
1

K.Dincer Programming Languages -
Chapter 4

1

Chapter 4 - Names, Bindings, Type
Checking, and Scopes

Names (Identifiers)
• is a string of characters used to identify some entity in a

program.
• can be associated with variables, labels, subprograms,

formal parameters, etc.
• commonly acceptable name form is a string with a

reasonably long length limit, with some connector
character.

Primary design issues for names:
• Maximum length?
• Are connector characters allowed?
• Are names case sensitive?
• Are special words reserved words or keywords?

K.Dincer Programming Languages -
Chapter 4

2

Name Forms
• Length

– Earliest programming languages: single-character
– FORTRAN I: maximum 6
– COBOL: maximum 30
– FORTRAN 90 and ANSI C: maximum 31
– Ada: no limit, and all are significant
– C++: no limit, but implementors often impose one

• Why? For easy maintenance of symbol table.

• Connectors
– Pascal, Modula-2, and FORTRAN 77 don't allow
– Others do

K.Dincer Programming Languages -
Chapter 4

3

• Case sensitivity
The difference between the cases of letters in names are
recognized by the language.
– disadv: readability (names that look alike are different)
– diadv: sometimes also writability (in Modula-2

predefined names are mixed case (e.g. WriteCard))

• C, C++, Java, and Modula-2 names are case sensitive

• The names in other languages are not
– Prior to FORTRAN 90 only uppercase letters could be used
– Many FORTRAN 77 implementations implicitly translates

names to all uppercase letters

K.Dincer Programming Languages -
Chapter 4

4

Special Words
• A keyword is a word that is special only in

certain contexts
– Disadvantage: poor readability

• A reserved word is a special word that cannot be
used as a user-defined name

K.Dincer Programming Languages -
Chapter 4

5

Variables
A variable is an abstraction of a memory cell
• Variables can be characterized as a sextuple of attributes:

– name, address, value, type, lifetime, and scope

NAME - not all variables have them.

ADDRESS - the memory address with which it is associated
• A variable may have different addresses at different times

during execution.
• A variable may have different addresses at different

places in a program.

K.Dincer Programming Languages -
Chapter 4

6

Aliases. If two variable names can be used to access
the same memory location, they are called aliases
– Aliases are harmful to readability.

How aliases can be created:
• Pointers, reference variables, Pascal variant records,

C and C++ unions, and FORTRAN EQUIVALENCE
(and through parameters - discussed in Chapter 8)

• Some of the original justifications for aliases are no
longer valid; e.g. memory reuse in FORTRAN
– replace them with dynamic allocation

2

K.Dincer Programming Languages -
Chapter 4

7

TYPE - determines the range of values of variables and
the set of operations that are defined for values of
that type; in the case of floating point, type also
determines the precision

VALUE - the contents of the location with which the
variable is associated

• Abstract memory cell - the physical cell or collection
of cells associated with a variable.

The l-value of a variable is its address.
The r-value of a variable is its value.

K.Dincer Programming Languages -
Chapter 4

8

4.4 The Concept of Binding
Binding is an association between an attribute and an entity or

between an operation and a symbol.
Binding time is the time at which a binding takes place.

Possible binding times:
1. Language design time – e.g., bind operator symbols to

operations (* ↔ multiplication operation)
2. Language implementation time – e.g., bind fl. pt. type to a

representation (float ↔ range of possible values)
3. Compile time – e.g., bind a variable to a data type in C or Java

(int count ↔ integer data type)
4. Link time – e.g., bind a call to a library subprogram to

subprogram code.
5. Load time – e.g., bind a FORTRAN 77 variable to a memory

cell (or a C static variable)
6. Runtime – e.g., bind a nonstatic local variable to a memory cell

K.Dincer Programming Languages -
Chapter 4

9

Example: Bindings and Binding Times

• Set of possible types for count?
• Type of count?
• Set of possible values of count?
• Value of count?
• Set of possible meanings for the operator symbol +?
• Meaning of the operator +?
• Internal representation of literal 5?

int count;
. . .

count += 5;

Understanding of binding times for the attributes of program entities
⇒ understanding the semantics of a PL, e.g., . . .

K.Dincer Programming Languages -
Chapter 4

10

4.4.1 Binding of Attributes to Variables
A binding is
• static if it occurs before run time and remains

unchanged throughout program execution.
• dynamic if it occurs during execution or can change

during execution of the program.

K.Dincer Programming Languages -
Chapter 4

11

Type Bindings
1. How is a type specified?
2. When does the binding take place?
If binding is static, type may be specified by either an

explicit or an implicit declaration:
• An explicit declaration is a program statement used

for declaring the types of variables
• An implicit declaration is a default mechanism for

specifying types of variables (the first appearance of
the variable in the program)
– Perl and several of early languages (FORTRAN,

PL/I, BASIC) provide implicit declarations
+ writability
– reliability (less trouble with Perl): typographical

and programming errors.
K.Dincer Programming Languages -

Chapter 4
12

Dynamic Type Binding
A variable is bound to a type when it is assigned a value in

an assignment statement. e.g. APL
LIST <- 2 4 6 8
LIST <- 17.3

+ flexibility (generic program units – capable of dealing with
any type of data)

– type error detection by the compiler is difficult (incorrect
types of rhs’s of assignments are not detected as errors)
– (This problem partially exists in PLs that use static binding such

as C, C++, or FORTRAN.) How?

– high cost (dynamic type checking and interpretation)
– variable-size descriptors associated with each variable

Interpretation is preferred because it is difficult to change
dynamically the types of variables in machine code.

3

K.Dincer Programming Languages -
Chapter 4

13

Type Inferencing in ML & Miranda
• Rather than by assignment statement, types are

determined from the context of the reference
• ML (1990) is a recent language that supports both

functional and imperative programming:
fun circumf (r) = 3.14159 * r * r;
fun times10 (x) = 10 * x;

fun square (x) = x * x; // invalid!
fun square (x) : int = x * x;
fun square (x : int) = x * x;
fun square (x) = (x : int) * x;
fun square (x) : x * (x : int);

K.Dincer Programming Languages -
Chapter 4

14

Storage Bindings and Lifetime
Allocation - getting a cell from some pool of available cells
Deallocation - putting a cell back into the pool

The lifetime of a variable is the time during which it is
bound to a particular memory cell

Categories of variables by lifetimes:
1. Static variables
2. Stack-dynamic variables
3. Explicit heap-dynamic variables
4. Implicit heap-dynamic variables

K.Dincer Programming Languages -
Chapter 4

15

1 Static Variables
bound to memory cells before execution begins and remains

bound to the same memory cell throughout execution.
e.g. all FORTRAN 77 variables, C static variables

+ valuable applications, e.g., globally accessible variables
+ efficiency (direct addressing, no runtime overhead)
+ history-sensitive subprogram support

(retain values between separate executions)
– lack of flexibility (if only static vars ⇒ no recursion)

K.Dincer Programming Languages -
Chapter 4

16

2 Stack-Dynamic Variables
Storage bindings are created for variables when their

declaration statements are elaborated
• Elaboration of such a declaration refers to the run-time storage

allocation and binding process indicated by the declaration.
• For scalar types, all attributes except address are statically

bound, e.g. local variables in Pascal & C subprograms
• They are allocated from the run-time stack.

All variables are static in FORTRAN
(FORTRAN 77 support stack-dynamic variables)

+ allows recursion by supplying dynamic local storage
+ conserves storage - subprograms share same memory
– Overhead of allocation and deallocation
– Subprograms cannot be history sensitive
– Inefficient references (indirect addressing)

K.Dincer Programming Languages -
Chapter 4

17

3 Explicit Heap-Dynamic Variables
Nameless objects that are allocated and deallocated from

heap by explicit directives, specified by the programmer,
which take effect during execution.

• Referenced only through pointers or references
• Created either by an operator (e.g., dynamic objects in

C++ via new and delete & all objects in Java via new)
or a system function (malloc and free in C)

• Bound to a type at compile time
• Bound to storage at run time

+ provides for dynamic storage management (e.g., linked
lists, trees that grow and shrink during execution)

– unreliable and inefficient (references/(de)allocations)
K.Dincer Programming Languages -

Chapter 4
18

4 Implicit Heap-Dynamic Variables
Allocation and deallocation caused by assignment

statements, e.g. all variables in APL.
• In a sense they are just names that adapt to whatever

use they are asked to serve.

+ flexibility (highly generic codes)
– inefficient, because all attributes are dynamic (including

array subscript types and ranges)
– Loss of error detection

4

K.Dincer Programming Languages -
Chapter 4

19

Type Checking
Generalize the concept of operands and operators

to include subprograms and assignments.
Type checking is the activity of ensuring that the operands of

an operator are of compatible types.
– A compatible type is one that is either legal for the operator,

or is allowed under language rules to be implicitly converted,
by compiler-generated code, to a legal type. This automatic
conversion is called a coercion.

– A type error is the application of an operator to an operand of
an inappropriate type.

• Static type checking: If all type bindings are static, nearly
all type checking can be static. (less costly & less flexible)

• Dynamic type checking: If type bindings are dynamic, type
checking must be dynamic.

What if a memory cell can store values of different types at different times?

K.Dincer Programming Languages -
Chapter 4

20

Strong Typing (1970s)
A simple/incomplete definition:
In a strongly typed language,

1. each name has a single type associated with it
2. and that type is known at compile time.

Although a variable’s type is known, the storage allocation to
which it is bound may store values of different types at
different times. So we need a new definition:

A programming language is strongly typed if type
errors are always detected.

• types of all operands can be determined either at
compile time or run time.

+ we can detect all misuses of variables that result in
type errors.

K.Dincer Programming Languages -
Chapter 4

21

Type Strengths of Various Languages
1. FORTRAN 77 is not strongly typed: parameters,

EQUIVALENCE.

2. Pascal is not: variant records without tag.
3. Modula-2 is not: variant records, WORD type
4. C and C++ are not: parameter type checking can be

avoided; unions are not type checked
5. Ada is, almost (UNCHECKED CONVERSION is loophole)

(Java is similar)
6. ML and Miranda are strongly typed (In ML, types are all

statically known either from declarations or from its type
inference rules)

Coercion rules strongly affect strong typing--they can
weaken it & error checking considerably (C++ vs. Ada)

K.Dincer Programming Languages -
Chapter 4

22

Dynamic Type Binding
APL and SNOBOL4 languages.
The main advantage of dynamic type binding:

programming: flexibility
Disadvantages:

1. efficiency
2. late error detection (costs more)

Type Compatibility Rules
... influence the data types and operations provided for

objects of those types.
• name type compatibility
• structure type compatibility
• declaration equivalence

K.Dincer Programming Languages -
Chapter 4

23

Type Compatibility
Type compatibility by name means the two variables

have compatible types if they are in either the same
declaration or in declarations that use the same type
name.
– Easy to implement but highly restrictive:

• Sub-ranges of integer types are not compatible
with integer types

• Formal parameters must be the same type as
their corresponding actual parameters (Pascal)

Declaration equivalence: when a type is defined with the
name of another type, the two are compatible, even
though they are not name type compatible.

K.Dincer Programming Languages -
Chapter 4

24

Type compatibility by structure means that two variables
have compatible types if their types have identical
structures
– More flexible, but harder to implement

Consider the problem of two structured types:
• Suppose they are circularly defined (i.e.,self-referential)
• Are two record types compatible if they are structurally

the same but use different field names?
• Are two array types compatible if they are the same

except that the subscripts are different? (e.g. [1..10] and
[-5..4])

• Are two enumeration types compatible if their
components are spelled differently?

• You cannot differentiate between types of the same
structure (e.g. different units of speed, both float)

5

K.Dincer Programming Languages -
Chapter 4

25

Language Examples
Pascal: usually structure eq., but in some cases name

is used (formal parameters)

C: structure eq., except for records (declarations are in
separate files → structural type equivalence,
otherwise declaration equivalence)

C++: name eq.

Ada: restricted form of name
- Derived types allow types with the same structure to
be different
- Anonymous types are all unique, even in

A, B : array (1..10) of INTEGER:
K.Dincer Programming Languages -

Chapter 4
26

Scope
The scope of a variable is the range of statements over

which it is visible.
• A variable is visible in a statement if it can be

referenced in that statement.

A variable is local in a program unit or block if it is
declared there.

The nonlocal variables of a program unit are those that
are visible but not declared there.

The scope rules of a language determine how
references to names are associated with variables.

K.Dincer Programming Languages -
Chapter 4

27

Static Scope
Based on program text (determined statically, that is

prior to execution)
- concept of “program units”

To connect a name reference to a variable, you (or
the compiler) must find the associated declaration.

• Search process: search declarations, first locally,
then in increasingly larger enclosing scopes, until
one is found for the given name

• Enclosing static scopes (to a specific scope) are
called its static ancestors; the nearest static
ancestor is called a static parent.

K.Dincer Programming Languages -
Chapter 4

28

Variables can be hidden from a unit by having a "closer"
variable with the same name:

• Pascal does not include nonprocedural blocks.
• C and C++ do not allow subprograms to be nested

inside other subprogram definitions, but they have
global variables. Local variables can hide these.

• C++ allow access to these "hidden" variables by
using the scope operator (::).

Ex. on page 172.

Consider the presence of predefined names (keywords
and reserved words.)

K.Dincer Programming Languages -
Chapter 4

29

Blocks
a method of creating static scopes inside program units

– from ALGOL 60 - the first block-structured
language!

C and C++: for (i=0;i<10;i++) {
int index;
...

}

C and C++ allow any compound statement to have
declarations, thus define a new scope.

• Local variables are all stack dynamic.
• C++ allows variable definitions to appear anywhere in

functions.A variable’s scope is from its definition
statement to the end of the function.

K.Dincer Programming Languages -
Chapter 4

30

Evaluation of Static Scoping

Consider the example:
Assume MAIN calls A and B

A calls C and D
B calls A and E

MAIN
A

C

D

B

E

MAIN

A B

C D E

MAIN MAIN

A B A B

C D E C D E

6

K.Dincer Programming Languages -
Chapter 4

31

Suppose the spec is changed so that D must now
access some data in B
Solutions:
1. Put D in B (but then C can no longer call it and

D cannot access A's variables)
2. Move the data from B that D needs to MAIN (but

then all procedures can access them)
- declaration of variables so far from their uses is
harmful to readability.

Same problem for procedure access!

Overall: static scoping often encourages many globals.

K.Dincer Programming Languages -
Chapter 4

32

Scope
(Fischer & Grodzinsky, 1993)
Scope in PL ⇔ Paragraph in an essay
- marked by a pair of matched opening and closing marks.

Correct Nesting: Faulty Nesting:

Begin Scope A Begin Scope A
Begin Scope B Begin Scope B

End Scope B End Scope A
End Scope A End Scope B

K.Dincer Programming Languages -
Chapter 4

33

Scope Example
INTEGER A, B, C(20), I
DATA A, B /31, 42/
READ* A, B, (C(I), I=1, 10)
DO 80 I=1, 10

IF (C(I) .LT. 0) C(I+10)=0
IF (C(I) .LT. 100) THEN

C(I+10) = 2 * C(I)
ELSE

C(I+10) = C(I)/2
ENDIF

80 CONTINUE
END

Scopes are indicated in a variety of ways
depending on the context:Dimension list,
DATA values, implied DO, subscript list,
DO loop, logical IF, block IF(true or false)

K.Dincer Programming Languages -
Chapter 4

34

Dynamic Scope
Based on calling sequences of program units, not their

textual layout (temporal versus spatial)

- References to variables are connected to declarations
by searching back through the chain of subprogram
calls that forced execution to this point.

• Search process: search declarations, first locally,
then the declarations of the dynamic parent, or calling
procedure, and so on until one is found for the given
name.

K.Dincer Programming Languages -
Chapter 4

35

Example
MAIN

- declaration of x
SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...

...
call SUB1
...

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

Static scoping - reference to x is to MAIN's x

Dynamic scoping - reference to x is to SUB1's x

K.Dincer Programming Languages -
Chapter 4

36

Evaluation of Dynamic Scoping
- Advantage: convenience
- Disadvantages:
• poor readability - calling sequence must be known.
• inability to statically type check references to

nonlocals
• local variables of the subprogram are all visible to

any other executing subprogram, regardless of its
textual proximity.

Scope and lifetime are sometimes closely related, but
are different concepts! Scope is textual, lifetime is
temporal - Consider a static variable in a C or C++
function.

7

K.Dincer Programming Languages -
Chapter 4

37

Referencing Environments
The referencing environment of a statement is the

collection of all names that are visible in the statement.
• In a static scoped language, that is the local variables

plus all of the visible variables in all of the enclosing
scopes
– See book example (p. 184)
– A subprogram is active if its execution has begun

but has not yet terminated.
• In a dynamic-scoped language, the referencing

environment is the local variables plus all visible
variables in all active subprograms
– See book example (p. 185)

K.Dincer Programming Languages -
Chapter 4

38

Named Constants
A named constant is a variable that is bound to a value only

when it is bound to storage (i.e., its value can not be
changed later on)

• Advantages: readability and modifiability.

The binding of values to named constants can be
either static (called manifest constants) or dynamic
Languages:
Pascal: literals only
Modula-2 and FORTRAN 90:constant-valued expressions
Ada, C++, and Java: expressions of any kind
C: named literals with #define preprocessor command.

K.Dincer Programming Languages -
Chapter 4

39

Variable Initialization
The binding of a variable to a value at the time it is

bound to storage is called initialization.

Initialization is often done on the declaration statement

e.g., Ada
SUM : FLOAT := 0.0;

No initialization in Pascal.
• If the variable is statically bound to storage, binding

and initialization occur before run time.
• If the storage binding is dynamic, initialization is also

dynamic.

