
SM-515
Software Verification & Validation

Fall 2002 Semester

Lecture 10: Software Testing II
16/12/2002

Dr. Kivanç DINÇER

TÜBITAK-UEKAE/ILTAREN
http://www.uao.tubitak.gov.tr/

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

2

Testing
• Testing is the process of executing programs with the

intention of finding errors.

• Testing can show the presence of bugs but never their
absence.

(Common misconceptions about testing, difficulty of testing)

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

3

Test Methods
• White box or glass box testing

• Functional or black box testing

• Top-down and bottom-up testing

• Act-like-a-customer (ALAC) testing
– Tests are developed based on knowledge of how customers use

your software.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

4

ALAC Testing

Software has lots
of bugs…

… Customers typically only find
a small percentage …

To improve testing effectiveness, focus tests
on finding those bugs customers are likely to find.ALAC Testing

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

5

Testing Levels and Test Medhods

Functional and
ALAC

Actual (usually at
customer site)

Customer, QA, or
project team

Determine if
software meets
customer
requirements

Acceptance

Functional and
ALAC

ActualQADetermine if
software still meets
SRS in light of
changes

Regression

Functional and
ALAC

ActualQADetermine if
software meets
SRS

Validation

White box
Top-down and
Bottom-up

Isolated or
simulated.
Stubs and
scaffolding may be
required.

Software EngineersFind bugs in
interfaces between
modules

Integration

White boxIsolated.
Stubs and
scaffolding may be
required

Software engineersFind bugs in logic,
data, and
algorithms in
individual modules

Unit

Test MethodsTest
Environment

Performed byObjectivesTest Level

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

6

Test Types
• Functional
• Algorithmic
• Positive
• Negative
• Safety-related
• Compatibility
• Life
• Usability
• Boundary
• Startup and shutdown
• Configuration
• Platform

• Load / Stress
• Security
• Performance
• Documentation
• Timing
• Error checking
• Power failure
• Out of resources / space
• Installation
• Upgrade
• Volume scalability
• Throughput/performance

When planning a testing effort, choose an appropriate mix of test
types to increase the likelihood that defects will be uncovered.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

7

Concurrent Development/Validation Testing Model
• In organizations where the relationship between

development and testing is not understood, validation
testing often happens as illustrated below.

“Ship it”Vague
Requirements

Software
Development Testing

Typical validation testing process

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

8

Concurrent Development/Validation - 2
• To increase the ROI from your testing effort, you need a

good understanding of testing levels, methods and
types.
– Ideally, you should plan to perform a mix of testing activities,

commensurate with risk and business objectives.

Completion
Criteria

SRS

Concurrent development/validation testing model

Software
Development

Testing

Incremental Releases

Informal Validation

Readiness
Review

Formal
Validation

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

9

Informal Validation
• As development continues, incremental releases are

provided to QA, which develops tests in the same order
as the incremental features are being developed.

– By the time coding is completed, all validation tests have been
written and run at least once. Thus majority of problems should
have been found, reported and corrected.

• This activity is called informal validation, because tests
are run informally.
– Provides an opportunity for validation tests to be developed and

debugged early in the software development process
– Provides early feedback to software engineers
– Results in formal validation being less eventful, since most of the

problems have already been found and fixed.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

10

Validation Readiness Review
• The purpose of this review is to ensure that everything is

in place before beginning formal validation.
– Starting formal evaluation prematurely results in wasted effort,

increased frustration, and pressure to release products with far
too many defects.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

11

Differences Between Informal and Formal Validation

– Informal validation:
• Developers can make any changes needed in order to

comply with the SRS
• QA runs tests and makes changes necessary in order for the

tests to comply with the SRS
– Formal validation

• Developers can only fix bugs reported during formal
validation testing. No new features can be added.

• QA runs the same set of tests run during informal validation.
No new tests can be added.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

12

Formal Validation / Entry Criteria
• The test plan should define the criteria that should be met before

formal validation can begin:
– Software development has been completed
– The test plan has been reviewed, approved, and is under document

control
– A requirements inspection has been performed on the SRS
– Design inspections have been performed on the SDDs
– Code inspections have been performed on all critical modules
– All test scripts have been completed and software validation test

procedure document has been reviewed, approved, and placed under
document control.

– Selected test scripts have been reviewed.
– All test scripts have been executed at least once
– CM tools are in place and all source code is under configuration control
– Software problem reporting procedures are in place
– Validation testing completion criteria have been developed, reviewed,

and approved.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

13

Formal Validation / Entry Criteria
• The test plan should define the criteria that should be met before

formal validation can begin:
– Software development has been completed
– The test plan has been reviewed, approved, and is under document

control
– A requirements inspection has been performed on the SRS
– Design inspections have been performed on the SDDs
– Code inspections have been performed on all critical modules
– All test scripts have been completed and software validation test

procedure document has been reviewed, approved, and placed under
document control.

– Selected test scripts have been reviewed.
– All test scripts have been executed at least once
– CM tools are in place and all source code is under configuration control
– Software problem reporting procedures are in place
– Validation testing completion criteria have been developed, reviewed,

and approved.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

14

Formal Validation
• At this point, software changes are restricted to changes

required to fix bugs. No new functionality can be added.
• Activities:

– The same tests that were run during informal validation are re-
executed again and results recorded.

– Software Problem Reports (SPRs) are submitted for each test
that fails.

– SPR tracking is performed and includes the status of all SPRs
(i.e., open, fixed, verified, deferred, not a bug)

– For each bug that is fixed, the SPR identifies the modules that
were changed to fix the bug.

– Baseline change assessment is used to ensure that only those
modules that should have been changed actually have chagend
and that no new features have slipped in.

– Informal code reviews are selectively conducted on changes
modules to ensure that new bugs are not being introduced.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

15

Formal Validation
• At this point, software changes are restricted to changes

required to fix bugs. No new functionality can be added.
• Activities:

– The same tests that were run during informal validation are re-
executed again and results recorded.

– Software Problem Reports (SPRs) are submitted for each test
that fails.

– SPR tracking is performed and includes the status of all SPRs
(i.e., open, fixed, verified, deferred, not a bug)

– For each bug that is fixed, the SPR identifies the modules that
were changed to fix the bug.

– Baseline change assessment is used to ensure that only those
modules that should have been changed actually have chagend
and that no new features have slipped in.

– Informal code reviews are selectively conducted on changes
modules to ensure that new bugs are not being introduced.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

16

• Activities:
– Time required to find and fix bugs (find-fix cycle time) is

tracked.
– Regression testing is performed
– Track test status (i.e., passed, failed, or not run)
– Record cumulative test time for software reliability growth

tracking.

16/12/2002 Lecture 10 SM-515 Software Verification & Validation (Fall 2002)
© Dr. Kivanç Dinçer

17

When to stop testing?
• It is very important to have objective, measurable

completion criteria defined, reviewed. and approved
early in the development process.
– All test scripts have been executed
– All SPRs have been satisfactorily resolved
– All changes made as a result of SPRs have been tested
– All related documentation have been updated to reflect changes

during validation testing.
– The test report has been reviewed and approved.

