
1

K. Dincer Chapter 6 - File Organization
and Processing

1

Chapter 6 - Hashing
Record for SSN f Slot address

Al 322-45-6178 178
Joe 123-45-6284 284
Mary 036-23-0373 373
Pete 901-23-4784 284

A randomizing transformation for a personnel file uses SSN as the key.
We assume that the value of the low-order digits of these numbers are

evenly (uniformly) distributed.
We have space for 500 employees (M=500 slots)m.

Key f

0

M-1

322-45-6178

K. Dincer Chapter 6 - File Organization
and Processing

2

Terminology

Hash or Key-to-Address-Translation (KAT) function is a means of
calculating the disk address of a block containing a given record from the
value of its key.

Key f Address

Buckets

Collisions.
We have a collision when the function yields the same number for two

different keys.

Hash functions never preserve order.

Primary Area

Buckets - contain 1 or more blocks

Keys with highly
non-uniform distribution

Addresess with nearly
uniform distribution

Real data is never uniformly distributed.

K. Dincer Chapter 6 - File Organization
and Processing

3

When the bucket fills up and another record is entered whose hash value
is the same as the records in the full bucket, we add address of a new
bucket in the overflow area.

Chaining. Adding address of an overflow bucket to a primary-area bucket
which is full.

Separate Chaining. The case where there is a separate chain of overflow
buckets for each primary-area bucket.

When a bucket overflows, a link or address is added referring to an
overflow block - called “Hashing with buckets and separate chaining.”

See Figure 6.1
h(x) = x mod 5
Bkfr (bucket factor) = 3

K. Dincer Chapter 6 - File Organization
and Processing

4

Load Factor.
If we allocate exactly the amount of space needed for the file to the

primary area, there will be many chains.

Hash functions give nearly random distributions. Primary area should
be 70-90% full only.

Load factor Lf = (# records in file) / (# places for records in primary area)
= n / (M x Bkfr)

where Bkfr is Bucketing factor.

Fetching Using Buckets and Chains.

If the distribution of values is even and original area chosen is
big enough,

Hashing is very efficient for fetching (~1 access)
TF = s + r + dtt

Effects of load factor and bucket factor ?
Ways of handling overflow?

K. Dincer Chapter 6 - File Organization
and Processing

5

Time Analysis
T F (successful) = s + r + dtt + (x/2) (s + r + dtt)

T F (unsuccessful) = s + r + dtt + x (s + r + dtt)
where x is the average chain length.

T D = TF (unsuccessful) + 2r

T I = TF (unsuccessful) + 2r

T X = n TF

K. Dincer Chapter 6 - File Organization
and Processing

6

A Mix of Operations
• CA income tax file of 6 million 400-byte records.
• Every month we make 10,000 random individual record fetches,

and we have ten small-range queries, each for about 3% of the file.
• We need to choose one:

– Use hash table for individual-record fetches, and read sequentially
through the file for the range queries.

Lfr = 70%, Bkfr = 50 (Each fetch is about one disk access)
– Use the same hash table for the individual-record fetches, but keep a

secondary B+-tree index for the small range queries.
Tree has block addresses for each record, all nodes are 2400 bytes long.

– Use a primary B+-tree for both the individual-record fetches and the
small-range searches.

Leaf node size is chosen to make this mix of operations optimal.
Internal node size is 2400 bytes, and we have two-disk access method.

Hint: Tx for CA file when it is organized as a pile file is 14 minutes.

2

K. Dincer Chapter 6 - File Organization
and Processing

7

Intersection File and Hash Partitioning
We have a MA and a BCBS file. BCBS file has an associated hash-

table. Both files have 100,000 400-byte records, of which 70,000
are common. (Remember sorting and comparing took 2.5 minutes)

Case 1: Sort and compare : 2.5 minutes
Case 2: hash and no overflow

• Divide hash table into 6 equal parts (partitions).
• Use the same hash function on the same field on the MA file to

divide MA file into 6 partitions.

K. Dincer Chapter 6 - File Organization
and Processing

8

Linear Hashing
LH maintains a constant load factor, even when many new records

are added to the file.
– It does so by incrementally adding new buckets to the primary area.

Fetching a Record
The last binary bits in the hash number are used for placing the

record.
key ---> hash fcn ---> large number + extract k binary digits

When we expand the table, we split an existing bucket which holds all
the records which end in a particular k digits into two buckets using
the k+1 last digits of the hash number.

010 ---> 0010 and 1010
For fetching, we can tell whether we need to look at k+1 digits or k

digits by checking whether or not the last k digits are smaller than a
given value, the boundary value. (kept in the file header)

