
JavaSpaces and Jini JavaSpaces

JavaSpaces
• Distributed systems model of

computation
• NOT client-server
• Requesters and providers of services

are decoupled

JavaSpace
provider

requester

Example
• Animator needs to render frames for a

movie
• Writes “request for rendering” entries
• Servers pick up requests – do the work
• Return results to JavaSpace

JavaSpace
animator

server

Scale Up• Add more servers
• Add more animators

JavaSpace
animator

server

server

server animator

Entries
• Participants communicate by

exchanging entries in the space
• An entry is a types group of java

objects (Entry is a java class)
• Entries are put into a space using the

write method
• Participants examine the space using

read and take

Entries, Templates, and
Operations

Four basic operations on a space – params are
Entries and Templates (a special kind of entry)
• write

– writes Entry to space
• read

– read Entry that matches a template
• take

– same as read but removes entry
• notify

– notify an object when entry matching template
arrives in the space

Entry
• An interface
• public interface Entry extends Serializable

{ . . . }
– no code required

Entry with one FIELD
import net.jini.space.Entry;
pubilc class MyEntry implements Entry
{

public String content;
public MyEntry() { }
public int foo() { // do something }

}

public fields
- objects only

Use RMI to get a JavaSpace
RefHolder rh =

(RefHolder) Naming.lookup(“JavaSpace”);

// use the RefHolder’s proxy method to get the space
JavaSpace jspace = (JavaSpace)rh.proxy();

Write Entry to Space
//create an Entry to write in to the space
MyEntry msg = new MyEntry();
msg.content = “ How do you do?”;
//The transaction under which to perform the write
Transaction txn = null;
//The lease duration for this entry
long timeToLive = Lease.FOREVER;
jspace.write(msg, txn, timeToLive);

Read Entry from Space
MyEntry template = new MyEntry();
//Set attribute to be null, act as wildcard

template.content = null;

//time to wait and transaction
long timeToWait = 0L;
Transaction sotxn = null;

MyEntry result = (MyEntry)jspace.read(template, sotxn,
timeToWait);

System.out.println(result.content);

JavaSpaces Matching
Process

• Default:
– match on class or subclass
– match on field value is specified
– if template value is null, any value matches

• User defined matching
– use of equals() method
– equals(Entry, Entry)
– allows return of different type

Jini

Jini – A Network of Java
Virtual Machines

code and data can move
from machine to
machine as needed

JVMs can join and
detach from the
network

JVM JVM

JVM

JVM

Jini Services
• An entity that can be used by a

– person
– program
– another service

• A service can be
– a computation
– storage
– communication channel
– filter
– hardware device

Example Services
• Printing a document
• Translating from one language to

another

– Services can be collected and assembled
– Don’t think client-server

Jini Lookup Service

maps interfaces to objects that
implement the interfaces

point of contact between
system and users

A Service

Jini Lookup Service

a service is added to a lookup
service by a pair of protocols:
-discovery (find a lookup service)
- join (join it)

A Service

Discovery / Join
Jini Lookup Service

a service is a combination of:
- interface (how users can access)
- the object (the interface implementation)

A Service

Discovery / Join Protocol

Lookup Protocol
• A client location finds a service by its

interface (TYPE)
– also possibly other descriptive attributes

• The service object is loaded into the
client (via RMI)
– the client “talks” to the interface

Client and Service Provider

Client

Service Object
(downloaded from Lookup Service)

May be:
-Proxy object
-Actual object
-Some combination

Example

Jini Federationcamera

high resolution
printer

Example
Jini Federationcamera

high resolution
printer

local Jini class
(mediator)

get array of objects
(proxies) for

Lookup Services

Example
Jini Federationcamera

high resolution
printer

get array of objects
(proxies) for

Lookup Services

lookup

printer service

join(pobj, attributes)

Example
Jini Federationcamera

high resolution
printer

lookup

printer service

Example
Jini Federationcamera

high resolution
printer

requests service by
interface (by attributes)

lookup

printer service

Example
Jini Federationcamera

high resolution
printer

printer service

local printer
service

Links
• http://java.sun.com/products/javaspaces
• http://www.sun.com/jini/

The Distributed Landscape

How do they fit together?
• Java Beans
• Enterprise Java Beans
• Java Server Pages (JSP)
• XML
• Jini and JavaSpaces

Classic 3 Tiers
(Web-Enabled)

Client
(Browser) Web

Server Database
Server

N Tiers

Client
(Browser) Web

Server

Database
Server

Support
Components

Database
Server

Middle Tier

Enterprise Java Beans
(EJB)

Enterprise Java Beans
• Component architecture for Java
• EJB is an API

– vendors provide implementation
• EJB based on other Java APIs

– RMI, CORBA, IIOP, JTS

Client Middle Tier
Server

Database
Server

EJBJava Beans

EJB (Server Components)
• Simplifies the development of complex

ENTERPRISE applications
• Components contain only business logic
• Pluggable, reusable components
• Scalability
• Resource Management
• Transaction support
• Concurrency management

EJB Roles
• Component Developer

– “Order entry Bean”
• Server/Container provider

– 3rd party vendors (e.g., BEA)
• Deployer

– sets security parameters
• Tool Vendor
• Application Developer

– connects beans

Client Database
Server

EJBEJB Container

EJB
Server

EJB Server provided by vendor –
must implement the EJB spec

EJB Architecture
• Enterprise Java Bean

– a Java class
– implements some business logic

• EJB Container
– a class that manages the Bean
– if a Bean decides that it cannot complete

its job as part of a transaction, it
notifies its container which handles the
details.

Clients talks to “proxy” object

client
EJB

“proxy”
object

container

EJB

Serverimplements
remote interface

How does client get a “proxy”
object ?

client

container

EJB

ServerJNDI
Java Naming and

Directory Interface

Client gets a “Home Interface”
object – to create the “proxy”

client

container

EJB

ServerJNDI
Java Naming and

Directory Interface

Home
Object

EJB
Proxy

Client talks to “proxy” object

client

container

EJB

Server

EJB “proxy”
Object

implements
remote interface

Types of EJB
• Session Beans

– live for the lifetime of a session
– each client gets a copy
– state not saved

• Entity beans
– represents information stored persistently in a

database
– e.g., Account
– state is preserved

EJB Package (in a jar file)
• The EJB – the Java class file(s)
• Remote Interface

– the methods client will call
• Home Interface

– methods to create (session), find (entity) and
destroy Beans

• Deployment Descriptor
– creation/persistence/transaction/security

settings

Container
• Typically created by EJB

implementation
• Uses Deployment Descriptor of EJB to:

– return proxy object to client
– insert transaction logic into calls to

components
– do security: control access to the Bean’s

services

Container Responsibilities
• Intercept request from client
• Lifecycle duties

– automatic start component or thread when
request arrives

• Persistence duties
– automatically save the component’s state to

disk (for entity beans)
• Transaction duties

– based on Deployment Descriptor of Bean

Six Transaction Options of
EJB

(Specified in Deployment Descriptor)
• BEAN_MANAGED

– EJB itself handles T logic
• NOT_SUPPORTED

– EJB cannot run in a T
• SUPPORTS

– will run in T if one is active
– will run outside T if none is active

Transaction Options (cont’d)
• REQUIRES

– must have a T
– container starts a T if none active

• REQUIRES_NEW
– container starts new T on every call

• MANDATORY
– if a T not active, an exception is thrown

EJB Security
• Container defines the security

options
• Digital certificates automatically

issued for Authorization
– guarantees that the sender really sent

the document
– guarantees that the document received

really is the document sent

Public and Private Key
Cryptography

• Two complementary keys are created
at the same time using a mathematical
formula

“hello”
private key

“zzxydqv”

public key“hello”

Public and Private Key
Cryptography

• Two complementary keys are created
at the same time using a mathematical
formula

“bye”
public key

“avbqwxe”

private key“bye”

Digital Certificates

document

hash Document
Digest

(e.g.,20 bytes)

Certificate

encrypt with
private key

document

Certificate

Send . . .
hash Document

Digest

Document
Digest

decrypt with
public key

should be
the same!

Receiver

EJB Summary
• EJB takes the component model to

the application level
• Provides automatic support for

complex software
– transactions
– security

Java Server Pages
(JSP)

Client Browser

Client
(Browser)

Web
Server

Middle Tier

1. understands HTML
2. can run Applets
3. can trigger programs on server

BUT, Applets are dependent on
browsers doing Java right

Dynamic HTML

Client
(Browser)

Web
Server

Middle Tier

send HTML – use its
display capability and
AVOID applets

Dynamic web pages
-- generated on the server

Server Side Beans

Client
(Browser)

Web
Server

Middle Tier

Beans used to support
Dynamic web page creation

bean

bean

Java Server Pages (JSP)
• A kind of Web page – a combination of

– industry-standard HTML
– JavaServer Pages HTML tags

• The Web server takes action based on
the special JSP tags

• Web server must support JSP –
delivers HTML file to browser after
using component services

.jsp file activation
http://www.zz.com/hello.jsp

Client
(Browser)

Web Server
(capable of JSP)

hello.jsp

bean1 bean2 servlet

EJB

Invoke a .jsp file – with
parameters

• For example,
– http://schnauzer:8080/simple.jsp?name=Smith

Connecting to a Bean
<%= . . . %>

• Inside the JavaServer Pages file:
<p> The name of the row is

<%=foobar.getRowName()%>
</p>

foobar is the name
of the Java Bean

<html>
<body>
<USEBEAN NAME=bar

TYPE=jsp.beans.LunchSpecial LIFESPAN=page>
<SETONCREATE BEANPROPERTY=“soup”

VALUE=“clam chowder”>
<SETONCREATE BEANPROPERTY=“dessert”

VALUE=“lemon meringue pie”>
</USEBEAN>
<h1>Welcome to Jake’s Emporium! </h1>
. . .

<h2>Today’s Lunch Special is: </h2>
<p>

 Hot and tasty

<DISPLAY PROPERTY=“bar:soup”
PLACEHOLDER=“tomato”> soup

 Hearty
<DISPLAY PROPERTY=“bar:sandwich”
PLACEHOLDER=“cheese”> sandwich

 Homemade
<DISPLAY PROPERTY=“bar:dessert”
PLACEHOLDER=“apple”>

</p>
</body>
</html>

Output
Welcome to Jake’s Emporium!

Today’s Lunch Special is:

Hot and tasty clam chowder soup
Hearty cheese sandwich

Homemade lemon meringue pie

Why JavaServer Pages
• Component development is cleanly

separated from Web design
• Write dynamic Web page simply
• Run on any Web server
• Access them from any Web browser
• Any server that can run Java can run

JavaBeans and/or Java Servlets

Java Servlets

An alternative to CGI

Java Servlets vs. CGI
• Java Servlets written entirely in Java:

– Write-once Run-anywhere, safe network
delivery, and scalability

• Servlets execute 10 to 15 times faster
than CGI on a Java Web server

• Servlets architectured to eliminate the
expensive resource and performance
hits of CGI

Servlet Execution
http://yourhost.com/cgi-bin-dir/servlet.sh/servlet-name

For the Servlet CGI execution engine to find your
servlet, there must be a line in the
servlet.properties file of the form:
– servlet.class.servlet-name=servlet-class-name

Java Server Pages
or Servlets?
Design Decision

Model 1: Request to a JSP file
• Client web browser makes direct request of a

JSP file
• JSP file requests information from a

JavaBean
• JavaBean can in turn request information

from an EJB or a database
• JavaBean generates content (perhaps working

with an EJB, a database, or both)
• JSP file can query and displays the Bean’s

content

Model 2: Request to Java Servlet
• Client requests are handled by a Java

Servlet
• The servlet generates the dynamic content

– uses JDBC to communicate with a database to
obtain the content

• The servlet wraps the dynamic content into
a bean

• The JSP file accesses the dynamic content
from the bean and displays the content in
the client web browser

XML
Extensible Markup Language

XML
• SGML – Standard Generalized Markup

Language
– HTML – Hypertext Markup Language

<H1>Top Heading</H1>

– XML
<MyTag>Top Heading<MyTag>

+ DTD – Document Type Definition

Natural Synergy
• Java

– portable code
– runs on any platform

• XML
– portable data description
– runs on any platform

DTD – Defines a Data Type
< ! ELEMENT BILLING_PARTY
(ACCT_Number, NAME?, ADDR?, CITY?, STATE?, ZIP?) >

– Name, address, city, state and zip are optional.

XML
<INVOICE>
<BILLING_PARTY>

<ACCT_Number>Z1024</ACCT_Number>
<NAME>John Smith</NAME>
<ADDR>123 Elm St.</ADDR>
<CITY>New York</CITY>
<ZIP>10023</ZIP>

</BILLING_PARTY>
</INVOICE>

Uses for XML*

XML HTML Browser

Sales
Application

Database

Use for XML*

XML

XML*

XML

Distributed Object View
Servlets

JavaBeans

EJBJSP

XML

END

