
1

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 1

Chapter 3 - Embarrassingly Parallel
Computations

Embarrassingly (Pleasantly) Parallel Computation: “The ideal computation”
A computation that can be divided into a number of completely
independent parts, each of which can be executed simultaneously by a
separate processor.

• parallelizing these problems are obvious
– no special techniques or algorithms: just distribute data & start processes

• no communication between the separate processes
– each process need different data and produces results from its input w/o any

need for results from other processes
• gives maximum speedup

Often the independent parts are identical computations and SPMD model is
appropriate

Data is not shared, but copied to each process if necessary

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 2

Nearly Embarrassingly Parallel Computation:

• requires results to be distributed and collected and combined in
some way.
– Initially and finally a single process must be operating alone

• Master-Slave Organization (w/ dynamic or static process
creation)

• Even if the slave processes are all identical, we may not get the
optimum solution if the processors are different.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 3

Geometrical Transformations of Images
Displayed images on a computer often originate in two ways:
• Images obtained from external sources.

– image processing

• Images that are artificially created
– computer graphics

Graphical operations can be performed upon a stored image:
• move, resize, rotate on regular images
• smoothing and edge detection on noisy images

Pixmap: the most basic way to store a 2-D image in which each pixel (picture
element) is stored as a binary number in a 2-D array.

B/W Images: bitmap (a single bit is is sufficient for each pixel)

Grayscale Images: 8 bits to represent 256 different monochrome intensities.

Color Images: Three primary colors, R/G/B, are stored as separate 8-bit numbers.
(“tiff” format)

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 4

GIF file format:
storage requirements for color images can be reduced by using
a look-up table to hold the RGB representation of specific colors
used in the image.

256 different colors ⇒
• 256 24-bit entries could hold the representation of the colors

used.
• Each pixel in the image store only 8-bits to select the

appropriate table entry

(Look-up table is held in the file together with the image.)

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 5

Geometric Transformations
Xformations on each pixel is totally independent from the xformations

on other pixels.
– result of a xformation is simply an updated bitmap.

• Shifting:
x’ = x + ∆x
y’ = y + ∆y

• Scaling: (enlarge if S>1, reduce if S<1)

x’ = xSx

y’ = ySy

• Rotation: (through an angle θ about the origin)

x’ = x cos θ+ y sin θ
y’ = -x sin θ+ y cos θ

• Clipping: x l,yl (xh,yh) is the lowest (highest) values of x, y in the area to
be displayed:
xl ≤x’≤xh

yl ≤y’≤yh

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 6

Two general methods for grouping:
• by square/rectangular regions
• by columns/rows

No effect on communication in Embar.Parallel Compn.
• Ex: With 640x480 image and 48 processors, how would you do the

data distribution?

Array

input data
(bitmap/pixmap)

Manipulation operations

Divide bitmap/pixmap into groups of pixels for each
processor (each processor gets an area of display)

2

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 7

Master
for (i=0; row=0; i<48; i++, row+=10)

send(row, P i); //send row number

for (i=0; i<480; i++)
for (j=0; j<640; j++)

temp_map[i][j] = 0;

for (i=0; i < (640*480); i++) {

recv(oldrow, oldcol, newrow, newcol, PANY); //accept new coords
if !((newrow<0)||(newrow>=480) || (newrow<0)||(newrow>=640))

temp_map[newrow][newcol]=map[oldrow][oldcol];
}
for (i=0; i<480; i++)

for (j=0; j<640; j++)
map[i][j] = temp_map[i][j];

Slave
recv(row, Pmaster); //receive row number
for (oldrow=row; oldrow<(row+10); oldrow++)

for (oldcol=0; oldcol<640; oldcol++) { // transform coords
newrow = oldrow + delta_x;
newcol = oldcol + delta_y;

send(oldrow, oldcol, newrow, newcol, Pmaster); //coords to master
}

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 8

Analysis.
Each pixel requires 1 computational step, there are n x n pixels:

• ts = n2 ⇒ O(n2)
• tp = tcomp + tcomm

where tcomm = tstartup + m tdata ⇒ O(m) with p processors,

tcomm = p(tstartup+2 tdata) + 4 n2(tstartup+tdata) ⇒ O(p+n2)

tcomp = 2(n2 /p) = O (n2 /p)

Total tp is O (n2)

But tstartup constant hidden in tcomm far exceeds those constants in
the computation in most practical situations.
What can we do?

combine messages, send results back in groups.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 9

Mandelbrot Set
Again a bit mapped image is manipulated, but this time

it involves significant computation.
Mandelbrot Set is a set of points in complex plane that are

quasi-stable when computed by iterating a function, such as

zk+1 = zk
2 + c , initial value for z is 0.

Iterations continue until magnitude of z > 2 or iteration number > a
threshold value.

zlength = √(a2 + b2)
In each iteration,

zreal = zreal
2 - zimag

2 + creal

zimag = 2 zreal zimag + cimag

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 10

Sequential Code:
structure complex {

float real;
float imag;

};
int cal_pixel(complex c)
{

int count, max;
complex z;
float temp, lengthsq;
max = 256;
z.real = 0;
z.imag = 0;
count = 0;
do {

temp = z.real * z.real - z.imag * z.imag + c.real;
z.imag = 2 * z.real * z. imag + c.imag;
z.real = temp;
lengthsq = z.real * z.real + z. imag * z.imag;
count++;

} while ((lengthsq < 4.0) && (count < max));
return count;

}

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 11

Obtain the actual complex plane coordinates by scaling:
c.real = real_min + x * (real_max - real_min)/disp_height;
c.imag = imag_min + y * (imag_max - imag_min)/disp_width;

For computational efficiency:
scale_real = (real_max - real_min)/disp_height;
scale_imag = (imag_max - imag_min)/disp_width;

Including scaling, the could could be of the form:
for (x=0; x<disp_width; x++) /* screen coordinates x & y */

c.real = real_min + ((float) x * scale_real);
c.imag = imag_min + ((float) y * scale_ imag);
color = cal_pixel(c);
display(x, y, color);

}

See http://www.cs.uncc.edu/par_prog
uses Xlib calls for the graphics.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 12

Parallellizing the Mandelbrot Set
Computation

Each pixel can be computed w/o any info about the
surrounding pixels.

We will try
• static task assignment
• dynamic task assignment

3

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 13

Static Task Assignment
• Each processor is assigned a fixed area of display.
• Grouping by square/rectangular regions or by

columns/rows.

Suppose that a display area of 640x480 and we have 48 processes.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 14

Static Task Assignment
Master
for (i=0; row=0; i<48; i++, row+=10)

send(row, P i); // send row number

for (i=0; i < (640*480); i++) {

recv(&c, &color, P ANY); // accept coords/colors
display(c, color);

}

Slave
recv(row, Pmaster); // receive row number
for (x=0; x<disp_width; x++)

for (y=row; y<(row+10); y++) { // screen coordinates x and y
c.real = real_min + ((float) x * scale_real);
c.imag = imag_min + ((float) y * scale_ imag);
send(&c, &color, Pmaster); // send coords & color to master

}

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 15

Dynamic Task Assignment -
Work Pool/Processor Farms

Mandelbrot Set requires significant iterative computation for each pixel:
• # iterations will generally be different for each pixel.

• computers may be of different type, or operate at different speeds.

⇒ Hence some processors may complete their assignment before others

Ideally we want all processors to finish together, achieving a system
efficiency of 100%, which can be addressed using load balancing.

Different sizes of regions could be assigned to different processors, but
this would not be satisfactory:

• we may not a priori each processor’s computational speed,
• we would have to know the exact time it takes for each processor to

compute each pixel.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 16

Workpool Approach to Dynamic Task
Assignment

• Processors are supplied with work when they become idle
– Sometimes called processor farm, when all processors are the

same type.

• Workpool holds a collection, pool, of tasks to be performed.
• in our case, the set of pixels forms the tasks
• when a processor has computed the color for the pixel, it

returns the color and requests a further pair of pixel coordinates
from the work pool

• when all pixel coordinates have been taken, we than have to
wait for all the processors to complete and report in for more
pixel coordinates.

Sending pairs of coordinates of individual pixels will result in
excessive communication ⇒ group them.

In workpool solution, some pixels will be generated before others.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 17

Master
count = 0;
row = 0;
for (k=0; k<procno; k++) {

send(&row, Pk, data_tag); //send row #
count++;
row++;

}

do {
recv(&slave,&r,color,P ANY,result_tag);
count--;
if (row < disp_height) {

send(&row, Pslave, data_tag);
row++;
count++;

} else
send(&row, Pslave, terminator_tag);
rows_recv++;
display(r, color);

} while (count > 0);

Slave
recv(y, Pmaster, ANYTAG, source_tag); //receive

// 1st row to compute
while (source_tag == data_tag) {

c.imag = imag_min + ((float) y *
scale_imag);

for (x=0; x<disp_width; x++) {
c.real = real_min + ((float)x*scale_real);
color[x] = cal_pixel(c);

} // send row colors to master
send(&i,&color, Pmaster,result_tag);
recv(y, Pmaster, source_tag);

}

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 18

Analysis.
We don’t know how many iterations are needed for each pixel. We only
know that # iterations for each pixel is some function of n but cannot
exceed max.

ts ≤max x n ⇒ O(n)

Phase 1: Communication.
tcomm1 = s(tstartup+ tdata) where s is the number of slaves.

Phase 2: Computation.
tcomp ≤(max x n) / s

Phase 3: Communication.
tcomm2 = (n/s)(tstartup+ tdata)

Overall tp = (max x n) / s + (n/s + x)(tstartup+ tdata)

4

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 19

Monte Carlo Methods
The basis of Monte Carlo methods is the use of random selections
in calculations that lead to the solution to numerical and physical
problems.
Example: Calculating Π number.
• The fraction of points within the circle will be Π/4, given a

sufficient number of randomly selected samples.
Area of circle Π (1)2 Π
Area of square 2 x 2 4

The area of any shape within a known bound area could be
computed by the preceeding method, or any area under a curve;
i.e., an integral.

– MC methods are would not be used in practice for 1-D integrals, for
which quadrature methods are better. They would be very useful for
integrals with a large number of variables.

= =

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 20

Sequential Code: for computing f(x) = x2 - 3x
sum = 0;
for (i=0; i<N; i++) { // N random samples

xr = rand_v(x1, x2); // generate next random value
sum += xr * xr - 3 * xr; // compute f(xr)

}
area = sum / N;

randv(x1, x2) returns a pseudorandom number between x1 and x2.

Dr. Kivanç Dinçer Parallel Processing - Chapter 3 21

Parallel Random Number Generation
• The most popular way of creating a pseudorandom number

sequence is by evaluating x i+1 from a carefully chosen function of
x i.
– The key is to find a function that will create a very large sequence with

the correct statistical properties:

x i+1 = (a x i + c) mod m Linear Congruential Generator

where a, c, and m are constants chosen to create a sequence that has
similar properties to truly random sequences.

Even though it appears that the pseudorandom number computation
is sequential in nature, as each number is calculated from the
previous number, a parallel formulation is possible.

x i+1 = (a xi + c) mod m

x i+k = (A x i + C) mod m
where A = ak, mod m, C = c(ak-1 + an-2 +. . . + a1 + a0) mod m, and k is a

selected “jump” constant.

