
1

K.Dincer Programming
Languages - Chapter 9

1

Chapter 9 - Implementing
Subprograms

Subprogram linkage: The subprogram call
and return operations of a language are
together called its subprogram linkage.

Implementing FORTRAN 77 Subprograms:
Call Semantics:
1. Save the execution status of the caller.
2. Carry out the parameter-passing process.
3. Pass the return address.
4. Transfer control to the callee.
Return Semantics:
1. If pass-by-value-result parameters are

used, move the current values of those
parameters to their corresponding actual
parameters.

2. If it is a function, move the functional
value to a place the caller can get it.

3. Restore the execution status of the caller.
4. Transfer control back to the caller.
Required Storage:
- Status information of the caller,

parameters, return address, and
functional value (if it is a function).

K.Dincer Programming
Languages - Chapter 9

2

Activation Record (AR): The format, or layout,
of the noncode part of an executing
subprogram.

An activation record instance is a concrete
example of an activation record (the collection
of data for a particular subprogram
activation)

FORTRAN 77 subprograms can have no more
than one activation record instance at any
given time since there is no recursion in F77.

The code of all of the program units of a
FORTRAN 77 program may reside together in
memory, with the data for all units stored
together elsewhere.

The alternative is to store all local subprogram
data with the subprogram code.

Local variables

Parameters

Return address

FORTRAN 77
Activation
Record:

K.Dincer Programming
Languages - Chapter 9

3

Linker
The executable program shown in Figure 9.2

(3rd Ed.) is put together not by the
compiler but by the linker (also called as
loader, linker/loader, or link editor),
which is part of the operating system.
Why not done by the compiler?

1. When the linker is called for the main
program, its first task is to find the files
that contain the translated subprograms
referenced in that program, along with
their data areas, and load them into
memory.

2. It must determine the size of all COMMON
blocks and allocate storage for them.

3. It must set the target addresses of all calls
to those subprograms in the main
program to the entry addresses of those
subprograms.

4. The same must be done for all calls to
subprograms in the loaded subprograms
and all calls to FORTRAN library
subprograms.

K.Dincer Programming
Languages - Chapter 9

4

Implementing Subprograms in
ALGOL-like Languages

This is more complicated than implementing
FORTRAN 77 subprograms because:

• Parameters are often passed by two
methods: by-value and by-reference.

• Local variables are often dynamically
allocated.

• Recursion must be supported.
• Static scoping that gives access to nonlocal

variables must be supported.

A typical activation record for an ALGOL-like
language:

Local variables

Parameters

Dynamic link

Static link stack top

Return address

The activation record format is static (known
at compile time,) but its size may be
dynamic.

Why local variables
are placed in last?

K.Dincer Programming
Languages - Chapter 9

5

• The static link points to the bottom of the
activation record instance of an activation of
the static parent (used for access to
nonlocal vars)

• The dynamic link points to the top of an
instance of the activation record of the
caller. (used for destructing the current AR)

An activation record instance is dynamically
created when a subprogram is called.

• The collection of dynamic links in the stack
at a given time is called the dynamic chain,
or call chain.

• Local variables can be accessed by their
offset from the beginning of the activation
record. This offset is called the local offset.
– The local offset of a local variable can be

determined by the compiler
– Assuming all stack positions are the

same size, the first local variable
declared has an offset of three plus the
number of parameters.

The activation record used in the next
example supports recursion.

K.Dincer Programming
Languages - Chapter 9

6

procedure sub(var total:real; part:integer);
var list : array [1..5] of integer;

sum : real;
begin

. . .
end;

Format of the AR is fixed
at compile time, although its
size may depend on the call
in some languages other
than Pascal.
Every procedure activation,
creates a new instance of an
AR in the stack.

A subprogram is active from
the time it is called until the time
its execution is completed.

2

K.Dincer Programming
Languages - Chapter 9

7

program MAIN_1;
var P : real;
procedure A(X : integer);
var Y : boolean;
procedure C(Q : boolean);
begin { C }
... <------------------------3
end; { C }

begin { A }
... <--------------------------2
C(Y);

...
end; { A }
procedure B(R : real);
var S, T : integer;
begin { B }
... <------------------------1
A(S);

...
end; { B }

begin { MAIN_1 }
B(P);

end. { MAIN_1 }
Note that: MAIN_1 calls B

B calls A and A calls C
In MAIN_1, the local offset of Y in A is 4

K.Dincer Programming
Languages - Chapter 9

8

MAIN

A

C

B

