QUESTION
• How can you characterize a machine

architecture?

SIC Machine Architecture
• Memory
• Registers
• Data formats
• Instruction formats
• Addressing modes
• Instruction set
• Input and Output

• Memory:
– 215 bytes, 3-byte words, byte addresses

• Registers:
– 5 3-byte long registers

Mnemonic Number Special Use
A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing
L 2 Linkage register; the Jump to Subroutine

(JSUB) instruction stores the return address
PC 8 Program Counter; the address of next

instruction to be fetched
SW 9 Status Word; contains a variety of

information, including a Condition Code (CC)

• Data formats:
– 24-bit Integers (2’s complement form for

negatives)
– 8-bit ASCII chars

• Instruction formats:
– 24-bit instructions

• Addressing modes:
Mode Indication Target Address Calculation
Direct x = 0 TA = address
Indexed x = 1 TA = address + (X)

opcode x address
8 1 15

• Instruction Set:
– load and store registers: LDA, LDX, STA, STX,

etc.
– Integer arithmetic operations: ADD, SUB, MUL,

DIV
• all involve register A and a word in memory, with the

result left in the register
– COMP: compare the value in A with a word in

memory, set the condition code (CC) to indicate
the result (<, =, >)

– Conditional jump instructions: JLT, JEQ, JGT
– Subroutine linkage:

• JSUB jumps to subroutine, places return address in
register L

• RSUB returns by jumping to the address contained in
register L

4

• Input and Output:
– performed by transferring 1 byte at a time

to or from the rightmost 8 bits of register A
– Each device is assigned a unique 8-bit code.
– Test Device (TD) instruction tests whether

the addressed device is ready to send or
receive a byte of data and sets CC (< ready, =
not ready)

– Read Data (RD) reads a byte
– Write Data (WD) writes a byte

SIC/XE Machine
Architecture

• More Memory
• Extra Registers
• Data formats – floating point numbers
• Additional Instruction formats
• More Addressing modes
• Extended Instruction set
• Input and Output – channels to overlap I/O

and processing

SIC Sample Data Movement
Operations

• there are no memory-to-memory move
instructions

LDA FIVE LOAD CONSTANT 5 INTO REGISTER A
STA ALPHA STORE IN ALPHA
LDCH CHARZ LOAD CHARACTER ‘Z’ INTO REGISTER A
STCH C1 STORE IN CHARACTER VARIABLE C1
:
:

ALPHA RESW 1 ONE-WORD VARIABLE
FIVE WORD 5 ONE-WORD CONSTANT
CHARZ BYTE C’Z’ ONE-BYTE CONSTANT
C1 RESB 1 ONE-BYTE VARIABLE

Four ways of
defining storage

SIC Sample Arithmetic
Operations

• All arithmetic operations are performed using
register A, with the result being left in register A.

LDA ALPHA LOAD ALPHA INTO REGISTER A
ADD INCR INCREMENT THE VALUE IN REGISTER A
SUB ONE SUBTRACT ONE
STA BETA STORE IN BETA
LDA GAMMA LOAD GAMMA INTO REGISTER A
ADD INCR ADD THE VALUE OF INCREMENT
SUB ONE SUBTRACT 1
STA DELTA STORE IN DELTA :
:
:

ONE WORD 1 ONE-WORD CONSTANT
ALPHA RESW 1 ONE-WORD VARIABLES
BETA RESW 1
GAMMA RESW 1
DELTA RESW 1
INCR RESW 1

SIC Looping and Indexing
Operations

• X is the index register.
LDX ZERO INITIALIZE INDEX REGISTER TO 0

MOVECH LDCH STR1,X LOAD CHARACTER FROM STR1 INTO REG A
STCH STR2,X STORE CHARACTER INTO STR2
TIX ELEVEN ADD 1 TO INDEX, COMPARE RESULT TO 11
JLT MOVECH LOOP IF INDEX IS LESS THAN 11
ADD INCR ADD THE VALUE OF INCREMENT
:
:
:

STR1 BYTE C’TEST STRING’ 11-BYTE STRING CONSTANT
STR2 RESB 11 11-BYTE VARIABLE

:
ZERO WORD 0
ELEVEN WORD 11

SIC Looping and Indexing Operations 2
• Add together corresponding elements of ALPHA and BETA, store

results in GAMMA.
LDA ZERO INITIALIZE INDEX VALUE TO 0
STA INDEX

ADDLP LDX INDEX LOAD INDEX VALUE INTO REG X
LDA ALPHA,X LOAD WORD FROM ALPHA INTO REG A
ADD BETA,X ADD WORD FROM BETA
STA GAMMA,X STORE THE RESULT IN A WORD IN GAMMA
LDA INDEX ADD 3 TO INDEX VALUE
ADD THREE
STA INDEX
COMP K300 COMPARE NEW INDEX VALUE TO 300
JLT ADDLP LOOP IF INDEX IS LESS THAN 300
:

INDEX RESW 1 ONE-WORD VARIABLE FOR INDEX VALUE
ARRAY VARIABLES – 100 WORDS EACH

ALPHA RESW 100
BETA RESW 100
GAMMA RESW 100

: ONE-WORD CONSTANTS
ZERO WORD 0
K300 WORD 300
THREE WORD 3

5

• Read 1 byte of data from device F1 and copy it to device 05.

INLOOP TD INDEV TEST INPUT DEVICE
JEQ INLOOP LOOP UNTIL DEVICE IS READY
RD INDEV READ ONE BYTE INTO REGISTER A
STCH DATA STORE BYTE THAT WAS READ
:

OUTLP TD OUTDEV TEST OUTPUT DEVICE
JEQ OUTLP LOOP UNTIL DEVICE IS READY
LDCH DATA LOAD DATA BYTE INTO REGISTER A
WD OUTDEV WRITE ONE BYTE TO OUTPUT DEVICE
:

INDEV BYTE X’F1’ INPUT DEVICE NUMBER
OUTDEV BYTE X’05 OUTPUT DEVICE NUMBER
DATA RESB 1 ONE-BYTE VARIABLE

SIC Input/Output Operations

• Read a 100-byte record from an input device into memory.
JSUB READ CALL READ ROUTINE
:

READ LDX ZERO SUBROUTINE TO READ 100 -BYTE RECORD
RLOOP TD INDEV TEST INPUT DEVICE

JEQ RLOOP LOOP UNTIL DEVICE IS READY
RD INDEV READ ONE BYTE INTO REGISTER A
STCH RECORD,X STORE DATA BYTE INTO RECORD
TIX K100 ADD 1 TO INDEX AND COMPARE TO 100
JLT RLOOP LOOP IF INDEX IS LESS THAN 100
RSUB EXIT FROM SUBROUTINE
:
:

INDEV BYTE X’F1’ INPUT DEVICE NUMBER
RECORD RESB 100 100-BYTE BUFFER FOR INPUT RECORD

ONE-WORD CONSTANTS
ZERO WORD 0
K100 WORD 100

SIC Subroutine Call and Record Input
Operations

Main Machine Architectures
• CISC (Complex Instruction Set Computers)

– relatively large and complicated instruction set
– several different instruction formats and

lengths
– many different addressing modes
– requires complicated hardware mechanisms
– Examples: VAX, Pentium Pro

• RISC (Reduced Instruction Set Computers)

RISC (Reduced Instruction Set Computers)
• Developed in early 1980s to simplify the design

of processors
– faster, less expensive processors
– greater reliability
– faster instruction execution times

• Fixed instruction length (usually 1 word)
– Single cycle execution for most instructions

• All instructions, except Load and Store, are
register-to-register
– Memory access by Load and Store instrs only
– Have large number of general purpose registers

• Number of machine instructions, instruction
formats, and addressing modes are small.

• Examples: UltraSPARC, PowerPC.

