
•1

Dr. Kivanc Dincer Parallel Processing - Chapter 7 1

Chapter 7

Load Balancing
and

Termination Detection

Dr. Kivanc Dincer Parallel Processing - Chapter 7 2

• Load balancing is used to distribute
computations fairly across processors in order
to obtain the highest possible execution speed.

• Termination detection is detecting when a
computation has been completed:
– relatively easy to do when the process and

computation structure is fixed,
– becomes a significant issue when the computation is

distributed.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 3

Load Balancing

So far:
• A problem was divided into a fixed number of

processes where each process performs a known
amount of work.

• Processors assumed to be equivalent, i.e., same
type and same speed.

Load balancing - to obtain minimum execution time.
• most useful when the amount of work is not known

prior to execution.
• helps to mitigate the effects of differences in

processor speeds even when the amount of work is
known in advance.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 4

Dr. Kivanc Dincer Parallel Processing - Chapter 7 5

Static Load Balancing

Also known as mapping problem or scheduling problem.
(Bokhari, 1981)

• Load balancing is attempted statically before the
execution of any process.

• Substantial literature exists on the problem, mostly
using the optimization techniques (estimating
execution times and interdependencies in program)

Dr. Kivanc Dincer Parallel Processing - Chapter 7 6

Some Potential Load Balancing
Techniques

• Round robin algorithm
• Randomized algorithms
• Recursive bisection:

– recursively divides the problem into subproblems of
equal computational effort while minimizing message
passing.

• Simulated annealing
• Genetic algorithms

Bin packing: placing objects into boxes to reduce
the number of boxes. Scheduling can be
approached with bin packing algorithms (Coffman
et al., 1978)

•2

Dr. Kivanc Dincer Parallel Processing - Chapter 7 7

A Mapping Problem

Goal: to reduce the communication delays
Question: how do we map processes to processors?
Network Architecture: Processors/computers

interconnected by a static link ICNW

Solution:
Communicating processors should be executed on

processors with direct communication paths
– Computationally intractable - NP-complete.
– Therefore, often heuristics are used for the solution.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 8

Fundamental flaws in static load balancing:
• time estimation is difficult without running the

program first
– scheduling parts of a program without using actual

execution times is innately inaccurate.

• It could be difficult to incorporate variable
comm. time delays in static load balancing.
– Consider the problems with indeterminate number of

steps to reach the solution.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 9

Dynamic Load Balancing

Takes all related factors into account by making the
division of load dependent upon the execution of
the parts as they are being executed

• additional overhead during execution
• how a computation finally comes to an end -

termination detection is a related significant
problem.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 10

The computation will be divided into work or tasks
to be performed, and processes perform these
tasks.

• a single process operates upon tasks
• there needs to be at least as many tasks as

processors
• Objective: to keep the processors busy.

Two types of dynamic load balancing:
• centralized: tasks are handed out from a

centralized location: master-slave structure.
• decentralized: tasks are passed between

arbitrary processes: workers structure.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 11

Centralized Dynamic Load Balancing

• Master process(or) holds the collection of tasks to
be performed and sends them to slave processes
when necessary.

• Completing slave processes requests another task
from the master process.

• Similar to “work pool approach”
• Sometimes called “replicated worker” or “processor

farm” since all the slaves are the same.

Disadv: master process can only issue one task at a
time, and after the initial tasks have been sent, it
can only respond to requests for new tasks one at a
time - potential bottleneck!

Dr. Kivanc Dincer Parallel Processing - Chapter 7 12

Work Pool Approach

Can be readily applied to
• simple divide-and-conquer problems.
• to problems in which the tasks are quite

different and of different sizes.
• when the number of tasks may change during

execution: e.g., search algorithms.

As a rule of thumb, hand out the larger/most
complex tasks first.

•3

Dr. Kivanc Dincer Parallel Processing - Chapter 7 13 Dr. Kivanc Dincer Parallel Processing - Chapter 7 14

Termination.
Stopping the computation when the solution has
been reached.

Termination occurs when both conds are satisfied:
• the task queue is empty
• every process has made a request for another task

without any new tasks being generated.

In some applications, a slave may detect the
termination condition by some local termination
condition, e.g., finding an item in a search alg.

In some applications, each slave process must
reach a specific local termination condition, e.g.,
convergence on its local solutions.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 15

Decentralized Dynamic Load Balancing

• Centralized approach would be satisfactory
when there are few slaves and the tasks are
computationally intensive.

• When finer-grain tasks and many slaves, it may
be more appropriate to distribute the work pool
into more than one site.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 16

Several levels of decomposition is possible.
Slaves can hold a portion of the work pool and solve for this portion.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 17

Fully Distributed Work Pool
The tasks could be transferred by
1. The receiver-initiated method - a process
requests tasks from other processes it selects
•works well at high system load.
2. The sender-initiated method - a process sends
tasks to other processes it selects
•works well under light overall system loads.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 18

Load balancing with receiver-initiated method:
• Organize processes as a ring with a process

requesting tasks from its nearest neighbors.
• In a hypercube, . . .
Process Selection.
Without the constraints of a specific network, all

processors are equal candidates and processes
could select any other process.

Local implementations:
• round robin algorithm
• random polling algorithm

•4

Dr. Kivanc Dincer Parallel Processing - Chapter 7 19 Dr. Kivanc Dincer Parallel Processing - Chapter 7 20

Load Balancing Using a Line Structure (Wilson, 1995)

Basic idea: create a queue of tasks with individual processors
accessing locations in the queue.
– High priority or larger tasks could be placed in the queue first.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 21

Two processes running on each processor:
• for left and right communication
• for the current task

Dr. Kivanc Dincer Parallel Processing - Chapter 7 22

Master Process (P0):
for (i=0; i<no_tasks; i++) {

recv(P1, request_tag);
send(&task, P i, task_tag);

}
recv(P1, request_tag);
send(&empty, P i, task_tag);

Process Pi (1<i<n) :
if (buffer == empty) {

send(Pi-1, request_tag);
recv(buffer,Pi-1,task_tag);

}
if (buffer==full)&&(!busy)){

task = buffer;
buffer = empty;
busy = TRUE;

}
nrecv(Pi+1,request_tag,request);
if (request && (buffer==full)){

send(&buffer, Pi+1);
buffer = empty;

}
if (busy) {

Do some work on task;
busy = FALSE;

}

Dr. Kivanc Dincer Parallel Processing - Chapter 7 23

Nonblocking Receive Routines:
Consider nrecv(Pi+1,request_tag,request);

request is set to TRUE if a message has been received.

pvm_nrecv() returns a zero value if no message has been
received.

pvm_probe() used to check whether a message has been
received without actually reading the message.
Subsequently a normal recv() routine is needed to accept
and unpack the message.

MPI_Irecv() posts a request message and returns
immediately. But it returns a request handle, which is
used in subsequent completion routines (MPI_Wait() and
MPI_Test()) to wait for the message or to establish
whether the message has actually been received at that
point.

Dr. Kivanc Dincer Parallel Processing - Chapter 7 24

Other Structures (A Tree like structure by Wilson, 1995)

