
1

Chapter 6 Programming
Languages

1

Chapter 6 - Expressions and
Assignment Statements

• Their evaluation was one of the motivations for
the development of the first PLs

• Arithmetic expressions consist of operators,
operands, parentheses, and function calls

Design issues for arithmetic expressions:
1. What are the operator precedence rules?
2. What are the operator associativity rules?
3. What is the order of operand evaluation?
4. Are there restrictions on operand evaluation

side effects?
5. Does the language allow user-defined operator

overloading?
6. What mode mixing is allowed in expressions?

Chapter 6 Programming
Languages

2

Operator Precedence

• A unary operator has one operand
• A binary operator has two operands
• A ternary operator has three operands

The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated
– “adjacent” means they are separated by at

most one operand

Typical precedence levels:
1. parentheses
2. unary operators
3. ** (if the language supports it)
4. *, /
5. +, -

Chapter 6 Programming
Languages

3

Operator Associativity
The operator associativity rules for expression

evaluation define the order in which adjacent
operators with the same precedence level are

evaluated

Typical associativity rules:
• Left to right, except **, which is right to left
• Sometimes unary operators associate right to

left (e.g., FORTRAN)

- APL is different; all operators have equal
precedence and all operators associate right to
left

Use of Parantheses
Precedence and associativity rules can be
overridden with parentheses

Chapter 6 Programming
Languages

4

Operand Evaluation Order
The process:
1. Variables: just fetch the value

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all
operands and operators first

4. Function references: The case of most interest!
- Order of evaluation is crucial

Chapter 6 Programming
Languages

5

Functional Side Effects
When a function changes a two-way parameter or

a nonlocal variable.

The problem with functional side effects:
• When a function referenced in an expression

alters another operand of the expression
e.g., for a parameter change:

a = 10;
b = a + fun(&a);

/* Assume that fun changes its parameter */

Two Possible Solutions to the Problem:
1. Write the language definition to disallow

functional side effects.
– No two-way parameters in functions
– No nonlocal references in functions
– Advantage: it works!
– Disadvantage: Programmers want the

flexibility of two-way parameters (what
about C?) and nonlocal references

2. Write the language definition to demand that
operand evaluation order be fixed
– Disadvantage: limits some compiler

optimizations
Chapter 6 Programming

Languages
6

Conditional Expressions
C, C++, and Java

• ?: ternary operator
average = (count==0)? 0 : sum/count;

Operator Overloading
• Some is common (e.g., + for int and float)
• Some is potential trouble (e.g., * in C and C++)

• Loss of compiler error detection (omission of
an operand should be a detectable error)

• Can be avoided by introduction of new symbols
(e.g., Pascal’s div)

• C++ and Ada allow user-defined overloaded
operators
Potential problems:
– Users can define nonsense operations
– Readability may suffer

2

Chapter 6 Programming
Languages

7

Implicit Type Conversions
• A narrowing conversion is one that converts

an object to a type that cannot include all of the
values of the original type

• A widening conversion is one in which an
object is converted to a type that can include at
least approximations to all of the values of the
original type

• A mixed-mode expression is one that has
operands of different types.

• A coercion is an implicit type conversion.

The disadvantage of coercions:
• They decrease in the type error detection

ability of the compiler

• In most languages, all numeric types are
coerced in expressions, using widening
conversions

• In Modula-2 and Ada, there are virtually no
coercions in expressions

Chapter 6 Programming
Languages

8

Explicit Type Conversions
Often called casts
• e.g. Ada:

FLOAT(INDEX) -- INDEX is an INTEGER

• e.g. C:
(int)speed /*speed is float type*/

Errors in Expressions
Caused by:
• Inherent limitations of arithmetic

e.g. division by zero

• Limitations of computer arithmetic
e.g. overflow

Such errors are often ignored by the run-time system

Chapter 6 Programming
Languages

9

Relational Expressions
• Use relational operators and operands of

various types
• Evaluate to some Boolean representation
• Operator symbols used vary somewhat among

languages
(!=, /=, .NE., <>, #)

Relational operators always have lower
precedence than the arithmetic operators:
e.g., a+1 > 2*b ≡ (a+1) > (2*b)

Chapter 6 Programming
Languages

10

Boolean Expressions
• Operands are Boolean and the result is Boolean.
• Operators:

F77 F90 C Ada
.AND. and && and
.OR. or || or
.NOT. not ! not

xor
Common Precedence order: NOT, AND, OR.

Ada: logical ops have same precedence and no assoc!

C: has no boolean type--it uses int type with 0 for
false and nonzero for true.

no Boolean ⇒ low readablity, lost error detection

One odd characteristic of C’s expressions:
a < b < c is a legal expression,

but the result is not what you might expect!

Chapter 6 Programming
Languages

11

Precedence of All Operators
Arith.exprs can be operands of rel. exprs and
rel.exprs can be operands of Boolean exprs.

Common Precedence order:
Arithmetic, relative, logical

Pascal: (boolean exprs. has higher precedence
than rel exprs.)
not, unary -
*, /, div, mod, and
+, -, or
relops

Ada:

**
*, /, mod, rem
unary -, not
+, -, &
relops
and, or, xor

C, C++, and Java have over 50 operators and
17 different levels of precedence.

Chapter 6 Programming
Languages

12

Short Circuit Evaluation
Result is determined without evaluating all of the

operands and/or operators.
e.g. (13 * A) * (B / 13 - 1) or (A >= 0) and (B < 10)

Pascal: does not use short-circuit evaluation
⇒ Problem: table look-up using while statement.
index := 1;
while (index <= length) and

(LIST[index] <> value) do
index := index + 1

C, C++, and Java: use short-circuit evaluation for
the usual Boolean operators (&& and ||), but
also provide bitwise Boolean operators that are
not short circuit (& and |)

Ada: programmer can specify either (short-circuit
is specified with and thenand or else)
**This is the best design choice!

FORTRAN 77: short circuit, but any side-affected
place must be set to undefined.

• Short-circuit evaluation exposes the potential
problem of side effects in expressions
e.g. (a > b) || (b++ / 3)

3

Chapter 6 Programming
Languages

13

Assignment Statements
• provides a mechanism by which the user can

dynamically change the bindings of values to
variables.

The operator symbol:
= FORTRAN, BASIC, PL/I, C, C++, Java

⇒ can be bad if = is overloaded for the relational
operator for equality
e.g. (PL/I) A = B = C;

:= ALGOLs, Pascal, Modula-2, Ada

The assignment operator in C and C++ is
treated much like a binary operator, and as
much it can appear embedded in expressions.

We will see the other design choices...

Chapter 6 Programming
Languages

14

How Assignments are Used?
More complicated assignments:
1. Multiple targets

A, B = 10 (PL/I) (can be simulated in C)

2. Conditional targets (C, C++, and Java)
(first==true) ? total : subtotal=0

3. Compound assignment operators (C, C++,
and Java)
sum += next;

4. Unary assignment operators (C, C++, and
Java) (prefix or postfix)
a++;

C/C++/Java treat = as an arithmetic binary operator:
e.g. a = b * (c = d * 2 + 1) + 1

This is inherited from ALGOL 68

When two unary operators apply to the same
operand, the association is right to left:
e.g. - count ++

Chapter 6 Programming
Languages

15

Assignment as an Expression
In C, C++, and Java, the assignment statement

produces a result
– So, they can be used as operands in

expressions
e.g. while ((ch=getchar()!=EOF){...}

• Disadvantage
– Another kind of expression side effect
– Difficult to read and understand

e.g., a = b + (c = d / b++) - 1

C’s assignment operator allows the effect of
multiple-target assignments:
e.g., sum = count = 0;

Low safety of = operator in C/C++:
Loss of error detectin in the C design of the

assignment operation that frequently leades to
program errors:
e.g., if (x = y) ...

Chapter 6 Programming
Languages

16

Mixed-Mode Assignment

• In FORTRAN, C, and C++, any numeric value
can be assigned to any numeric scalar ariable;
whatever conversion is necessary is done

• In Pascal, integers can be assigned to reals,
but not vice versa (the programmer must
specify whether the conversion from real to
integer is truncated or rounded)

• In Java, only widening assignment coercions
are done

• In Ada, there is no assignment coercion.

