
1

K. Dincer Programming Languages - Lex 1

Lex - A Lexical Analyzer Generator
Lex is a program generator designed for lexical

processing of character input streams.
• It accepts a high-level, problem oriented specification

for character string matching,
• and produces a program in a general purpose

language which recognizes regular expressions.

• The regular expressions are specified by the
user in the source specifications given to Lex.
– Lex generates a deterministic finite automaton

from the regular expressions in the source.
– This automaton is, rather than compiled, in order

to save space.
K. Dincer Programming Languages - Lex 2

• The Lex written code
– recognizes these expressions in an input stream
– and partitions the input stream into strings

matching the expressions.
At the boundaries between strings program sections

provided by the user are executed.

• Lex turns the user's expressions and actions
(called source) into the host general-purpose
language; the generated program is named
yylex.
– The yylex program will recognize expressions in

a stream (called input) and perform the specified
actions for each expression as it is detected.

K. Dincer Programming Languages - Lex 3

LexSource yylex

Input

Output

Lexical Rules

Yacc

Grammar Rules

yyparse

Parsed Input

Lex can be used alone for simple transformations,
or can be used with a parser generator to perform the lexical
analysis phase.

partitions the
input stream

assigns structure
to the resulting
pieces

K. Dincer Programming Languages - Lex 4

Examples

• A program to delete from the input all blanks
or tabs at the ends of lines:

%%
[\t]+$;

• To change any remaining string of blanks or
tabs to a single blank, add another rule:

%%
[\t]+$;
[\t]+ printf(" ");

K. Dincer Programming Languages - Lex 5

Lex Source
The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines
are often omitted. The second %% is optional, but the
first is required to mark the beginning of the rules.

The absolute minimum Lex program is thus (no definitions, no rules)
which translates into a program

which copies the input to the output unchanged.
K. Dincer Programming Languages - Lex 6

The Rules

• represent the user's control decisions;
• are a table, in which

– the left column contains regular expressions (see
section 3)

– the right column contains actions, program
fragments to be executed when the expressions are
recognized.

Ex: integer printf("found keyword INT");

• A single C expression can just be given on the right
side of the line;

• A compound or multi-line expression should be
enclosed in braces.

2

K. Dincer Programming Languages - Lex 7

Example

Suppose it is desired to change a number of
words from British to American spelling.

We can use the following Lex rules:
colour printf ("color");
mechanise printf ("mechanize");
petrol printf("gas");

K. Dincer Programming Languages - Lex 8

Lex Regular Expressions

A regular expression specifies a set of strings to
be matched. It contains:

• text characters (which match the
corresponding characters in the strings being
compared)

• operator characters (which specify
repetitions, choices, and other features).

• The letters of the alphabet and the digits are always
text characters:

• Ex: the regular expression integer matches the
string integer wherever it appears

• Ex: The expression a57D looks for the string a57D.

K. Dincer Programming Languages - Lex 9

Operators
" \ [] ^ - ? . * + | () $ / { } % < >

• If they are to be used as text characters, an
escape should be used.

• The quotation mark operator (") indicates that
whatever is contained between a pair of
quotes is to be taken as text characters.

– Ex: xyz"++” "xyz++” xyz\+\+

K. Dincer Programming Languages - Lex 10

Getting a Blank into an Expression
Any blank character not contained within []

must be quoted.

Escape Characters
Several normal C escapes with \ are

recognized:
• \n is newline, \t is tab, and \b is backspace.
• To enter \ itself, use \\.

K. Dincer Programming Languages - Lex 11

Character Classes
can be specified using the operator pair [].
• Ex: [abc] matches a single character, which may be a,
b, or c.

Within square brackets, most operator meanings
are ignored, except \ - and ^.

1. The - Character indicates ranges.
• Ex: [a-z0-9<>_]

If it is desired to include the character - in a
character class, it should be first or last:

• Ex: [-+0-9] matches all the digits and the two signs.
K. Dincer Programming Languages - Lex 12

2. The ^ Character

must appear as the first character after the left
bracket;

• it indicates that the resulting string is to be
complemented with respect to the computer
character set.

• Ex: [^abc] matches all characters except a, b, or
c, including all special or control characters;

• Ex: [^a-zA-Z] is any character which is not a
letter.

3. The \ Character
provides the usual escapes within character

class brackets.

3

K. Dincer Programming Languages - Lex 13

Arbitrary Character

To match almost any character, the operator
character . is used.

• . is the class of all characters except newline.

Optional expressions.
The operator ? indicates an optional element

of an expression.
• Ex: ab?c matches either ac or abc.

K. Dincer Programming Languages - Lex 14

Repeated Expressions

Repetitions of classes are indicated by the
operators * and +.

• Ex: a* is any number of consecutive a characters,
including zero.

• Ex: a+ is one or more instances of a.

• Ex: [a-z]+ is all strings of lower case letters.

• Ex: [A-Za-z][A-Za-z0-9]* indicates all
alphanumeric strings with a leading alphabetic
character.
– This is a typical expression for recognizing

identifiers in computer languages.

K. Dincer Programming Languages - Lex 15

Alternation and Grouping
The operator | indicates alternation
• Ex: (ab|cd) matches either ab or cd.
• Note that parentheses are used for grouping,

although they are not necessary on the outside level;
ab|cd would have sufficed.

Parentheses can be used for more complex
expressions:

• Ex: ab|cd+)?(ef)* matches such strings as
abefef , efefef, cdef, or cddd; but not abc,
abcd, or abcdef .

K. Dincer Programming Languages - Lex 16

Context Sensitivity
Lex will recognize a small amount of surrounding

context via operators ^ and $:

• If the first character of an expr. is ^, the expr.
will only be matched at the beginning of a line.
– This can never conflict with the other meaning of ^,

complementation of character classes, since that only
applies within the [] operators.

• If the very last character is $, the expression will
only be matched at the end of a line.

$ operator is a special case of the / operator character,
which indicates trailing context.

• Ex: ab/cd matches the string ab, but only if followed by
cd. Thus ab$ is the same as ab/\n

K. Dincer Programming Languages - Lex 17

Repetitions and Definitions

The operators {} specify
• either repetitions (if they enclose numbers)
• or definition expansion (if they enclose a

name). The definitions are given in the first
part of the Lex input, before the rules.

Ex: {digit} looks for a predefined string named digit
and inserts it at that point in the expression.

Ex: In contrast, a{1,5} looks for 1 to 5 occurrences
of a.

Finally, initial % is special, being the separator
for Lex source segments.

K. Dincer Programming Languages - Lex 18

A Lex Example
%{
/* a sample bit of code */
%}
ws [\t]
nonws [^ \t\n]
%%
int cc = 0, wc = 0, lc = 0;
{nonws}+ cc += yyleng; ++wc;
{ws}+ cc += yyleng;
\n ++ lc; ++cc;
<<EOF>> {

printf("%8d %8d %8d\n", lc, wc, cc);
yyterminate();

}

Definitions

Directly copied

Rules

Actions

