
•1

Dr. Kivanc Dincer Parallel Processing - Chapter 7 1

Distributed Termination Detection
Algorithms

Dr. Kivanc Dincer Parallel Processing - Chapter 7 2

Termination Conditions

In general, distributed termination at time t requires
the following conditions to be satisfied (Bertsekas &

Tsitsiklis, 1989):
• Application-specific local termination conditions exist

throughout the collection of processes, at time t.
• There are no messages in transit between processors at time t.

What is the difference between these and the centralized one?

How could we detect the occurrence of those two conditions?

Dr. Kivanc Dincer Parallel Processing - Chapter 7 3

Using Acknowledgment Messages

(Bertsekas & Tsitsiklis, 1989) describe a distributed
termination method using request and
acknowledgment messages.
+ very general
+ mathematically sound
+ copes with messages being in transit.

Each process is in one of two states:
1. Inactive
2. Active

Dr. Kivanc Dincer Parallel Processing - Chapter 7 4

The task that sent the task to
make the process enter the
active state.

A task only sends an ack message to its parent
when it is ready to become inactive, i.e.,:

• Its local termination condition exists (all tasks are completed)
• or it has transmitted all its acks for tasks it has received.
• or it has received all its acks for tasks it has sent out.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 5

Ring Termination Algorithms
For termination purposes, the processes are organized in a ring structure:

The single-pass ring termination algorithm:
• When P0 is terminated, it generates a token that it passes to P1.
• When Pi receives the token and has already terminated, it

passes the token onward to Pi+1. Otherwise it waits for local
termination condition and then passes the token onward. Pn-1
passes the token to P0.

• When P0 receives a token, it knows that all processes in the
ring have terminated. A message can then be sent to all
processes informing them of global termination, if necessary.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 6

•2

Dr. Kivanc Dincer Parallel Processing - Chapter 7 7

Each process, except the first one, implements the
following function:

The algorithm assumes that a process cannot be
reactivated after reaching its local termination
condition.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 8

•In both algorithms, P0 becomes a central point for global termination.
•An ack signal is generated to each request.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 9

The dual-pass ring termination algorithm (Dujkstra,

Feijen and Gastren, 1983) :
• can handle processes being reactivated but requires two

passes around the ring. Reason for reactivation?

• uses two tokens: white and black.
– Black token: global termination may not have occurred and the

token must be recirculated around the ring again.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 10

The Algorithm:
• When P0 becomes white when it has terminated and it

generates a white token that it passes to P1.

• When Pi receives the token and has already terminated, it
passes the token onward to Pi+1. But the color of the token
may be changed (Pi to Pj where j<i then black, otherwise
white)
– A black process will color the token black and pass it on.
– A white process will pass on the token in its original color.

After Pi has passed on a token, it becomes a white process.
Pn-1 passes the token to P0.

• When P0 receives a black token, it passes on a white
token; if it receives a white token, all processes have
terminated.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 11

Tree Algorithm

Dr. Kivanc Dincer Parallel Processing - Chapter 7 12

Fixed Energy Distributed Termination Algorithm
• Uses the notation of a fixed quantity within the

system, “energy”
– similar to a token but has a numeric value.

• Master process passes out portions of the energy with the tasks
to processes making requests for tasks.

• Similarly, it these processes receive requests for tasks, the
energy is divided further and passed to these processes.

• When a process becomes idle, it passes the energy it holds
back before requesting a new task.
– can pass it to the master
– can pass it back to original task

This creates a tree-like structure
When all energy is returned to the root and the root becomes idle,
all the processes must be idle and the computation can terminate.

One disadv: finite precision operations!

•3

Dr. Kivanc Dincer Parallel Processing - Chapter 7 13

Program Example

Load balancing strategies can be used in
image processing, ray tracing, colume

rendering, optimization and search
areas.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 14

Shortest Path Problem

Given a set of interconnected nodes where the links
between the nodes are marked with “weights,” find
the path from one specific node to another specific
node that has the smallest accumulated weights.

• Interconnected nodes can be described by a graph.
• Nodes - vertices
• Links - edges
• Directed graph - if edges can only be traversed in

one direction.

Graphs can be used to find the solution to many
different problems.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 15

The Best Way to Climb a Mountain

Dr. Kivanc Dincer Parallel Processing - Chapter 7 16

Graph Representation
Graphs can be represented in a program in two ways:
•Adjacency matrix
•Adjacency list

Dr. Kivanc Dincer Parallel Processing - Chapter 7 17

One is chosen acc.to:
• graph structure
• storage requirements
• speed
• partitioning of tasks
and its effect on accessing
the information.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 18

Searching A Graph

Single-source shortest-path graph algorithms find
the minimum accumulation of weights from a
source vertex to a destination vertex:

• Moore’s algorithm (1957)
– Although it may do more work, it is more amenable to

parallel implementation (Adamson and Tick, 1992)
– Weights must be +.

• Dijkstra’s algorithm (1959)

•4

Dr. Kivanc Dincer Parallel Processing - Chapter 7 19

Moore’s Algorithm
Starting with the source vertex, find the distance to vertex j

through vertex i and compare with the current mimimum
distance to vertex j.
– Change the minimum distance if this path is shorter

dj = min (dj, di+wij) where
di is the current minimum distance from the source

vertex to vertex i.
wij is the weight of the edge from vertex i to vertex j.

Iterative solution:

We can implement this formula using directed search.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 20

Sequential Code
while ((i = next_vertex()) != no_vertex) /* while a vertex*/

for (j=1; j<n; j++) /* get next edge*/
if (w[i][j] != infinity) { /* if an edge */

newdist_j = dist[i] + w[i][j];
if (newdist_j < dist[j]) {

dist[j] = newdist_j;
append_queue(j);/* vertex to continue if not there*/

}
} /* no more vertices to consider*/

Dr. Kivanc Dincer Parallel Processing - Chapter 7 21

Parallel Implementation - Centralized
Work Pool

Master:
while (vertex_queue() != empty) {

recv(PANY, source = Pi); /* request task from slave */
v = get_vertex_queue();
send(&v, Pi); /* send next vertex and */
send(&dist, &n, P i); /* current dist array */

recv(&j, &dist[j], P ANY, source = Pi); /* new distance */
append_queue(j, dist[j]); /* append vertex to queue*/

} /* and update distance array */
recv(PANY, source = Pi); /* request task from slave */
send(Pi, termination_tag); /* termination message */

Dr. Kivanc Dincer Parallel Processing - Chapter 7 22

Slave (process i):
send(Pmaster); /* send request for task */
recv(&v, Pmaster, tag); /* get vertex number */
if (tag != termination_tag) {

recv(&dist, &n, Pmaster); /* and dist array */
for (j=1; j<n; j++) /* get next edge if an edge*/

if (w[v][j] != inifinity) {
newdist_j = dist[v] + w[v][j];
if (newdist_j < dist[j]) {

dist[j] = newdist_j;
send(&j, &dist[j], Pmaster); /* add vertex to queue*/

} /* send updated distance */
}

}

Dr. Kivanc Dincer Parallel Processing - Chapter 7 23

Parallel Implementation - Decentralized
Work Pool

Slave (process i):
recv(newdist, PANY);
if (newdist < dist) {

dist = newdist;
vertex_queue = TRUE; /* add to queue */

}
else vertex_queue = FALSE;

if (vertex_queue == TRUE) /* start searching around vertex */
for (j=1; j<n; j++) /* get next edge */

if (w[j] != infinity) {
d = dist + w[j];
send(&d, Pj); /* send distance to proc j */

}

Dr. Kivanc Dincer Parallel Processing - Chapter 7 24

Slave (process i):
recv(newdist, PANY);
if (newdist < dist) {

dist = newdist; /* start searching around vertex */
for (j=1; j<n; j++) /* get next edge */

if (w[j] != infinity) {
d = dist + w[j];
send(&d, Pj); /* send distance to proc j */

}

•5

Dr. Kivanc Dincer Parallel Processing - Chapter 7 25

