
1

Chapter 2 File Organization and
Processing

1

2.4 Records and Buckets

Blocks: the minimal units of data transfer
from the disk to memory or vice versa.

Records: units of info, such as:
– all the info about one patient in a hospital
– all the info about one taxpayer

File: a collection of records of a given type.

Chapter 2 File Organization and
Processing

2

Assumptions
• Files are stored “nearly contiguously” on the disk in a

small number of large areas called extents.
– (this may yield inaccurate estimates if the files are small, and

they fit in one extent.)
• T (extent read) >>> T (extent-to-extent seek)

– Sequential reading:

b * ebt
– Random reading, one block at a time:

b * (s + r + btt)
• We use only fixed-length record files (i.e., all records

are of the same size)
– (What if not? i.e., variable-length record files.)

• We have a single-user system.

Chapter 2 File Organization and
Processing

3

Purpose

• To be able to estimate time for file operations
– helps us to decide what file organization to use

• Remarks:
– We should know how the file will be used

beforehand
– Even under simplifying assumptions we can make

good enough estimations.

Chapter 2 File Organization and
Processing

4

The Blocking Factor (Bfr)

Two cases:
• If R evenly divides B (no empty space in file)

Bfr = B / R

• If R does not evenly divide B (empty space)
Bfr = floor (B / R)

(number of bytes in a record)

(number of bytes in a block)

Chapter 2 File Organization and
Processing

5

• Assume number of records in a file is n:
b = n / Bfr

• What is the time to read the file sequentially
from beginning to end ?

b * ebt = (n / Bfr) * ebt
• Correlation with block size?

– For a fixed B and R, as block size gets smaller
(less records stored per block), what happens ?

– The sequential reading time gets longer.

number of blocks in the file

Chapter 2 File Organization and
Processing

6

Example: Night School Transcripts

Question: How record placement affects sequential
reading time?
– 1600 byte transcript records are stored for 30,000 students.
– Block size (B) is 2400 bytes

Examine the two cases:
– where each record is kept in a single block and empty space is

left.
– Where each record spans two blocks, and all space is used.

Comment on sequential reading time?
• Sequential reading time depends on the amount of space the file

takes up. When we have empty space, we have slower sequential
reading.

We can save both time cost and space cost by choosing the
appropriate file organization.

2

Chapter 2 File Organization and
Processing

7

Choosing Bucket or Buffer Size

• We want to find one transcript record
– We overlap block boundaries.
– We need lookup tables/indexes which tell us the

address of the record on disk.

• Two-block buckets: if we always read in two
blocks and write out two blocks.

• Bucket: a logical collection of blocks on disk
• Buffer: such a collection of blocks in memory

Record 0 Record 1 Record 2

Chapter 2 File Organization and
Processing

8

Buckets
Bucket: a logical unit of data transfer for a file organization.

A bucket consists of several consecutive blocks on disk.
• Block size on the disk == page size in OS
• Bucket size on disk == buffer size in memory

Effects of bucket size in sequential reading ops:
– Transcript Example.
– Once the record size evenly (or nearly evenly) divides the bucket

size, so that no (little) space is wasted,
• Efficient sequential reading is ensured.
• Larger bucket sizes do not affect sequential reading time - same

space utilization. Why? Because b is the same.

Usually we choose bucket size to optimize operations other than
sequential reading.

Chapter 2 File Organization and
Processing

9

How Random Reading Is Affected by
Bucket Size ?

• Random reading of the entire file is a frequent op.
– an index that indicates in what order to read the buckets is used
– Reading order is not the same as records are stored in the disk.

• Random reading of the buckets in a file will be faster
with larger bucket size.
– The number of seeks will be smaller, and the total amount of

data transfer time will be the same.
• bk: number of buckets (and assume bk = b)
• dtt: data transfer time - time to transfer one bucket

Random time for reading all buckets = bk * (s + r + dtt)

Random time for reading of the records of a file = n * (r + s + dtt)

Chapter 2 File Organization and
Processing

10

Bucket Size for Cambridge Tax File

Question: How doubling the bucket size from
2400B to 4800B affect various ops?
– 30,000 records of 100 bytes each.

• Sequential reading:
– Calculate the average amount of tax being paid in

Cambridge.
» Bucket size does not affect sequential reading time.

• Random reading by records
– An index keeps a list of street names and the bucket

addresses of tax records for taxpayers on that street.
» Larger bucket size makes random reading less

efficient.

Chapter 2 File Organization and
Processing

11

Optimal Bucket Size for a Mix of
Operations

Question:
• In a typical month we make 1000 individual record

fetches in the Cambridge tax file.
– Lookup table is brought into memory in 1 disk access

• In addition we read the whole file randomly by bucket,
using a list of bucket addresses kept in memory.

What is the optimal bucket size for this mix of operations?

Chapter 2 File Organization and
Processing

12

2.5 Double Buffering

What if the application requires to read buckets
one by one and make calculations on each
bucket?
– The problem is solved by having two buffers

(double-buffering) for reading:
• Each buffer is an array of bytes in memory that has the

same size as one bucket.

– For short & simple calculations, double buffering
can reduce the cost in CPU time to nearly zero,
because it is always overlapping I/O time.

• Ex: finding the average salary of all employees in an
employee file (i.e., a file of employee records.)

3

Chapter 2 File Organization and
Processing

13

When Double Buffering Does Not Work

• Sometimes we cannot process the data fast
enough to use double buffering:
– When computations are too complex
– Ex: calculations take three times the read time for

the data (2.52 ms to process data in one 2400-
byte block) (btt=0.8 ms, ebt=0.84 and r=8.3 ms)

– Buffer size = Block size

ebtebt process

ebtebt
process

Buffer 1: 2 * rB1

B2

B3

B4

Why not btt?

Buffer 2:

Cost of reading and processing the whole file = ?

idle time

At beginning of B2
ebt

Chapter 2 File Organization and
Processing

14

• What if we used track-sized buffers?
– Figure 2.6
– If we use track-sized buffers, and x is the multiple

of I/O time needed for calculations,

Total time = ceiling(x) * b * ebt

For our case:

Total time = 3 * b * ebt

Chapter 2 File Organization and
Processing

15

Assumptions

• Double-buffering is possible most of the time.
– Only time to read in and write out data counts
– CPU time is overlapped with i/o time, hence it has

0 cost.

In the rest of the course, we will use track-sized
buffers to do double-buffering.

Chapter 2 File Organization and
Processing

16

Modifying All Records in a File
• First ,suppose we want to modify one record,

and that the bucket size is one block:
Time to find and modify a block=s + r + btt + 2r

• Time required to modify all records in a file?
– Ex: Add a surtax of 5% on the Cambridge taxpayers.

– If Double buffer size = b ?
– If Double buffer size = 1 track ?

• 20 blocks of 2400 bytes on each track.
• The track is traversed exactly twice: once for R,once for W
• Records are replaced in exactly the same place they came from.

• Total time = ?

