

 a master proce stopped. 	ess needs to be modified when an processes nave
it = 0;	
do {	
it++;	
g = 0.25	(w + x + y + z);
send(&g,	P _{i-1,i}); /* locally blocking sends */
send(&g, I	P _{i+1,i});
send(&g, H	P _{1,j-1});
send(&g, I	P _{i.i+1});
recv(&g, I	P _{i-1,i}); /* locally blocking receives */
recv(&g, I	P _{i+1,j});
recv(&g, I	P _{i.i-1});
recv(&g, I	P _{i.i+1});
} while ((!conv	<pre>rerged(i,j)) (iteration==limit));</pre>
send(&g, &i, &j	j, ⁢, P _{master});

Problem space is divided into cells

Dr. Kivanc Dincer

- Each cell is can be in one of a finite number of states.
 Cells are affected from their neighbors according to certain rules, and all cells are affected simultaneously in a "generation."
- The rules are reapplied in subsequent generations so that cells evolve, or change state, from generation to generation.

Parallel Processing - Chapter 6

23

Game of Life

- The most famous cellular automata.
- We have a board that consists of 2D array of cells.
- Each cell can hold one "organism" and has eight neighboring cells.
- Initially some cells are occupied.
- Following rules apply:
 - Every organism with 2/3 neighboring organisms survives for the next generation.
 - Every organism with 4/more neighboring organisms dies from overpopulation.
 - Every organism with 0/1 neighboring organisms dies from isolation.
- Each empty cell adjacent to exactly three occupied neighbors will give birth to an organism.
- Dr. Kivanc Dincer Parallel Processing Chapter 6

24

