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Chapter 6 – Synchronous  Computations
A group of separate computations must wait for 

each other before proceeding, thereby becoming 
synchronized.

Fully synchronous applications require all 
processes to be synchronized at regular points:

• Generally the same computation is applied to a 
set of data points.

• All operations start the same time in a lock-step 
manner anologous to SIMD computations.
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Synchronization with Barrier

• When processes need to exchange data between 
themselves and then continue from a known 
state together

• Each process must wait until all others have 
reached a particular reference point in their 
computations.

• In dynamic process creation:
– exit and respawn -- but costly
– barrier 
– All processes must wait in a barrier and placed in an 

inactive state and they wait others to reach the same 
point.

• potential race condition
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• MP systems: as library routines
– MPI_Barrier()
– pvm_barrier() -- all or a subset of processes

• Synchronous and message tags are not used.

• Let’s review some of the common 
implementations of a barrier:
– counter
– tree
– butterfly
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Counter  Implementation (Linear 
Barrier)

• A centralized counter is used to count the 
number of processes reaching the barrier.

• When the correct number is reached, all other 
processes waiting for the counter are released.

• Implementation in two phases:
– an arrival (or trapping) phase
– a departure (or release) phase

• Consider the case a barrier might be used more 
than once in a process, i.e., a process enters the 
barrier for  a second time before previous 
processes have left the barrier for the first time.
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Master Process:
for (i=0; i<n; i++)   /* arrival phase */

recv(Pany);
for (i=0; i<n; i++)   /* departure phase */

send(Pi);

Slave Process:
send(Pmaster);
recv(Pmaster);

• All processes must reach the arrival phase before 
continuing on to a clearly defined departure phase.

• Blocking recv() and locally blocking send() 
operations are used and this implementation has a time 
complexity of O(n) with n processes.

• An implementation using gather() and broadcast() 
routines is possible.

• Even if system-supplied barrier() is available, user 
implemented barriers may be required.
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Tree  Implementation

• With n processes, we can implement a barrier 
with a counter that has 2 log n steps and a time 
complexity of O(log n).
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Butterfly  Barrier
• Pairs of processors synchronize at each stage.
• Each sync  requires only a single pair of 

send()/recv(). After all sync stages, all 
processes can continue.

• At stage s, process i syncs with process i+2s-1 if 
n is a power of 2.

• With n processes, it has n steps, and complexity 
of O(log n).
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Local  Synchronization

• Sometimes processes need only be synchronized 
with a few other processes. 
– Ex: mesh or pipeline fashion processor organizations

Process Pi-1 Process Pi Process Pi+1

recv(Pi); send(Pi-1); recv(Pi);
send(Pi); send(Pi+1); send(Pi);

recv(Pi-1);
recv(Pi+1);

Note that this is not a perfect three-process barrier, but 
sufficient.
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Deadlock

• When a pair of processes each send and receive 
from each other, deadlock may occur.
– If both processes perform synchronous sends (or 

blocking sends without sufficient buffering)
– Avoidance: arrange processes so that even-numbered 

processes perform their sends first and odd-numbered 
processes perform their receives first. 

• sendrecv() routine: combined blocking operation for 
bidirectional data transfers is implemented so that 
deadlock cannot occur.

MPI_Sendrecv()/_replace() having 12 parameters

Process Pi-1 Process Pi Process Pi+1

sendrecv(Pi); sendrecv(Pi-1);
sendrecv(Pi+1); sendrecv(Pi);
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Data  Parallel  Computations

• Have implicit sync. requirements
• The same operation is performed on different 

data elements simultaneously.
• Two reasons:

– ease of programming (only one program)
– can scale easily to larger problem sizes

• SIMD computers operate as data parallel 
computers
– Synchronism is built into the hardware, the 

processors operate in lock-step fashion
– same instruction is executed by different processors 

but on different data.
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Ex: add the same constant to each element of an 
array:
for (i=0; i<n; i++)      ⇒ a[] = a[] + k; (SIMD)

a[i] += k;

forall statement:  a special parallel construct to 
specify data parallel operations.
forall (i=0; i<n; i++)

a[i] += k;

• n instances of the body is executed simultaneously
• no iteration! 
• whole construct will not be completed until all instances 

of the body have been executed.
– Hence a barrier is implicit within the forall construct.
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• On SIMD computers
• On a message-passing computer

– explicit barrier is needed
– SPMD style of programming is used
i = myrank;
a[i] += k;  /* body */
barrier(mygroup);

Other data parallel algorithms (Hillis and Steel, Jr., 1986)

– summing numbers
– sorting
– operating on linked lists
– etc.
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Prefix  Sum  Problem

• Given a list of numbers x0, x1, ..., xn-1, all the 
partial summations (i.e., x0+x1, x0+x1+x2, x0+x1
+x2+x3, ...) are computed.
– Any associative operation can take place of +.
– Processor allocation, data compaction, sorting, 

polynomial evaluation.

for (i=0; i<n; i++) {

sum[i] = 0;

for (j=0; j<=i; j++)

sum[i] += x[j];

}

Time complexity is O(n2).
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• Figure 6.8
• Adding all partial sums of 16 numbers as 

described in (Hillis and Steel, Jr., 1986)

– original numbers are lost
– a  different number of computations occur in each step
– requires log n steps, where there are n numbers (and n

is a power of 2).
• In step j (0 ≤j < log n ), n-2j additions occur.

Sequential Code:                                    SIMD code:
for (j=0; i< log(n); j++)   for (j=0; i< log(n); j++)

for (i=2j; i<n; i++)      forall (i=0; i<n; i++)

x[i] += x[i-2j];          if (i>= 2 j) x[i]+=x[i-2j];

O(n2) With n-1 processors, O(n log n) not cost optimal!
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Synchronous  Iteration

• Iterative method is a powerful method for solving 
numerical problems, where a calculation is 
repeated until convergence criteria is satisfied.
– the result of one iteration is used in the next iteration.

• Parallel implementation can be successfully 
employed to iterative methods when there are 
multiple independent instances of the iteration.

• Synchronous iteration or synchronous 
parallelism is used to solving a problem by 
iteration where 
– each iteration is composed of several processes that 

start together at the beginning of each iteration and 
– the next iteration cannot begin until all processes have 

finished the previous iteration.
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for (j=0; i< n; j++)         /*for each sync iteration*/
forall (i=0; i<N; i++) {  /*N processes each executing*/

body(i);               /*body using specific value of i*/

}

SPMD program:
for (j=0; i< n; j++)         /*for each sync iteration*/

i = myrank;              /*find value of i to be used*/
body(i);                /*body using specific value of i*/
barrier(mygroup);

}


