Chapter 3 - Embarrassingly Parallel Computations
Embarrassingly (Pleasantly) Parallel Computation: "The ideal computation" A computation that can be divided into a number of completely independent parts, each of which can be executed simultaneously by a separate processor. - parallelizing these problems are obvious - no special techniques or algorithms: just distribute data \& start processes - no communication between the separate processes - each process need different data and produces results from its input w/o any need for results from other processes - gives maximum speedup
Often the independent parts are identical computations and SPMD model is appropriate Data is not shared, but copied to each process if necessary
$\begin{array}{lll}\text { Dr. Kivanç Dinçer } & \text { Parallel Processing - Chapter 3 } & 1\end{array}$

Nearly Embarrassingly Parallel Computation:

A computation that can be divided into a number of completely independent parts, each of which can be executed simultaneously by a parallizing thes
some way

- Initially and finally a single process must be operating alone
- Master-Slave Organization (w/dynamic or static process creation)
- Even if the slave processes are all identical, we may not get the optimum solution if the processors are different.
$\begin{array}{lll}\text { Dr. Kivanç Dinçer } & \text { Parallel Processing - Chapter 3 } & 2\end{array}$

Geometrical Transformations of Images

Displayed images on a computer often originate in two ways:

- Images obtained from external sources
- image processing

GIF file format:
storage requirements for color images can be reduced by using a look-up table to hold the RGB representation of specific colors used in the image.
Images that are artificially created

- computer graphics

Graphical operations can be performed upon a stored image:

- move, resize, rotate on regular images

256 different colors \Rightarrow

- 256 24-bit entries could hold the representation of the colors used.
- Each pixel in the image store only 8 -bits to select the appropriate table entry
(Look-up table is held in the file together with the image.)
element) is stored as a binary number in a 2-D array
B/W Images: bitmap (a single bit is is sufficient for each pixel)
Grayscale Images: 8 bits to represent 256 different monochrome intensities.
Color Images: Three primary colors, R/G/B, are stored as separate 8 -bit numbers. ("tiff" format)
$\begin{array}{lll}\text { Dr. Kivanç Dinc̣er } & \text { Parallel Processing - Chapter 3 } & 3\end{array}$

Dr. Kivanç Dinçer	Parallel Processing - Chapter 3	4

Geometric Transformations

Xformations on each pixel is totally independent from the xformations on other pixels.

- result of a xformation is simply an updated bitmap.
- Shifting:

$x^{\prime}=x+\Delta x$
input data Divide bitmap/pixmap into groups of pixels for each
(bitmap/pixmap) processor (each processor gets an area of display)
- Scaling: (enlarge if $S>1$, reduce if $S<1$)
$x^{\prime}=x S_{x}$
Two general methods for grouping:
$y^{\prime}=y S_{y}$
- Rotation: (through an angle θ about the origin)
- by square/rectangular regions
- by columns/rows
$y^{\prime}=-x \sin \theta+y \cos \theta$
- Clipping: $x_{1}, y_{1}\left(x_{h}, y_{h}\right)$ is the lowest (highest) values of x, y in the area to

No effect on communication in Embar.Parallel Compn. be displayed

- Ex: With 640×480 image and 48 processors, how would you do the data distribution?
$y_{1} \leq y^{\prime} \leq y_{h}$
$\begin{array}{lll}\text { Dr. Kivanç Dinçer } & \text { Parallel Processing - Chapter 3 } & 5\end{array}$

```
Maste
for (i=0; row=0; i<48; i++, row+=10)
    send(row, 師); //send row number
for (i=0; i<480; i++)
    for (j=0; j<640; j++)
        temp_map[i][j] = 0;
for (i=0; i < (640*480); i++) {
    recv (oldrow, oldcol, newrow, newco1, }\mp@subsup{\textrm{P}}{\mathrm{ mux }}{}\mathrm{ ); //accept new coords
```



```
        temp_map [ newrow] [newcol )=map [oldrow] [oldcol];
for (i=0; i<480; i++)
    for (j=0; j<640; j++)
        map[i][j] = temp_map[i][j],
Slave
ecv(row, P Pmater),
for (oldrow=row; oldrow<(row+10); oldrow++) //receive row number
    for (oldcol=0; oldcol<640; oldcol++) f
        // transform coords
```



```
        send(oldrow, oldcol, newrow, newcol, P Paster ); //coords to master
}
Dr. Kivanç Dinçer Parallel Processing - Chapter 3 
```

Analysis.
Each pixel requires 1 computational step, there are $\mathrm{n} \times \mathrm{n}$ pixels:

- $\mathrm{t}_{\mathrm{s}}=\mathrm{n}^{2} \Rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$
- $t_{p}=t_{\text {comp }}+t_{\text {comm }}$
where $\mathrm{t}_{\text {comm }}=\mathrm{t}_{\text {startup }}+\mathrm{m} \mathrm{t}_{\text {data }} \Rightarrow \mathrm{O}(\mathrm{m})$ with p processors,
$\mathrm{t}_{\text {comm }}=\mathrm{p}\left(\mathrm{t}_{\text {startup }}+2 \mathrm{t}_{\text {data }}\right)+4 \mathrm{n}^{2}\left(\mathrm{t}_{\text {startup }}+\mathrm{t}_{\text {data }}\right) \Rightarrow \mathrm{O}\left(\mathrm{p}+\mathrm{n}^{2}\right)$
$t_{\text {comp }}=2\left(n^{2} / p\right)=O\left(n^{2} / p\right)$
Total t_{p} is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
But $\mathrm{t}_{\text {startup }}$ constant hidden in $\mathrm{t}_{\text {comm }}$ far exceeds those constants in
the computation in most practical situations.
What can we do?
combine messages, send results back in groups.
Dr. Kivanç Dinçer Parallel Processing - Chapter 3 8

Mandelbrot Set

Again a bit mapped image is manipulated, but this time it involves significant computation.

Sequential Code
structure complex f
float real
float imag
?
int
int cal_pixel (complex c
int count, max;
complex z;
loat temp, lengthsq;
nax $=256 ;$
2.real $=0 ;$
2.imag $=0 ;$
threshold value
z.imag $=0 ;$
count $=0 ;$
do 1
temp $=$ z.real * z.real - z.imag * z.imag + c.real;
z.imag = 2 * z.real * z. imag + c.imag ;
.real $=$ temp;
engthsq z.real * z.real + z.imag * z.imag;
while (1 lengthsq < 4.0) \&\& (count < max))
return count;
$\begin{array}{lll}\text { Dr. Kivanç Dinçer } & \text { Parallel Processing - Chapter 3 } & 10\end{array}$

Obtain the actual complex plane coordinates by scaling:
c.real = real_min + x * (real_max - real_min)/disp_height
c.imag $=$ imag_min $+y$ * (imag_max - imag_min $) /$ disp_width;

Parallellizing the Mandelbrot Set Computation

For computational efficiency
scale_real = (real_max - real_min)/disp_height;
scale_imag $=($ imag_max - imag_min $) /$ disp_width;
Including scaling, the could could be of the form
for ($x=0$; $x<d i s p _w i d t h ; ~ x++$) /* screen coordinates $x \& y$ */
scale_real)
imag $=$ imag min $+($ float $) \mathrm{y}$ * scale_ imag ,
c.imag = imag_min +
display(x, y, color);
,
See http://www.cs.uncc.edu/par_prog
uses Xlib calls for the graphics.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 11
$\begin{array}{lll}\text { Dr. Kivanç Dinçer Parallel Processing - Chapter 3 } & 12\end{array}$

Static Task Assignment

- Each processor is assigned a fixed area of display.
- Grouping by square/rectangular regions or by columns/rows.

Suppose that a display area of 640×480 and we have 48 processes.

Dynamic Task Assignment Work Pool/Processor Farms

Mandelbrot Set requires significant iterative computation for each pixel:

- \# iterations will generally be different for each pixel.
- computers may be of different type, or operate at different speeds.
\Rightarrow Hence some processors may complete their assignment before others
Ideally we want all processors to finish together, achieving a system efficiency of 100%, which can be addressed using load balancing.

Different sizes of regions could be assigned to different processors, but this would not be satisfactory

- we may not a priori each processor's computational speed,
- we would have to know the exact time it takes for each processor to compute each pixel.

$$
\begin{array}{lll}
\hline \text { Dr. Kivanç Dinçer } & \text { Parallel Processing - Chapter 3 } & 15 \\
\hline
\end{array}
$$

Workpool Approach to Dynamic Task Assignment

- Processors are supplied with work when they become idle Sometimes called processor farm, when all processors are the same type.
- Workpool holds a collection, pool, of tasks to be performed. - in our case, the set of pixels forms the tasks
- when a processor has computed the color for the pixel, it returns the color and requests a further pair of pixel coordinates from the work pool
- when all pixel coordinates have been taken, we than have to wait for all the processors to complete and report in for more pixel coordinates.
Sending pairs of coordinates of individual pixels will result in excessive communication \Rightarrow group them

In workpool solution, some pixels will be generated before others.

Dr. Kivanç Dinçer	Parallel Processing - Chapter 3	16

```
Master m;
count = 0;
for (k=0; k<procno; k++) \
    send(&row, }\mp@subsup{P}{k}{}\mathrm{ , data_tag); //send row#
    count++;
row++;
do f
recv (&slave, &r,color, P}\mp@subsup{\textrm{P}}{\mathrm{ nyv}}{\prime}\mathrm{ , result_tag);
if (row < disp_height)
    send(&row, P_ &lave, data_tag);
    cow++;
    , else
    f else
        Send(&row, P}\mp@subsup{P}{\mathrm{ slave, terminator_tag);}}{\mathrm{ %ows_recv*+;}
        rows_recv++;
        display(r, color);
} while (count > 0);
```

Slave
recv ($\mathrm{y}, \mathrm{P}_{\text {masterer }}$, ANYTAG, source_tag) ; //receive
hile (source_tag I/ Ist row to compute a_tag)
c. imag = imag_min + ((float) y *
scale-imag);
for ($x=0 ; x<$ disp_width; $x++)$ i c.real $=$ real_min $+\left(\right.$ (float) x^{\star} scale_real) $)$
color $[x]=$ cal_pixel (c) // send row colors to master
// send row colors


```
Parallel Processing - Chapter \(3 \quad 17\)
```

Analysis.
We don't know how many iterations are needed for each pixel. We only know that \# iterations for each pixel is some function of n but cannot exceed max.
$\mathrm{t}_{\mathrm{s}} \leq \max \times n \Rightarrow \mathrm{O}(n)$
Phase 1: Communication.
$\mathrm{t}_{\text {comm1 }}=\mathrm{s}\left(\mathrm{t}_{\text {startup }}+\mathrm{t}_{\text {data }}\right)$ where s is the number of slaves.
Phase 2: Computation.
$\mathrm{t}_{\text {comp }} \leq(\max \times n) / \mathrm{s}$
Phase 3: Communication.
$\mathrm{t}_{\text {comm2 }}=(\mathrm{n} / \mathrm{s})\left(\mathrm{t}_{\text {startup }}+\mathrm{t}_{\text {data }}\right)$
Overall $t_{p}=(\max x n) / s+(n / s+x)\left(t_{\text {startup }}+t_{\text {data }}\right)$

Dr. Kivanç Dinçer	Parallel Processing - Chapter 3	18

Monte Carlo Methods
The basis of Monte Carlo methods is the use of random selections in calculations that lead to the solution to numerical and physical problems. Example: Calculating Π number. - The fraction of points within the circle will be $\Pi / 4$, given a sufficient number of randomly selected samples. \quadArea of circle Area of square$=\frac{\Pi(1)^{2}}{2 \times 2}=\frac{\Pi}{4}$ The area of any shape within a known bound area could be computed by the preceeding method, or any area under a curve; i.e., an integral. -MC methods are would not be used in practice for 1-D integrals, for which quadrature methods are better. They would be very useful for integrals with a large number of variables. Dr. Kivanç Dinçer

Parallel Random Number Generation

- The most popular way of creating a pseudorandom number sequence is by evaluating x_{i+1} from a carefully chosen function of
x_{i}.
The key is to find a function that will create a very large sequence with the correct statistical properties:
$x_{i+1}=\left(a x_{i}+c\right)$ mod $m \quad$ Linear Congruential Generator
where a, c, and m are constants chosen to create a sequence that has similar properties to truly random sequences.
Even though it appears that the pseudorandom number computation is sequential in nature, as each number is calculated from the previous number, a parallel formulation is possible.
$x_{i+1}=\left(a x_{i}+c\right) \bmod m$
$x_{i+k}=\left(A x_{i}+C\right) \bmod m$
where $A=a^{k}$, mod $m, C=c\left(a^{k-1}+a^{n-2}+\ldots+a^{1+} a^{0}\right) \bmod m$, and k is a selected "jump" constant.

Dr. Kivanç Dinçer	Parallel Processing - Chapter 3	21

