
1

K. Dincer Chapter 3 - File Organization
and Processing

1

SORTED SEQUENTIAL FILES
A sorted file is one in which records are stored:

– in order of the values of one field (e.g., ID number)

– or in order of the concatenation of several fields.
(e.g., first & last names)

The sort field is sometimes called as a key of the file.

Our Assumptions:
– The sort field is a single field.
– Access to sorted file is mostly sequential.
– File contains only fixed-length records.

K. Dincer Chapter 3 - File Organization
and Processing

2

• All records are shifted forward to keep the order in
place.
– very expensive

• An unsorted overflow area is reserved to keep all
the records which were added after the file was first
loaded.
– To find a record first the main area then the overflow area is

searched.
– Periodic reorganizations will be necessary.

Handling of Additions to a Sorted File

main area (sorted) overflow area (unsorted)

K. Dincer Chapter 3 - File Organization
and Processing

3

Fetching One Record
Given the value of the field used for sorting we can do:
• a binary search in sorted area
• followed by a sequential search in overflow area.

Binary Search or Logarithmic Search Bisection Method
A binary search compares the key of the sought record with

the middle record of the file:
– Then either the sought record has been located or
– half of the file is eliminated from further consideration.

(Finally we are left with one block)

Note that block-based binary search of (Salzberg, 1988) is different
from single-value binary search of (Tharp, 1988.) We follow
Salzberg unless noted otherwise.

K. Dincer Chapter 3 - File Organization
and Processing

4

Total # of blocks in the file b = x + y
where

y: Numbers of blocks in sorted area.

x: Numbers of blocks in overflow area.

Average # random accesses if the record is in sorted area:

= (1/y)*1 + (2/y)*2 + (4/y)*3 + ... + (1/2)*(log y) ≅(log y)-1

Average # random accesses for an unsuccessful search: (worst case)

≅(log y)

K. Dincer Chapter 3 - File Organization
and Processing

5

Time for binary search for one record in sorted are:

≅[(log y) - 1] * (s + r + btt)
We don’t consider the following fact that the first seek is near
average seek time but later on seek time gets smaller.

Time for sequential search for one record in unsorted overflow area:

= r + s + (x/2)*(ebt)

Total time for searching a record which is placed in overflow area:

= (log y)*(s + r + btt) + r + s + (x/2)*(ebt)
Time for searching sorted area Time for sorting overflow area

• If x is very large, 2 is the most significant.
• If x is very small, 1 is the most significant.

1 2

K. Dincer Chapter 3 - File Organization
and Processing

6

y/b : The probability that the record is in sorted area.

x/b : The probability that the record is in overflow area.

Time to fetch a present record, given the value on the sort field :
TF ≅ (y/b) * [(log y)-1] * (s + r + btt)

+ (x/b) * [(log y) * (s + r + btt) + r + s + (x/2)*ebt]

When x is large:
TF (significant overflow) = (x/b) * (x/2) * ebt

When y is large:
TF (significant sorted area) = [(log b)-1] * (s + r + btt)

2

K. Dincer Chapter 3 - File Organization
and Processing

7

Example: The Hospital File
A hospital file of 40 MB in 16677 blocks (b).

TF = ...

Binary search is faster than sequential search
Seq. Search Binary search

TF (Pile File) 7 sec 326 msec
Time for looking up 10,000 recs by name 19 hours 54 min
Number of disk accesses 8333 probes 13 probes

After we add 16667 more records, we have a 50 MB file
b = 33334 and x=y=16667

TF = (1/2)*(326) + (1/2)*(14*(16 + 8.3 + 0.8) +24.3 +8333*0.84) = 3850 msec.

If we had used TF =(x/b)*(x/2)*ebt then TF =3500 msec
The performance for a fetch degrades as the proportion of the file

in the overflow area becomes larger

K. Dincer Chapter 3 - File Organization
and Processing

8

Fetching the Next Record
Assume that

– small overflow area
– disk arm is already in correct track
– contents of last block read is still in memory
– next block is in the same cylinder.

Probability of next record being in the same block (i.e. still in memory)
as the most recently read block = 1 - (1/Bfr)

Probability that it is not in the same block = 1/Bfr

Estimated time for reading next record :

TN = [1-(1/Bfr)] * 0 + (1/Bfr)*(r+btt) * 1 = (1/Bfr)*(r + btt)
(r is needed since a separate command is given for the next record.)

K. Dincer Chapter 3 - File Organization
and Processing

9

Deleting and Modifying Records
The record is marked deleted in case of a deletion, so deletion

operation is the same as modification.

• If the field is not the same as the field on which the records are
sorted:

TD = TU = TF + 2r
2r is the time it takes after reading the correct block to revolve back to the beginning of
the correct block and write the new block in.

• If the modification involves changing the value of the sort field,
the update is a deletion plus an insertion:

TU = TD + TI

K. Dincer Chapter 3 - File Organization
and Processing

10

Inserting a Record
We assume that duplicate values are allowed:

– makes overflow area larger
– increases file space
– increases search time
+ decreases insertion time. How ?

• The new record is merely placed at the end of
the overflow area:

TI = s + r + btt + 2r

The time for insertion is the same as for an insertion in the pile file.

K. Dincer Chapter 3 - File Organization
and Processing

11

Exhaustive Reading of the File
Assuming nothing has been added to the overflow area

or the order is not important:

Keeping the file sorted do not have any importance if the whole file is to
be read.

The time to read in the whole file in order (if there are
records in the overflow area) is the time:

• to read in all overflow area into memory (assuming it fits,)
• sort the overflow data,
• merge the overflow with the sorted area as the sorted

area blocks are read in.

Tx = b * ebt

K. Dincer Chapter 3 - File Organization
and Processing

12

Creating a File of Female Patients
Generate a female patients file from the hospital file.
• Assume the records are sorted by sex and the

size of the overflow area is insignificant.

Algorithm:
• Make a search for the first female patient (if males were listed

first.)
• Then read through the rest of the file:

Analysis of Algorithm:
• Binary search = 326 msec
• Reading half of the file sequentially = 7 sec
(With a pile file we would need 14 seconds.)

3

K. Dincer Chapter 3 - File Organization
and Processing

13

Reorganization
Tx = x*ebt + (z log z)*0.01 + y*ebt + (n/Bfr)*ebt

Assume overflow fits in memory, z is the number of
active records in overflow, and sort takes 10
msecs for each iteration of the sort routine.

See Figure 3.8

Merging sorted segments of the file:
• read into memory a piece of each segment (one segment, the

sorted overflow is already in memory)
• look at first record from each sorted segments, choose the record

with the smaller key and move it to output buffer.
• continue the same operation until two segments are merged.

reading in
overflow area

sorting it writing it out

K. Dincer Chapter 3 - File Organization
and Processing

14

Merging Two Sorted Segments with
One Disk Drive

• Read into memory large pieces of both sorted segments,
A and B. See Figure 3.9

• While unmerged remain in both A and B, repeat the
following:
– Compare the smallest key from unmerged records A in memory

with the smallest key from unmerged records of B in memory.
– Move the record with smaller key to the output buffer. Write the

output buffers to disk as they fill, using double buffering.
– If the piece of A in memory of piece of B in memory no longer

contains unmerged records, stop writing to disk and read in the
next piece of A or B.

• One of A or B is exhausted. Write the remaining records
of the nonexhausted segment to the merged file.

K. Dincer Chapter 3 - File Organization
and Processing

15

Merging Two Sorted Segments with
Two Disk Drives

We can read, merge and write at the same time.
• See Figure 3.10

• read in and sort the overflow first (Assuming it fits
into memory)

• read in the sorted part of the file using double buffering
• merge with the overflow
• write out the result at once

Incoming records
• are kept in sorted order in a linked list in memory

(saves room)
• take the place of outgoing records from both segments

K. Dincer Chapter 3 - File Organization
and Processing

16

Extended Example: The Intersection File
We have two hospital files (MA & BCBS) of 100,000 records of 400

bytes each. 70,000 of these records are in both files. We wish to
make an intersection file.

Assume both files are sorted acc. to patient’s SSN.

Algorithm:
1- Read in 1/4 of (10 MB) MA file
2- For each MA record check if it matches a record in BCBS file

– if there are some BCBS records that come before first MA record, they
are not in intersection.

– if in going through the BCBS file we find a number bigger than the one
we are trying to match, before we find a match, there is a match.

We need only read through BCBS file once for the entire operation (using double
buffering.)

3- As soon as we find a BCBS record whose SSN field is larger than
the largest value in memory we write out the matched records so
far and read in the next MA file segment.

K. Dincer Chapter 3 - File Organization
and Processing

17

Natural Join
• If two files are both sorted on the same criteria, we

need only read through each file once to find
matches.

Analysis:
Reading MA file 14 seconds
Reading BCBS file 14 seconds

Writing intersection file 10 seconds (70% of records match)

TOTAL of 38 seconds.

(Compare this with 10.5 days when unsorted pile files are
used for this operation.)

K. Dincer Chapter 3 - File Organization
and Processing

18

Interpolation Search (IS)
IS chooses next position for a comparison based upon the

estimated position of the sought key relative to the remainder of
the file to be searched.

Ex: Humans search names in a telephone list using IS.

key[sought] - key[lower]

Next Position = ceiling(lower + -------------------------------- (upper - lower)
key[upper] - key[lower]

Worst case complexity : O(n)
Average case complexity : O(log2 log2 n)

• Its performance improves as the distribution of the keys
becomes more uniform.

• A binary search is preferable to IS when data is stored in
primary memory (because IS involves additional calculations.)

• Both binary search and IS is of limited use since as the file
grows average number of probes gets higher (for sequential file
organizations)

