

Bilkent Center for Bioinformatics,

Bilkent University, TURKEY.

Document Topic: Testing in PATIKA
Document Type: Guidelines
Date Started: 06.06.2006

Author(s): Ugur Dogrusoz

 Testing in PATIKA
Software testing is the process, used to help identify the correctness,
completeness, security and quality of developed computer software [1]. With that in
mind, testing can never completely establish the correctness of arbitrary computer
software. Still we must do our best in identifying these problems and fixing them.

1 Assertions
An assertion is a programming language construct that indicates an assumption on
which the program is based. It takes the form of an expression which is intended to
be true. If an assertion proves false, it indicates a possible bug in the program. This
is called an "assertion failure." So assertions are the most basic form in which,
testing can be performed.

In software engineering, it is commonly believed that the earlier a defect is found the
cheaper it is to fix it. So, we should check for things that should hold as often as
possible to ensure our objects in computer memory are “intact”. For instance, below
we somehow (e.g. search) obtain a BankAccount object for processing, which should
not be null:

 BankAccount acct = null;

 // ...
 // Get a BankAccount object
 // ...

 // Check to ensure we have one
 assert acct != null;

Another example is as follows; in the code segment below, we have a 2D point which
should have non-negative x and y coordinates after a certain transformation. We
make sure it is actually the case at this point by a simple assertion.

 // Apply transformation to get rid of negative values
 PrecisionPoint leftTop = new PrecisionPoint(left, top);
 PrecisionPoint vLeftTop = trans.inverseTransformPoint(leftTop);

 // Now coordinates should be non-negative
 assert vLeftTop.preciseX >= 0.0 && vLeftTop.preciseY >= 0.0;

If we don’t have this assertion and the condition that should hold at this point, does
not, then chances are this will go noticed at a much later and seemingly unrelated
point during execution. So we should not hold back and assert as much as possible
for things that are especially doubtful.

By default, in Java, assertions are disabled at runtime. One can enable them with the
virtual machine parameter “–ea”.

 1

2 Class Invariants
A class invariant is a type of an invariant that applies to every instance of a class
at all times, except when an instance is in transition from one consistent state to
another. A class invariant can specify the relationships among multiple attributes,
and should be true before and after any method completes. For example, suppose
you implement a balanced tree data structure of some sort. A class invariant might
be that the tree is balanced and properly ordered. Or for a 2D rectangle class, the
leftmost coordinate of any valid rectangle object should be less than or equal to its
rightmost coordinate.

The assertion mechanism does not enforce any particular style for checking
invariants. It is sometimes convenient, though, to combine the expressions that
check required constraints into a single internal method that can be called by
assertions. Continuing the balanced tree example, it might be appropriate to
implement a private method that checks that the tree is indeed valid (i.e., balanced,
etc.) as per the dictates of the data structure:

 /**
* This method returns true if this tree is valid (i.e. properly
* balanced, etc.)
*/

 private boolean check() {
 ...
 }

Because this method checks constraints that should be true before and after any
method completes, each public method and constructor of the class should contain
the following line immediately prior to its return:

 assert this.check();

3 Unit Testing
Testing is not closely integrated with development. This prevents you from
measuring the progress of development - you can't tell when something starts
working or when something stops working. A unit test is a procedure used to
validate that a particular module (a non-trivial method of a class - anything other
than a simple accessor or mutator - in case of OO programming) of source code is
working properly.

Using JUnit you can cheaply and incrementally build a test suite that will help you
measure your progress, spot unintended side effects, and focus your development
efforts [2]. A good point to start learning more about JUnit is [2].

Of course, the amount of stability you receive from unit testing is highly dependent
on the quality of the test cases you write. The following are some guidelines to think
about when writing test cases:

o One test is infinitely better than no tests at all. One test ensures that your
code compiles, links and can run.

o Do not think your unit tests as a one time code. It will be used and reused,
and often will be more persistent than the implementations they test. So take
them seriously.

 2

o Whenever a bug is fixed, write one or more test cases to verify that the
behavior remains fixed. Run all tests before a commit!

o Check boundary conditions heavily. If the parameter of a method expects
values in a specific range, your tests should pass in values that lie across that
range. For example, if an integer parameter can have values between 0 and
100 inclusive, three variants of your test might pass in the values 0, 50, and
100 respectively.

o Use negative tests to be sure your code responds to error conditions
appropriately. Verify that your code behaves appropriately when it receives
invalid or unexpected input values. Verify that it returns errors or throws
exceptions when it should. You might be surprised to find that a test you
expected to fail actually succeeds. For example, if an integer parameter to a
method can accept values in the range 0 to 100 inclusive, you might create
tests that pass in the values -1 and 101.

o Write tests that combine different code modules to implement some of the
more complex behaviors of your application. While simple, isolated tests do
provide value, stacked tests that exercise complex behaviors tend to catch
many more problems. These kinds of tests simulate the behavior of your code
under more realistic conditions, which leads to the discovery of more realistic
problems. For example, in addition to just adding objects to an array, you
could create the array, add several objects to it, remove a few of those
objects using several different methods, and then make sure the number of
remaining objects is correct.

o Try to use mock objects for unit testing. A mock object is a class that extends
your class that was involved in testing but has some default values of
behavior.

o Do not put anything in your tests that require user input. This quickly
becomes an annoyance.

Latest versions of IDEs such as IDEA (configure through the JUnit tab under “Run |
Edit configurations”) and Eclipse (“File | New | JUnit Test Case”) come with a JUnit
plugin.

4 Example
A Rectangle class using assertions, class invariants, and unit tests has been
implemented as a simple example (see sources under directory JUnit/Example).

5 Conclusion
So testing is a crucial part of software development. Thus, when writing code, we
should use class invariants and assertions whenever possible. In addition, we should
write unit tests which are to be run before committing any new work. In repositories
we have separate directories for unit tests organized using the associated package of
the original method/class under test (e.g.
patikapro1x\test\org\patika\pro\client\util\SubjectViewTest.java).

 3

References
[1] http://en.wikipedia.org/wiki/Software_testing, Software testing.

[2] http://junit.sourceforge.net/doc/testinfected/testing.htm, JUnit Test Infected:
Programmers Love Writing Tests.

[3] http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html, Programming
with Assertions.

 4

http://en.wikipedia.org/wiki/Software_testing
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

	Testing in PATIKA
	1 Assertions
	2 Class Invariants
	3 Unit Testing
	4 Example
	5 Conclusion
	References

