
1

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 1

2.2 Using Workstation Clusters
SOFTWARE TOOLS
∃several workstation packages for workstation cluster parallel programming:

(multiprocessor versions are also available)
• PVM (Parallel Virtual Machine) - Oak Ridge National Lab

– homogeneous & heterogeneous workstations
– C and FORTRAN support
– public-domain (http://www.netlib.org/pvm3/)

• MPI (Message Passing Interface) - MPI Forum
– provides a message-passing standard
– Several public-domain implementations (http://www.osc.edu/mpi/)

• LAM (Ohio Supercomputing Center)
• MPICH (Argonne National Lab and Mississippi State University)
• CHIMP (Edinburgh Parallel Computing Center)
• UNIFY (Mississippi State University)

• Vendor-Specific proprietary message-passing packages:
– MPL (IBM) for SP-2, etc.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 2

PVM (Parallel Virtual Machine)
Programmer is responsible for
• decomposing the problem into separate (C or FORTRAN) programs.

– compile each program for the specific ws type.
• homogeneous or heterogeneous workstations
• common file system support or not

• defining the set of computers used on a problem
– use a hostfile containing the names of computers
– start one machine and add others from the PVM console

What if (# programs) > (# processes) & why do we prefer this?

Message routing in PVM:
• routing is done by using daemon processes installed by PVM on the

computers that form the virtual machine. Each PVM daemon keeps
sufficient information that helps to select the routing path.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 3

Process Creation and Execution
• Processes can be started dynamically.
• PVM processes usually organized in a master-slave

arrangement whereby a single master spawns other processes.
pvm_spawn()

• A process must enroll in PVM using pvm_mytid()
and can leave the system with pvm_exit().

Name of the process, which computer to use, etc.

returns an array of task IDs of the processes started.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 4

Basic Message-Passing Routines
• Programs communicate by message-passing using:

– pvm_send() and pvm_recv().
• All PVM send routines are non-blocking (or asynchronous) pvm_send()
• PVM receive routines can be either blocking (synchronous) or

nonblocking: pvm_recv() and pvm_nrecv()
– (Sending/receiving data are done through message buffers)

• A message tag is attached to each message, to differentiate between
types of messages being sent.
– Both message tag and source wildcards (i.e.,-1) are available.

• If an array of items is going to be sent:
– pvm_psend() and pvm_precv() are used.

• If various types of data are to be sent at once, data has to be packed
into a PVM buffer before being sent and unpacked when received:
– pvm_pkint(), pvm_pkstr(), pvm_pkfloat
– pvm_upkint(), pvm_upkstr(), pvm_upkfloat.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 5

Broadcast, Multicast, Scatter, Gather,
Reduce Routines

• pvm_bcast()
• pvm_scatter() used with a group of processes after

• pvm_gather() the group is formed.

• pvm_reduce()

pvm_joingroup() - process joins a named group.

pvm_mcast() - is not a group operation, it sends the contents of send
buffer to each process that is listed in a task ID array.

EXAMPLE: A PVM program that adds a group of 1000 numbers together.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 6

2.3 Evaluating Parallel Programs
PARALLEL EXECUTION TIME
For a parallel algorithm: tP = tcomp + tcomm

Calculation of tcomp:
computation steps of the most complex process.
Assumption: all processors are the same & operating at
the same speed. What if not? Load balancing required.

Calculation of tcomm:
depends upon size of message, underlying icnw, and transfer mode.
In a ws cluster, communication time depends upon many factors,
including network structure and network contention.

tcomm = tstartup + n tdata (bits/sec)

Message Latency is the time to send a message with no data (including pack
& unpack times.)

startup time
(message latency)

xmission time
to send one word

2

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 7

We have ignored the following factors:
• contention of the communication network
• not having source and destination directly linked

And assumed that:
• the overhead incurred by including information other

than data in the packet is a constant and can be part
of tstartup.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 8

Important Note on Interpretation of
Equations

We will make many simplifying assumptions in subsequent chapters:
• tcomp & tcomm is measured in units of an arithmetic operation (system

dependent)
• system is homogeneous (identical processors with equal speed)
• all arithmetic operations require the same time
• we count the number of computation steps

– on one processor when all processes perform the same operation
– in longest process in other situations.

tcomp = m
• tcomm for sending an integer or a real takes the same time.

Sending q messages of n data items takes
tcomm = q (tstartup + n tdata)

tp = tcomp + tcomm

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 9

In Cray T3D, PVM’s
• Startup time: 3 µsec
• Xmission time: 63 ns/double
• Arithmetic op. time: 11 ns

In IBM SP-2, MPI’s
• Startup time: 35 µsec
• Xmission time: 230 ns/double
• Arithmetic op. time: 4.2 ns

tstartup :
• is one/two orders of magnitude greater than tdata.

• will dominate the communication time in many cases, unless n
is quite large.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 10

Example
• Suppose that a computer can operate at 200

MFLOPs (200 million floating-point operations per
second) and the startup time is 1 µs.

• Then the computer could execute 200 f-p operations
in the time taken in the message startup.

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 11

Latency Hiding
The deleterious effect on the execution time as shown

in previous example is known as the Achilles’ heel of
message-passing computers.

• Latency Hiding: One way to ameliorate the situation is to
overlap the communication with subsequent computations
(keeping processor busy with useful work while waiting for the
communication to be completed)
– nonblocking send routines & (locally) blocking send routines.
– Using parallel slackness

• mapping multiple processes on a processor (virtual processors)
and using time-sharing facility.

• an m-process(or) algorithm implemented on an n-processor
machine is said to have a parallel slackness of m/n for that
machine, where n<m.

– Using threads

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 12

Time Complexity of a Parallel Algorithm
If we use time complexity analysis, which hides lower

terms, tcomm will have a time complexity of O(n).

Complexity of tp will be the sum of the computation
and communication.

Example Problem:
Suppose that we were to add n numbers on two computers, where

each computer adds n/2 numbers together.
• The numbers are initially held by the first computer.
• The second computer submits its result to the first computer for

adding the two partial sums together.

3

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 13

Computation/Communication Ratio
Communication is very costly.

If both tcomp and tcomm has the same complexity ⇒ ?

Ideally tcomp >> tcomm and ↑n will improve performance.

Example: N-body problem
tcomm is O(N) and tcomp is O(N2)
we can find an N where tcomm will dominate the tcomp

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 14

Cost-Optimal Algorithms
The cost to solve a problem is proportional to the execution time on a

single processor system (using the fastest known sequential
algorithm.)

Cost = tp x n = k x ts where k is a constant.

A parallel algorithm is cost-optimal if
(Parallel time complexity) x (# processors) = sequential time complexity

Example:
Suppose the best known sequential algorithm for a problem has time

complexity of O(n log n). Are the following cost optimal?

• A parallel algorithm for the same problem that uses n processes and
has a time complexity of O(log n).

• A parallel algorithm that uses n2 processors and has time complexity
of O(1).

Dr. Kivanc Dincer Chapter 2 - Parallel Processing 15

Comments on Asymptotic Analysis
Time complexity is
• often used for

– sequential program analysis
– theoretical analysis of parallel programs

• much less useful for evaluating the potential performance
of parallel programs:
– Big-Oh and other complexity notations use asymptotic methods

(the variable under consideration to tend to infinity) however
• often the # processors are constrained and
• data sizes are finite and manageable.

– Analysis often ignores lower terms that could be important (e.g.,
tstartup dominates overall communication time when n is large)

– Analysis also ignores other factors that appear in real computers,
such as communication contention.

