
1

K. Dincer Programming
Languages - Lex (2)

1

Lex Regular Expressions
Expression Meaning
• x The character "x"

• "x" An "x", even if x is an operator.

• \x An "x", even if x is an operator.

• [xy] The character x or y.

• [x-z] The character x, y, or z.

• [^x] Any character but x.

• . Any character but newline.

• ^x An x at the beginning of a line.

• <y>x An x when Lex is in start condition y.

• x$ An x at the end of a line.

• x? An optional x.

• x* 0,1,2,... instances of x.

• x+ 1,2,3,... instances of x.

• x|y An x or a y.

• (x) An x.

• x/y An x, but only if followed by a y.

• x{m,n} m through n occurrences of x

• {xx} The xlation of xx from the definitions section
K. Dincer Programming

Languages - Lex (2)
2

Lex Example: Building
Symbol Tables

/* definitions section */

%{
enum {

LOOKUP = 0,
NODE,
INPUT,
FINAL,
START

};

short input_state;

short add_word (short type, char *word);
short lookup_word (char *word);
%}

%%

/* rules section */

\n { state = LOOKUP; }

^defnode { state = NODE; }
^definput { state = INPUT; }
^deffinal { state = FINAL; }
^defstart { state = START; }

K. Dincer Programming
Languages - Lex (2)

3

[a-zA-Z]+ {
if (state != LOOKUP)

add_word(state,yytext);
else
{

switch(lookup_word(yytext))
{

/* read in name and do something */

case NODE: ...
case INPUT : ...
.
.
.
/* what if it's mispelt or

undeclared? */

default : printf ("%s: Unknown
token!", yytext");

}
}

}

. ; /* anything else - just ignore */

%%

/* "main()" and "add_word" and "lookup_word",
that would maintain lists of words and
and search through them. As long as they do
their job it doesn't matter what they look
like. You can do that stuff right? */

K. Dincer Programming
Languages - Lex (2)

4

/* y.tab.h - file of token defns */

#define NODE 101

#define INPUT 102

#define FINAL 103

#define START 104

%{
#include "y.tab.h" /* we need to know what

the tokens are */
#define LOOKUP 0 /* this is OK, Yacc

reserves 0, not Lex*/
short input_state;
short add_word (short type, char *word);
short lookup_word (char *word);
%}

%%
\n { state = LOOKUP; }

^defnode { state = NODE; }
^definput { state = INPUT; }
^deffinal { state = FINAL; }
^defstart { state = START; }

K. Dincer Programming
Languages - Lex (2)

5

[a-zA-Z]+ {
if (state != LOOKUP)

add_word(state,yytext);
else
{

switch(lookup_word(yytext))
{

/* read in name and if OK pass to
Yacc */

case NODE:
return NODE;
break;

case INPUT :
return INPUT;
break;

.

.
/* what if it's mispelt or undeclared? */

default : printf ("%s: Unknown
token!", yytext");

}
}

}

\.\n { input_state = LOOKUP; return 0; } /*
new rule!*/

. ; /* anything else - just ignore */

%%
/* same as before here ... */

