
1

Chapter 2 Programming Languages 1

Chapter 2 - Evolution of Major PLs

We emphasize
• the contribution of each language

– focus on new features that most influenced
subsequent languages

• and the motivation for its development

See Figure 2.1

Chapter contains listings of complete example
programs, each in a different language.

Chapter 2 Programming Languages 2

1. Plankalkül (1945)
• Never implemented
• Primitive (scalar) data types

– single bit, integer and 2’s complement floating-point
type

• Composite (structured) data types
– arrays, records (and records of records)

• Iterative (for), out of loop jump and selection (if)
statements

• Each statement consisted of 2 or 3 lines of code:
A(7) := 5 * B(6)

| 5 * B => A
V | 6 7 (subscripts)
S | 1.n 1.n (data types)

Optional line

Chapter 2 Programming Languages 3

2. Minimal Hardware Programming:
Pseudocodes (1949)

Early computers of 1940s & 1950s:
• slow, unreliable, and expensive
• having extremely small memories
• difficult to program due to lack of supporting sw.

Programming was done in machine code,
which is tedious and error-prone:

• poor readibility: numeric codes are used to specify
instrs, e.g., 14 for ADD operation

• poor modifiability: absolute addressing (study the
example)

• Expression coding was tedious
• Machine deficiencies--no indexing or fl. pt.

Chapter 2 Programming Languages 4

2.1 Short Code (1949)

• used to program UNIVAC I computer:
• 72 bit words, grouped as 12 six-bit bytes.
• Expressions were coded, left to right
• Variables, or memory locations, were named

with byte-pair codes:
X0 = SQRT(ABS(Y0))

00 X0 03 20 06 Y0

• was implemented with a pure interpreter
(simpler but 50 times slower than machine
code)

???

Chapter 2 Programming Languages 5

2.3 Speedcoding (1954)
• Developed for the IBM 701
• Interpreter converted the 701 to a virtual three-

address f-p calculator
– pseudoinstructions for + - * / sqrt, since, atan, exp, log

• Conditional and unconditional branching
• Input/output conversions
• Autoincrement registers for array access(allowed

matrix multiplication in 12 instructions)
• But

– Slow!
– Only 700 words left for user program

Chapter 2 Programming Languages 6

2.3 The UNIVAC “Compiling” System
(1954)

• Compiling system expanded a pseudocode
into machine code in the same way as
macros are expanded into assembly
language.
– Primitive but much shorter source codes

• Cambridge Un. - using blocks of relocatable
addresses to solve the problem of absolute
addresses
– This idea was extended to design an assembly

language (no impact of Als on HLLs) that could
combine chosen subroutines and allocate storage.

2.4 Related Work

2

Chapter 2 Programming Languages 7

FORTRAN: The IBM FORmula
TRANslating System (1957)

FORTRAN 0 & IBM 704 Machine
• first computer with index registers and f-p hw

– So far all f-p ops had to be simulated in software
which made interpretation an acceptable
alternative to machine code execution (interp. cost
used to be hidden by the high cost of f-p calcs)

• FORTRAN is credited with being the first
compiled HLL. [no consensus though!]
– The Laning and Zierler system (1954) of MIT was

the first algebraic translation system: it translated
arith. expressions, used function calls for math.
functions, and included subscripted var.
references.

Chapter 2 Programming Languages 8

FORTRAN I (1956)

• Input/output formatting
• var. names of up to six characters (from 2 in v.0)
• user-defined subroutines(no separate compilation)
• IF selection statement,post-test counting DO loops
• Arithmetic IF (3-way branch) instead of logical IF!!
• No data typing (I to N: integer, otherwise: f-p)
• Compiler released in April 1957, after 18 worker/

years of effort
• Programs larger than 400 lines rarely compiled

correctly, mainly due to poor reliability of the 704
• Code was very fast
• Quickly became widely used

Chapter 2 Programming Languages 9

Environment in which FORTRAN was
developed:

• Computers were small and unreliable
• Applications were scientific
• No programming methodology or tools
• Machine efficiency was most important

FORTRAN II (1958)
• Independent compilation of subroutines + linkers
• Fix the bugs

FORTRAN IV (1960-62)
• Explicit type declarations
• Logical selection statement
• Subprogram names could be parameters
• ANSI standard in 1966

Chapter 2 Programming Languages 10

FORTRAN 77 (1978)
• Character string handling
• Logical loop control statement
• IF-THEN-ELSE statement

FORTRAN 90 (1990)
• Modules- PRIVATE or PUBLIC data and subprograms
• Built-in array operations: SUM, MATMUL, etc.
• Dynamic arrays: ALLOCATABLE

• Pointers
• Recursion - recursive procedures
• CASE multiple selection statement
• Parameter type checking

Chapter 2 Programming Languages 11

ALGOL - ALGOrithmic Language

ALGOL 58 (1958)
• Environment of development:

– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all for

specific machines
– No portable language; all were machine-dependent
– No universal language for communicating algorithms

• FORTRAN could not become a universal
language because at the time it was solely owned
by IBM.

Chapter 2 Programming Languages 12

Goals of the Language

• American ACM and European GAMM
determined the goals: [after endless discussions]
– Close to mathematical notation (good for sci.prog.)
– Good for describing algorithms
– Must be translatable to machine code

3

Chapter 2 Programming Languages 13

ALGOL 58 Features
• Concept of type was formalized

– vars. not f-p numbers required explicit declaration
• Names could have any length
• Arrays could have any number of subscripts
• Parameters were separated by mode (in & out)
• Subscripts were placed in brackets
• Compound statements (begin ... end)
• Semicolon as a statement separator
• Assignment operator was :=
• if had an else-if clause
• a for statement for counting loops
• a do statement for subprogram calls.

Chapter 2 Programming Languages 14

ALGOL 60 (1960)

• New Features:
– Block structure (local scope)
– Two parameter passing methods: by value/by name
– Subprogram recursion
– Stack-dynamic arrays
– Still no i/o and no string handling -subscript range is

specified by vars during execution.

• Successes:
– It was the standard way to publish algorithms for

over 20 years
– All subsequent imperative langs are based on it
– First machine-independent language
– First lang. whose syntax was formally defined (BNF)

Chapter 2 Programming Languages 15

• Failure:
– Never widely used, especially in U.S
– Reasons:
– No i/o and the character set made programs non-

portable
– Too flexible--hard and inefficient to implement
– Entrenchment of FORTRAN
– Formal syntax description
– Lack of support of IBM

Chapter 2 Programming Languages 16

ALGOL 68 (1968)
• follows ALGOL 60, but it is not a superset of it.
• Design is based on the concept of orthogonality:

a few primitive types and structures and allow the
user to combine those primitives into a large number
of different structures.

• Contributions:
– User-defined data types (structures)
– Reference types
– Dynamic arrays (called flex arrays)

• Comments:
– Had even less usage than ALGOL 60
– Had strong influence on subsequent languages,

especially Pascal, C, C++, PL/I and Ada.

Chapter 2 Programming Languages 17

Pascal (1971)
• Designed by Wirth, who quit the ALGOL 68

committee (didn't like the direction of that work)
• Designed for teaching structured programming
• Small, simple, nothing really new
• Still the most widely used language for teaching

programming in colleges (but use is shrinking)

Weaknesses:
• A subprogram can not take an array of variable

length as argument
• Lack of any separate compilation capability

Chapter 2 Programming Languages 18

C (1972)
• Designed for systems programming (at Bell Labs

by Dennis Richie)
• Evolved primarily from B, but also ALGOL 68

– for and switch statements
– assignment operators
– treatment of pointers

• Powerful set of operators: high expresiveness
• But poor type checking: esp. function parameters
• Too flexible & very insecure
• Initially spread through UNIX: inexpensive or free

compiler support

4

Chapter 2 Programming Languages 19

C++ (C with Classes) (1985)

• Developed at Bell Labs by Stroustrup
• C with Classes(1983): Evolved from C & SIMULA 67:

– function parameter type checking and conversion
– classes
– derived classes
– public/private access control of inherited components
– constructor and destructor functions
– friend classes
And later in 1981:
– inline functions
– default parameters
– overloading of assignment operator

Chapter 2 Programming Languages 20

And later in 1984: (It has become C++)
• virtual functions
• function name and operator overloading
• reference types
• And later multiple inheritance, abstract classes, type-

safe linkage.
• Downward compatible with C
• Also has exception handling
• A large and complex language, in part because it

supports both procedural and OO programming
• Rapidly grew in popularity, along with OOP
• ANSI standard approved in November, 1997

Chapter 2 Programming Languages 21

Java (1995)
• Developed at Sun in the early 1990s
• Based on C++
• Significantly simplified
• Supports only OOP
• Has references, but not pointers
• Includes support for applets and a form of

concurrency

