
SM-515
Software Verification & Validation

Fall 2002 Semester

Lecture 9: Software Testing
09/12/2002

Dr. Kivanç DINÇER

TÜBITAK-UEKAE/ILTAREN
http://www.uao.tubitak.gov.tr/

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

2

Testing
• Testing is the process of executing programs with the

intention of finding errors.

• Testing can show the presence of bugs but never their
absence.

(Common misconceptions about testing, difficulty of testing)

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

3

Difficulty of Testing
• Let’s illustrate how difficult it is to develop a set of

through test cases for even a trivial program.

– “A program accepts as input three integer values. The three
values represent the three sides of a triangle. Based on the
three values, the program is to determine whether the triangle is
isosceles, scalene, or equilateral.”

– Try writing down the set of test cases that you think would
adequately test this simple program.

• See Appendix I.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

4

Feasibility for Testing
• Consider another trivial program that analyzes strings of alphabetic

characters, 10 at a time.
– There are 2610 possible combinations of inputs that this program could

expect to see.
– Would it be feasible to test all possible combinations of inputs?

• To test all possible inputs, a minimum of 2610 (~141 trillion) tests
would be required.
– If it takes one microsecond to execute each test, it would take about

4.5 years to execute all of the 141 trillion tests once.

• For most software products where the size of the input space is
many orders of magnitude larger than this trivial example, the time
required to develop and execute such large numbers of tests cannot
be economically justified, even if it were feasible.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

5

Selective Testing
• If we cannot test all possible combinations of inputs, our

objective then becomes to select a relatively small
number of tests that have a high probability of finding
defects.
– How do we write tests that can do this?

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

6

Good Testing Principles
• A good test case is one that has a high probability of detecting an

undiscovered defect, not one that shows that the program works
correctly.

• It is impossible to test your own program.
• A necessary part of every test case is a description of the expected

result.
• Avoid nonreproducible or on-the-fly testing.
• Write test cases for valid as well as invalid input conditions.
• Thoroughly inspect the results of each test.
• As the number of detected defects in a piece of software increases,

the probability of the existence of more undetected defects also
increases.

• Assign your best people to testing.
• Ensure that testability is a key objective in your software design.
• Never alter the program to make testing easier.
• Testing must start with objectives.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

7

Good Testing Principles
• A good test case is one that has a high probability of detecting an

undiscovered defect, not one that shows that the program works
correctly.

• It is impossible to test your own program.
• A necessary part of every test case is a description of the expected

result.
• Avoid nonreproducible or on-the-fly testing.
• Write test cases for valid as well as invalid input conditions.
• Thoroughly inspect the results of each test.
• As the number of detected defects in a piece of software increases,

the probability of the existence of more undetected defects also
increases.

• Assign your best people to testing.
• Ensure that testability is a key objective in your software design.
• Never alter the program to make testing easier.
• Testing must start with objectives.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

8

Levels, Methods and Types of Tests
• Testing can be viewed as a hierarchy composed of

different levels, methods, and types.

Levels

Methods

Types

•Acceptance Testing
•Validation Testing
•Integration Testing
•Unit Testing

•White Box
•Black Box
•Top-down, Bottom-up
•Act Like a Customer •Functional

•Algorithmic
•Positive
•Negative
•Usability
•Boundary
•. . .Testing Hierarcy

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

9

Test Levels
• Each level of testing has specific objectives and

limitations.
– Unit or Module Testing
– Integration Testing
– Validation or System Testing
– Regression testing
– Acceptance Testing – the customer is actively involved.

Validation: The process of evaluating a system or component
during or at the end of the development process to determine
whether it satisfies specified requirements.

Alpha and Beta Testing: Customer evaluates the prerelease
software. (However customers are frequently reluctant to participate in
such activities.)

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

10

Unit Testing
• The objective is to find bugs in individual modules by

testing them in an isolated environment.

• It is usually considered part of the coding process and
typically requires a significant investment in “scaffolding.”

Driver

Module Under Test

Stub StubStub

Results

Unit Testing Environment

Driver: A control program
developed as a stub.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

11

Unit Testing
• Unit testing is often viewed more as a debugging activity

than as a testing activity.

• In many organizations, unit testing is performed by
software engineers on their own modules with little or
no test documentation.
– To increase ROI, use a buddy system.
– Why?

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

12

Debugging vs. Unit Testing

•Debugging is defined as the
process of detecting, locating
and correcting faults in a
computer program.

•Testing is defined as the
process of operating a system
or component under specified
conditions, observing or
recording the results, and
making the evaluation of some
aspect of the system or
component.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

13

Unit Test Cases
• The following questions can be used as a checklist when

developing unit test cases:
– Algorithms and logic
– Data structures (global and local)
– Interfaces
– Independent paths
– Boundary conditions
– Error handling

• IEEE Std.1008-1987 provides additional info on unit
testing.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

14

Integration Testing
• The objective of integration testing is to find bugs

related to interfaces between modules as they are
integrated together.

• Question: If all modules are unit tested, why is integration testing
necessary?

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

15

• Answer:
– One module can have an adverse effect on another.
– Subfunctions, when combined, may not produce the major

function.
– Individually acceptable imprecision in calculations may be

magnified to unacceptable levels.
– Interfacing errors not detected in unit testing may appear.
– Timing problems (especially in real-time systems) are not

detectable by unit testing.
– Resource contention problems are not detectable by unit testing.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

16

Incremental Integration
• Integration testing covers a broad range of activities,

beginning with the testing of few modules and
culminating with the testing of the complete system.

• Incremental Integration:
– the product is constructed and tested in small chunks so that

errors are easy to observe, isolate, and correct.
– can be performed top-down or bottom-up.

Main

M1

Top-Down Integration Testing Environment

M2 M3

m4 m5 m6 m7 m8stubs

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

17

Top-Down Integration
1. The main module is used as a driver, and stubs are

substituted for all modules directly subordinate to the
main module.

2. Depending on the integration approach selected (depth or breadth
first,) subordinate stubs are replaced by modules one at a time.

3. Tests are run as each individual module is integrated.
4. On the successful completion of a set of tests another stub is

replaced with a real module.
5. Regression testing is performed to ensure that errors

have not developed as a result of integrating new
modules.

6. If not done, Go to step 2

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

18

Problems with Top-Down Integration
• Many times, calculations are performed in the modules

at the bottom of the hierarchy.
• Stubs typically do not pass data up to the higher

modules.
• Delaying testing until lower-level modules are ready

usually results in integrating many modules at the same
time rather than one at a time.

• Developing stubs that can pass data up is almost as
much work as developing the actual module.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

19

Bottom-Up Integration
• Integration begins with the lowest-level modules, which

are combined into clusters, or builds, that perform a
specific software subfunction.

• Drivers are written to coordinate test case input and
output.

• The cluster is tested.
• Drivers are removed and clusters are combined moving

upward in the program structure.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

20

Problems with Bottom-Up Integration
• The whole program does not exist until the last module

is integrated.
• Timing and resource contention problems are not found

until late in the process.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

21

General Problems
• In many organizations, software developers are

responsible for performing some form of integration
testing.
– Developers frequently use the Big Bang approach: integrate all

modules at once and start testing!

• The distinction between unit testing and integration
testing is often fuzzy.
– Often, unit tests are repeated as modules are integrated

together.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

22

Validation Testing
• The objective of validation testing is to determine if the

software meets all its requirements as defined in the
SRS.

• Frequently, organizations perform validation testing
without the benefit of written requirements.
– Can validation testing be effective without written requirements?

• As part of validation testing, regression testing is
performed to determine if the software still meets all of
its requirements in light of changes and modifications
made to the software.
– Regression testing involves selectively repeating existing

validation tests, not developing new ones.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

23

• Answer: No!
• You need one of the following:

– Write them down before the tests are developed.
– People who write tests will need to have domain knowledge,

that is, knowledge of the product and how customers use the
product in their environment.

• Otherwise, testing will likely be superficial and of little
value to you or your customers.

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

24

Alpha and Beta Testing
• The objectives of alpha and beta testing are often

vague.
– If you are going to invest time and resources in this activity,

there should be clear objectives to maximize ROI.

• Beware of the following,
– Provide the customers with an outline of the things that you

would like to focus on and specific test scenarios for them to
execute. (effectiveness)

– Provide the customers with a commitment to fix defects that
they find. (motivation)

09/12/2002 Lecture 9 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

25

Acceptance Testing
• Similar to validation testing, except that customers are

present or directly involved.
– Acceptance testing can be a subset of the same tests used for

validation testing or can employ tests developed entirely by
customers.

– In the latter case, as your customer for those tests in advance
and run as many of them as possible as part of the validation
testing.

