 NAME: KEY

 YEAR : Senior / Master’s / Ph.D.

 NAME:

HACETTEPE UNIVERSITY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ELE 491 – SOFTWARE DEVELOPMENT PRACTICES - I

January 21, 2002

14:00 -- 15:30 (Duration is 90 minutes)

Final Exam

Question 1) (20 points) Fill in the blanks.

a) The _&_ operator returns the location in memory where its operand is stored.

b) To simulate call by reference when passing a non-array variable to a function, it is necessary to pass the _address_ of the variable to the function.

c) The _fputs_ function writes a line to a specified file.

d) The file pointers for the three files that are opened automatically by C when program execution begins are names _stdin_, _stdout_, and _stderr_.

e) Naming an array, stating its type, and specifying the number of elements in the array is called _declaring_ the array.

f) A _symbolic constant_ should be used to declare the size of an array because it makes the program more scalable.

g) The three values that can be used to initialize a pointer are _NULL_, _0_, or an _address_.

h) A _struct_ is a collection of related variables under one name.

i) The process of determining if an array contains a certain key value is called _searching_ the array.

j) A field that may contain digits, letters, and blanks is called an _alphanumeric_ field.

k) The bitwise AND operator & is ofter used to _mask_ bits, that is to select certain bits from a bit string while zeroing others.

l) The name of the structure is referred to as the structure _tag_.

m) An _enumeration_ is a set of integers represented by identifiers.

n) The conversion specifiers _%s_ and _%c_ are used to print strings and characters respectively.

o) The conversion specifier _%x or %p_ is used to display unsigned integers in hexadecimal form.

Question 2) (15 points) Determine if the following statements are T (True) or F(False) and circle the appropriate choice.

T / F a) Because the name of an array is a pointer to the first element of the array, array

 names may be manipulated in precisely the same manner as pointers.

T / F b) When a program creates a file, the file is automatically retained by the computer for

 future reference.

T / F c) Structures are implicitly passed to a function call-by-value by default.

T / F d) Data items processed by a computer form a data hierarchy in which data items

 become larger and more comples as we progress from bits to characters to fields, etc.

T / F e) A person’s zip code in an address record (struct) is an example of a numeric field.

T / F f) When structure data must be passed to a function, we can use pointers to constant

 data to get the performance of call by reference and the protection of call by value.

T / F g) Arrays that are declared static are automatically initialized once at compile time.

T / F h) If a static array is not explicitly initialized by the programmer, that array is

 initialized to zero by the compiler.

Question 3)(15 points)Write the output of each printf statement into the corresponding box.
int x = 5;

int main()

{

 printf("%d\n", x);

 {

 int x = 7;

 printf("%d\n", x);

 }

 printf("%d\n", x);

 a();
 b();

 a();

 b();

 c(0);

 c(x)

 printf("%d\n", x);

 return(0);

}

void a(void)

{

 int x = 10;

 printf("%d\n", x);

 x--;

 printf("%d\n", x);

}

void b(void)

{

 static int x = 20;

 printf("%d\n", x);

 ++x;

 printf("%d\n", x);

}

void c(int y)

{

 printf("%d\n", x);

 x += y;

 printf("%d\n", x);

}

Question 4) (30 points) Bitwise Operators. You should carefully follow all the Good Programming Practices given in the textbook in writing your codes.

Write a program that inputs two characters from the keyboard and passes them to function packCharacters. The program should output the characters in their bit format before and after they are packed into the unsigned integer to prove that the characters are in fact packed correctly in the unsigned variable. You should write your own displayChar and displayUnsigned functions to print, correspondingly, a character and unsigned integer in bits.
Hint 1: You do not have to do error checking on input.

Hint 2: Assume that unsigned integers are represented in 2 bytes.
#include <stdio.h>

void displayChar(char);

void displayUnsigned(unsigned);

unsigned packCharacters(char, char);

int main() {

 char ch1, ch2;

 unsigned packedNum;

 printf(“Enter the first character to be packed:\n”);

 ch1 = getchar();

 displayChar(ch1);

 printf(“Enter the second character to be packed:\n”);

 ch2 = getchar();

 displayChar(ch2);

 packedNum = packCharacters(ch1, ch2);

 displayUnsigned(packedNum);

 return 0;

}

void displayChar(char c) {

 int i;

 unsigned mask = 1 << 7; // 1000 0000

 for (i=0; i<=7; i++) {

 putchar(ch & mask ? ‘1’ : ‘0’);

 ch << 1;

 }

}

void displayUnsigned(unsigned u) {

 int i;

 unsigned mask = 1 << 15; // 1000 0000 0000 0000

 for (i=0; i<=15; i++) {

 putchar(u & mask ? ‘1’ : ‘0’);

 u << 1;

 }

}

unsigned packCharacters(char ch1, char ch2) {

 unsigned num = 0; // 0000 0000 0000 0000

 num |= ch2; // 0000 0000 xxxx xxxx

 num <<= 8; // xxxx xxxx 0000 0000

 num |= ch1; // xxxx xxxx yyyy yyyy

 return num;

}
Question 5) (20 points) Arrays. You should carefully follow all the Good Programming Practices given in the textbook in writing your codes.

The bubble sort function for sorting the elements of an array of integers are given below. Write the bubble sort algorithm for sorting the elements of an array of strings.
void bubbleSort(int array[], int size) {

 int pass, j;

 void swap(int *, int *);

 for (pass=1; pass <= size-1; pass++)

 for (j=0; j <= size-1; j++)

 if (array[j] > array[j+1])

 swap(&array[j], &array[j+1]);

}

void swap(int *intptr1, int* intptr2)

{

 int temp = *intptr1;

 *intptr1 = *intptr2;

 *intptr2 = temp;

}

Hint 1: Each element of the array of strings is a char * to the starting location of the corresponding string.

Hint 2: In the integer swap function, you would like to swap to integer elements. Since you need to pass those elements by (simulated) call by reference, you take and send their addresses to the function. A similar logic applies to the string arguments. You may interpret the arguments as two-dimensional character arrays or pointer to strings in the swap function.

void bubbleSort(int *array[], int size) {

 int pass, j;

 void swap(char **, char **);

 for (pass=1; pass <= size-1; pass++)

 for (j=0; j <= size-1; j++)

 if (strcmp(array[j],array[j+1]) > 0)

 swap(&array[j], &array[j+1]);

}

void swap(char **sptr1, char** sptr2)

{

 char temp = *sptr1;

 *sptr1 = *sptr2;

 *sptr2 = temp;

}

// Alternative solution:

swap(array[j], array[j+1]);
 ==>

void swap(char *strptr1, char* strptr2)

{

 char temp[40]; // allocate memory for string to be copied

 strcpy(temp, sptr1);

 strcpy(sptr1, sptr2);

 strcpy(sptr2, temp);

}

a

1/20

2/15

3/15

4/30

b

a

b

5/20

c

c

5

7

5

10

9

10

9

20

21

22

21

5

5

5

10

10

array

strings

ele491-final-solutions-201-21
1 / 1
11 Kasim 1997
ele491-final-solutions-201-21
2 / 5
Created on 20/01/02 22:15

