Figure 1.1 AstrophysicaN-body
simulation by Scott Linssen (undergraduate
University of North Carolina at Charlotte
[UNCC] student).
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Figure 1.3 Traditional shared memory
Processors multiprocessor model.
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Figure 1.4 Message-passing
Computers multiprocessor model (multicomputer).
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Figure 1.5 Shared memory multiprocessor
Computers implementation.
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Figure 1.6 MPMD structure.
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Figure 1.7 Static link multicomputer.
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Figure 1.8 Node with a switch for internode message transfers.
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Figure 1.9 A link between two nodes with
separate wires in each direction.
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Figure 1.10 Ring.
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Figure 1.13 Three-dimensional hypercube.
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Figure 1.14 Four-dimensional hypercube.
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Figure 1.15 Embedding a ring onto a torus.
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Figure 1.16 Embedding a mesh into a
hypercube.
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Figure 1.17 Embedding a tree into a mest
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Figure 1.18 Distribution of flits.
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Figure 1.19 A signaling method between
processors for wormhole routing (Ni and
McKinley, 1993).
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Figure 1.21 Deadlock in store-and-foravd
Node 1 Node 2 networks.
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Figure 1.22 Multiple virtual channels mapped onto a single physical channel.
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Figure 1.24 Ethernet frame format.
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Figure 1.25 Network of workstations connected via a ring.
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Figure 1.26 Star connected network.
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Figure 1.27 Overlapping connectivity Ethernets.
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Figure 1.28 Space-time diagram of a message-passing program.
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Figure 1.29 Parallelizing sequential problem — Amdahl’s law.
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Figure 1.30 (a) Speedup against number of processors. (b) Speedup against serial fraction,
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Figure 2.1 Single program, multiple data
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Figure 2.4 Synchronousend() andrecv() library calls using a three-way protocol.
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Figure 2.5 Using a message buffer.
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Figure 2.6 Broadcast operation.
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Figure 2.7 Scatter operation.
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Figure 2.8 Gather operation.
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Figure 2.9 Reduce operation (addition).
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Figure 2.10 Message passing between workstations using PVM.
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Figure 2.11 Multiple processes allocated to each processor (workstation).
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Figure 2.13 PVM packing messages, sending, and unpacking.
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finclude <stdio.h>
finclude <stdlib.h>
finclude <pvm3.h>
tdefine SLAVE “spsum”
#define PROC 10
#define NELEM 1000
nain() {
int mytid,tids[PROC];
int n = NELEM, nproc = PROC;
int no, i, who, msgtype;
int data|[NELEM],resultfPROC],tot=0;
char fn[255];
FILE *fp;
mytid=pvm_mytid();/*Enroll in PVM */

Master

* Start Slave Tasks */
no=
pvm_spawn(SLAVE,(char**)0,0,",nproc,tids);
if (no < nproc) {
printf(“Trouble spawning slaves \n");
for (i=0; i<no; i++) pvm_kill(tids[i]);
pvm_exit(); exit(1);

* Open Input File and Initialize Data */
strepy(fn,getenv(*HOME"));
strcat(fn,”/pvm3/src/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {
printf(*Can’t open input file %s\n”,fn);
exit(1);

}

for(i=0;i<n;i++)fscanf(fp,"%d",&data]i]);

* Broadcast data To slaves*/
pvm_initsend(PvmDataDefault);
msgtype = 0;
pvm_pkint(&nproc, 1, 1);
pvm_pkint(tids, nproc, 1);
pvm_pkint(&n, 1, 1);
pvm_pkint(data, n, 1);
pvm_mecast(tids, nproc, msgtag);

Broadcast data

* Get results from Slaves*/
msgtype = 5;
for (i=0; i<nproc; i++){
pvm_recv(-1, msgtype);
pvm_upkint(&who, 1, 1);
pvm_upkint(&resultfwho], 1, 1);
printf(“%d from %d\n”,resultfwho],who);

Receive results

}

* Compute global sum */
for (i=0; i<nproc; i++) tot += result[i];
printf (“The total is %d.\n\n", tot);

pvm_exit(); /* Program finished. Exit PVM */
return(0);

Slave

#include <stdio.h>
#include “pvm3.h”
#define PROC 10
#define NELEM 1000

main() {
int mytid;
int tids[PROC];
int n, me, i, msgtype;
int X, nproc, master;
int data[NELEM], sum;

mytid = pvm_mytid();

/* Receive data from master */
msgtype = 0;
pvm_recv(-1, msgtype);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);
pvm_upkint(data, n, 1);

/* Determine my tid */
for (i=0; i<nproc; i++)
if(mytid==tids][i])
{me =i;break;}

/* Add my portion Of data */
X = n/nproc;
low = me * x;
high = low + x;
for(i = low; i < high; i++)
sum += data[i];

/* Send result to master */

pvm_initsend(PvmDataDefault);

pvm_pkint(&me, 1, 1);
pvm_pkint(&sum, 1, 1);
msgtype = 5;

master = pvm_parent();

pvm_send(master, msgtype);

[* Exit PVM */
pvm_exit();
return(0);

Figure 2.14 Sample PVM program.
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Figure 2.15 Unsafe message passing with libraries.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




#include “mpi.h”
#include <stdio.h>
#include <math.h>
#define MAXSIZE 1000

void main(int argc, char *argv)
{
int myid, numprocs;
int data[MAXSIZE], i, x, low, high, myresult, result;
char fn[255];
char *fp;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0) { /* Open input file and initialize data */
strepy(fn,getenv(*HOME™));
strcat(fn,”/MPIl/rand_data.txt");
if (fp = fopen(fn,”r")) == NULL) {
printf(“Can’t open the input file: %s\n\n”, fn);
exit(1);
}
for(i = 0; i < MAXSIZE; i++) fscanf(fp,"%d”, &datali]);
}

/* broadcast data */
MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD);

/* Add my portion Of data */
X = n/nproc;
low = myid * x;
high = low + x;
for(i = low; i < high; i++)
myresult += data[il;
printf(“I got %d from %d\n”, myresult, myid);

[* Compute global sum */
MPI1_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0) printf(“The sum is %d.\n", result);

MPI_Finalize();
}

Figure 2.16 Sample MPI program.
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Figure 2.18 Growth of functionf(x) = 4x* + 2x + 12.
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Figure 2.19 Broadcast in a three-dimensional hypercube.
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Figure 2.20 Broadcast as a tree construction.
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Figure 2.21 Broadcast in a mesh.
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Figure 2.22 Broadcast on an Ethernet
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Figure 2.24 1-to-N fan-out broadcast on a
Destinations tree structure.
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Figure 2.25 Space-time diagram of a parallel program.
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Figure 3.2 Practical embarrassingly parallel computational graph with dynamic process
creation and the master-slave approach.
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Figure 3.3 Partitioning into regions for individual processes.
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Figure 3.5 Work pool approach.
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Figure 3.7 Computingrtby a Monte Carlo
method.
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Figure 3.8 Function being integrated in
computingrtby a Monte Carlo method.
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Figure 3.10 Parallel computation of a sequence.
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Figure 4.1 Partitioning a sequence of numbers into parts and adding the parts.
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Figure 4.2 Tree construction.
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Figure 4.3 Dividing a list into parts.
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Figure 4.4 Partial summation.
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Figure 4.6 Quadtree.
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Figure 4.7 Dividing an image.
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Figure 4.8 Bucket sort.
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Figure 4.9 One parallel version of bucket sort.
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Figure 4.10 Parallel version of bucket sort.
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Figure 4.11 “All-to-all” broadcast.
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Figure 4.12 Effect of “all-to-all” on an
array.
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> Figure 4.14 More accurate numerical

X integration using rectangles.
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> Figure 4.15 Numerical integration using

X the trapezoidal method.
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> Figure 4.16 Adaptive quadrature
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Figure 4.17 Adaptive quadrature wittelse
“x  termination.
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Figure 4.18 Clustering distant bodies.
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Figure 4.19 Recursive division of two-dimensional space.
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Figure 4.20 Orthogonal recurse bisection
method.
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Figure 4.21 Process diagram for Problem 4-12(b).
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Figure 4.22 Bisection method for finding
the zero crossing location of a function.
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Figure 4.23 Convex hull (Problem 4-22).
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Figure 5.1 Pipelined processes.
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a[0] a[1] a[2] a[3] a[4]

l l l

a a a

Figure 5.2 Pipeline for an unfolded loop.
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fin fout > fin fout >! fin fout

Figure 5.3 Pipeline for a frequency filter.
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Figure 5.4 Space-time diagram of a pipeline.
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Figure 5.5 Alternative space-time diagram.
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(b) Timing diagram

Figure 5.6 Pipeline processing 10 data elements.
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Figure 5.7 Pipeline processing where information passes to next stage before end of process.
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Figure 5.8 Partitioning processes onto processors.
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Figure 5.9 Multiprocessor system with a line configuration.
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Figure 5.10 Pipelined addition.
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Figure 5.11 Pipelined addition numbers with a master process and ring configuration.
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Figure 5.12 Pipelined addition of numbers with direct access to slave processes.
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Figure 5.13 Steps in insertion sort with five numbers.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




Smaller P,
numbers

Series of numbers
Xn—l X1X0

Next largest
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Figure 5.14 Pipeline for sorting using insertion sort.
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Figure 5.15 Insertion sort with results returned to the master process using a bidirectional line configuratic
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Figure 5.16 Insertion sort with results returned.
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Figure 5.17 Pipeline for sieve of Eratosthenes.
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Figure 5.18 Solving an upper triangular set of linear equation using a pipeline.
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e Figure 5.19 Pipeline processing using back
Time substitution.
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Po Py P2
divide
sendkg) O  recvixp)
end send(y) O recvfxo)
multiply/add send(y) O recvfxo)
divide/subtract multiply/add serxy) O recvo)
sendg) O recvfx,) multiply/add send(;)) O
end send(;)) O recvx,) multiply/add
multiply/add send(;) O recv,)
divide/subtract multiply/add send) O
sendg,) O recv,) multiply/add
end send() O recvo)
multiply/add send(;) O
divide/subtract multiply/add
sendgsy) O recvfxs)
end send(z) O
multiply/add
divide/subtract
sendg,) O
end

Figure 5.20 Operations in back substitution pipeline.
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Figure 5.21 Pipeline for Problem 5-9.
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Figure 5.22 Audio histogram display.
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Figure 6.1 Processes reaching the barrier at
different times.
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Figure 6.2 Library call barriers.
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Figure 6.3 Barrier using a centralized counter.
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Master Slave processes

Arrival L Barrier:
for(i=0;i<n;i++ .
phase $ (i=0si<nii++) send(P master );

recv(P any); recv(P ;
Departur5¢ for(i=0:i<nii+s) > 1ecV(P master );
phase

send(P ;); Barrier:

send(P master );
>recV(P  master );

Figure 6.4 Barrier implementation in a message-passing system.
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Figure 6.5 Tree barrier.
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Figure 6.6 Butterfly construction.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




Instruction
afl = af] +k;

l
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Figure 6.7 Data parallel computation.
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Figure 6.8 Data parallel prefix sum operation.
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Figure 6.10 Allgather operation.
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Figure 6.11 Effects of computation and communication in Jacobi iteration.
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X2  Figure 6.13 Natural ordering of heat
. distribution problem.
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Figure 6.14 Message passing for heat distribution problem.
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Figure 6.15 Partitioning heat distribution problem.
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Figure 6.16 Communication consequences of partitioning.
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Figure 6.18 Configurating array into contiguous rows for each process, with ghost points.
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Figure 6.19 Room for Problem 6-14.
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Figure 6.20 Road junction for
Problem 6-16.
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Figure 6.21 Figure for Problem 6-23.
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(b) Perfect load balancing Figure 7.1 Load balancing.
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Figure 7.2 Centralized work pool.
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Figure 7.3 A distributed work pool.
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Figure 7.4 Decentralized work pool.
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Figure 7.5 Decentralized selection algorithm requesting tasks between slaves.
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Figure 7.6 Load balancing using a pipeline structure.
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Figure 7.7 Using a communication process in line load balancing.
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Figure 7.8 Load balancing using a tree.
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Figure 7.10 Ring termination detection algorithm.
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Terminated Figure 7.11 Process algorithm for local
termination.
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Figure 7.12 Passing task to previous processes.
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Figure 7.13 Tree termination.
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Figure 7.14 Climbing a mountain.
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Figure 7.15 Graph of mountain climb.
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(b) Adjacency list

Figure 7.16 Representing a graph.
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Figure 7.17 Moore’s shortest-path algo-
rithm.
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Figure 7.18 Distributed graph search.
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Figure 7.20 Plan of rooms for Problem 7-10.
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Figure 7.21 Graph representation for
Problem 7-10.
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Figure 8.1 Shared memory multiprocessor
Processors Memory modules using a single bus.
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TABLE 8.1 SOME EARLY PARALLEL PROGRAMMING LANGUAGES

Language Originator/date Comments

Concurrent Pascal  Brinch Hansen, 1375 Extension to Pascal

Ada U.S. Dept. of Defense, 1979 Completely new language
Modula-P Braunl, 1986 Extension to Modula 2

C* Thinking Machines, 1987 Extension to C for SIMD systems

Concurrent C Gehani and Roome, 1989 Extension to C

Fortran D Fox et al., 1990 Extension to Fortran for data parallel programming

a. Brinch Hansen,.1975), “The Programming Language Concurrexstdal,”"IEEE Trans. Software Eng.
Vol. 1, No. 2 (June), pp. 199-207.

b. U.S. Department of Defense (1981), “The Programming Language Ada Reference 'Masutalte
Notes in Computer Scienddo. 106, Springer-Verlag, Berlin.

c. Braunl, T, R. Norz (1992)Modula-P User ManualComputer Science Report, No. 5/92 (August) vUni
Stuttgart, Germany.

d. Thinking Machines Corp. (199@* Programming Guide, Version &hinking Machines System Docu-
mentation.

e. Gehani, N., and VWD. Roome (1989)The Concurent C Pogramming Languge, Silicon Press, Ne
Jersey.

f. Fox, G., S. Hiranandani, K.dfnedy C. Koelbel, U. KremerC. Tseng, and M. W(1990),Fortran D
Language Specificatipifechnical Report TR90-141, Dept. of Computer Science, Rice University.
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Figure 8.3 Differences between a process
(b) Threads and threads.
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Main program

; thread1

|

|

: procl(&arg)

pthread_create(&threadl, NULL, procl, &arg); . { \
1 |

return(*status);

[

[

1 / }
pthread_join(threadl, *status);

Figure 8.4 pthread_create() andpthread_join()
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Figure 8.5 Detached threads.
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Process 1 Process 2

while (lock == 1) do_nothing; while (lock == 1)do_nothing;
lock = 1;

Critical section

lock = 0; >
lock = 1;

Critical section

lock = 0;

Figure 8.7 Control of critical sections through busy waiting.
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(b) n-process deadlock Figure 8.8 Deadlock (deadly embrace).
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Figure 8.9 False sharing in caches.
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Array a[]

Figure 8.10 Shared memory locations for Section 8.4.1 program example.
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Figure 8.11 Shared memory locations for Section 8.4.2 program example.
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TABLE 8.2 LOGIC CIRCUIT DESCRIPTION FOR FIGURE 8.12

Gate Function Inputl Input2  Output

1 AND Testl Test2 Gatel
2 NOT Gatel Outputl
3 OR Test3 Gatel Output2

»—% Outputl

Output2

Figure 8.12 Sample logic circuit.
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Figure 8.13 River and frog for Problem 8-23.
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Figure 8.14 Thread pool for Problem 8-24.
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b[x] =ali] Figure 9.1 Finding the rank in parallel.
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Figure 9.2 Parallelizing the rank computation.
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Figure 9.3 Rank sort using a master and
slaves.
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Sequence of steps
P2

Send(A)
/ \
If A>B sendB) y'a

else sendy)

If A>BloadA
@ else loadB

Compare @

Figure 9.4 Compare and exchange on a message-passing system — Version 1.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




Send(A)

N3
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Figure 9.5 Compare and exchange on a message-passing system — \ersion 2.
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Figure 9.6 Merging two sublists — Version 1.
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Figure 9.7 Merging two sublists — Version 2.
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Figure 9.8 Steps in bubble sort.
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Figure 9.9 Overlapping bubble sort actions in a pipeline.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




Figure 9.10 Odd-even transposition sort sorting eight numbers.
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number Figure 9.11 Snakelike sorted list.
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(a) Original placement (b) Phase 1 — Row sort
of numbers

(d) Phase 3 — Row sort (e) Phase 4 — Column sort (f) Final phase — Row sort

Figure 9.12 Shearsort.
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(a) Operations between elements (b) Transpose operation (c) Operations between elements
in rows in rows (originally columns)

Figure 9.13 Using the transpose operation to maintain operations in rows.
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Figure 9.14 Mergesort using tree allocation of processes.
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Figure 9.15 Quicksort using tree allocation of processes.
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Figure 9.16 Quicksort showing pivot withheld in processes.
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Figure 9.17 Work pool implementation of
Slave processes quicksort.
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Figure 9.18 Hypercube quicksort algorithm when the numbers are originally in node 000.
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Figure 9.19 Hypercube quicksort algorithm when numbers are distributed among nodes.
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(a) Phase 1 communicatio®10

(b) Phase 2 communicatior®10/

(c) Phase 3 communicatior910

Figure 9.20 Hypercube quicksort
communication.
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Figure 9.21 Quicksort hypercube algorithm with Gray code ordering.
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Figure 9.22 Odd-even merging of two
Final sorted list e[] sorted lists.
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Figure 9.23 Odd-even mergesort.
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(a) Single maximum (b) Single maximum and single minimum

Figure 9.24 Bitonic sequences.
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Figure 9.25 Creating two bitonic
Bitonic sequence Bitonic sequence sequences from one bitonic sequence.
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Figure 9.26 Sorting a bitonic sequence.
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Figure 9.27 Bitonic mergesort.
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Figure 9.28 Bitonic mergesort on eight numbers.
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Figure 9.29 Compare-and-exchange
Terminates when insertions at top/bottom of listalgorithm for Problem 9-5.
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Figure 10.1 An n x m matrix.
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Figure 10.2 Matrix multiplication,C = A x B.
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Figure 10.3 Matrix-vector multiplication
c=Axb.
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Figure 10.4 Block matrix multiplication.
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Figure 10.5 Submatrix multiplication.
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Figure 10.6 Direct implementation of
matrix multiplication.
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Figure 10.7 Accumulation using a tree
construction.
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Figure 10.8 Submatrix multiplication and summation.
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Figure 10.9 Movement ofA andB
elements.
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Figure 10.10 Step 2 — Alignment of
elements oA andB.
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Figure 10.11 Step 4 — One-place shift of
elements oA andB.
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Figure 10.12 Matrix multiplication using a systolic array.
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agzazpagidgg ¢ o o+ —> Figure 10.13 Matrix-vector multiplication
using a systolic array.
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Figure 10.14 Gaussian elimination.
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Figure 10.15 Broadcast in parallel implementation of Gaussian elimination.
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Broadcast Figure 10.16 Pipeline implementation of
rows Gaussian elimination.
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Figure 10.17 Strip partitioning.
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Figure 10.18 Cyclic partitioning to
equalize workload.
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Solution space

Figure 10.19 Finite difference method.
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Figure 10.20 Mesh of points numbered in natural order.
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Figure 10.21 Sparse matrix for Laplace’s equation.
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Figure 10.22 Gauss-Seidel relaxation with natural order, computed sequentially.
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Figure 10.23 Red-black ordering.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Allefl Prentice Hall, 1998 220




£Q
o”@‘%"@“@
O

Figure 10.24 Nine-point stencil.
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Figure 10.25 Multigrid processor
allocation.
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Figure 10.26 Printed circuit board for Problem 10-18.
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Figure 11.1 Pixmap.
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Number
of pixels

Gray level 255  Figure 11.2 Image histogram.
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Figure 11.3 Pixel values for a 3 3 group.
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Figure 11.4 Four-step data transfer for the computation of mean.
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Figure 11.5 Parallel mean data accumulation.
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Figure 11.6 Approximate median algorithm requiring six steps.
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Figure 11.7 Using a 3x 3 weighted mask.
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Figure 11.8 Mask to compute mean.
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Figure 11.9 A noise reduction mask.
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Figure 11.10 High-pass sharpening filter
mask.
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Figure 11.11 Edge detection using
differentiation.
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Figure 11.13 Prewitt operator.
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Figure 11.14 Sobel operator.
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(a) Original image (Annabel) (b) Effect of Sobel operator

Figure 11.15 Edge detection with Sobel operator.
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Figure 11.16 Laplace operator.
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Figure 11.18 Effect of Laplace operator.
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Figure 11.19 Mapping a line intod, b) space.
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Figure 11.20 Mapping a line intor( 6) space.
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Figure 11.21 Normal representation using
image coordinate system.
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the Hough transform.
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Figure 11.23 Two-dimensional DFT.
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Figure 11.24 Convolution using Fourier transforms.
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Figure 11.25 Master-slave approach for
X[0] X[1] X[n—1] implementing the DFT directly.
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Figure 11.26 One stage of a pipeline
implementation of DFT algorithm.
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Figure 11.27 Discrete Fourier transform with a pipeline.
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Figure 11.28 Decomposition oN-point DFT into twoN/2-point DFTSs.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




Figure 11.29 Four-point discrete Fourier
transform.
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Figure 11.30 Sixteen-point DFT decomposition.
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Figure 11.31 Sixteen-point FFT computational flow.
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Figure 11.32 Mapping processors onto 16-point FFT computation.
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Figure 11.33 FFT using transpose
algorithm — first two steps.
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Figure 11.34 Transposing array for
transpose algorithm.
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Figure 11.35 FFT using transpose
algorithm — last two steps.
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Figure 11.36 Image for Problem 11-3.
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Figure 12.1 State space tree.
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Figure 12.2 Single-point crossover.
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Figure 12.3 Island model.
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Figure D.1 PRAM model.
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Figure D.2 List ranking by pointer jumping.
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Figure D.3 A view of the bulk synchronous parallel model.
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Figure D.4 LogP parameters.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computerg
Barry Wilkinson and Michael Alleal Prentice Hall, 1998




