
Chapter 9
Collaborative Systems

What is a Collaborative
System ?

A system where multiple users or
agents engage in a shared activity,
usually from remote locations.

Characteristics of CS
• agents working together towards a

common goal
• have a critical need to interact closely

w/each other
– sharing info
– exchanging requests
– checking on each others’ status

• have certain level of concurrency
– agents interacting with system and with each

other at roughly the same time

Examples
• A chat session is a CS
• An e-mail client is not

Elements of a CS (or DS)
• Autonomous or user-driven agents
• Operational or data servers
• Dynamic and persistent data

repositories
• Transactions between agents,

servers, and data

CS Examples
• Shared whiteboards
• Interactive chat
• Distributed or parallel compute

engines
• Coordinated data search agents (e.g.,

web robots)

A
u
t
o
n
o
m
o
u
s

Issues with COllaboration
• Communication needs
• Maintaining agent identities
• Shared state information
• Performance

Communication needs
• Must be flexible in its ability to route

transactions
– underlying communication must support

• pt-to-pt messages between agents,
• broadcast messages
• “narrowcast” or multicast messages
• passing objects

• E.g., An interactive chat server
supporting chat rooms

Maintaining agent identities
• To be able to address and deliver

messages,
• To restrict access to certain resources by

using authentication
• To maintain resources associated with

individual agents

E.g.,shared whiteboard application: a virtual drawing
space that multiple remote users can view and
write on in order to share information, ideas, etc.

Shared state information
• Data and resources are shared among

participants in CS
– A cooperative effort among computing

agents is usually expressed in terms of a
set of shared data

E.g., in shared whiteboard application, a reasonable
and consistent way to determine how to merge
incoming requests.

Performance
• There exists a tradeoff between keeping

shared state consistent across all agents
and maximizing the overall performance.
– A central mediator acting as a clearinghouse

for agent events
- updates are sequenced correctly across all agents
- can become a bottleneck

– Peer-to-peer system
+ better performance
- difficult to maintain concurrency

A Basic Collaborative
Infrastructure

• Involves a single mediator (the server)
handling interactions among multiple
collaborators (clients).

• Each collaborator has a unique identity,
issued by the mediator

• Each collaborator can
– either broadcast messages to all of the

collaborators registered with the mediator,
– or it can send a message to a single

collaborator.

The right communication
scheme ?

• basic socket communications
• message passing
• RMI remote objects
• CORBA remote objects

Building the Infrastructure
with Message Passing

• We start with message-passing
framework of Ex 6-10, Ex 6-11.

• Multiple agents pass Messages to
each other through a single
MessageHandler
– Each Message object has an identifier

and a set of arguments.

MessageHandler class
• read messages from network
• construct Message objects from the data

received
– according to message identifier, choose the

right Message prototype from the list
– The set of Message prototypes serves to

define the message protocol that the
MessageHandler understands and can be
updated on the fly if needed

• call the Message’s Do() method to handle
the message locally

MessageHandler of Ex 6-10
is not sufficient

• Only supports point-to-point message
passing

• Options:
– create a MessageHandler object for

each agent we want to talk to
– upgrade MessageHandler to manage

multiple network connections to agents

Multi-Agent Message
Handler Class

Two utility classes:
• AgentConnection

– holds a pair of input and output streams
connected to a remote agent

• AgentHandler
– takes care of listening to a particular

agent for asynchronous messages

Updated MessageHandler class

Ex 9-1

• MessageHandler maintains a table of agent
connections, associating each connection
with an ID number (see buildMessage
method)

• A set of methods for adding, removing, and
getting agent connections has been added:
– addAgent()
– removeAgent()
– protected getAgent() – to get the associated

AgentConnection
• To be able to specify which agent to talk to

readMsg() and sendMsg() were overridden

Adding a new agent to
MessageHandler

• one of the addAgent() methods is used
• an AgentConnection is made

– to hold InputStream and OutputStream
connected to the agent

– the connection is stored in a Hashtable using
the agent’s ID number as the key, along with
a reference to the MessageHandler

– a new thread is started for AgentHandler

• Synchronizations are necessary
– in readMsg() and sendMsg() to

synchronize on the input and output
streams of each agent.

– in all methods for adding and removing
agents from the MessageHandler to
allow asynchronous agent handling.

Building Collaborative
Infrastructure

• Collaborators – agents that work
together towards the common goal of
the system

• Mediators – serve to facilitate the
communications among the
collaborators

The Identity class
• CS need to provide an identity for each

agent in the system,
– so that transactions can be targeted and traced

to individual agents
– Properties list

• name property – a descriptive name
• id property – an internal identifier used to tag each

collaborator uniquely
• further properties in the form of serializable objects

– Why implements Serializable interface?

A collaborator needs to …
• have a unique identifier in the system,

so that messages can be routed to it
• be able to connect to mediators, or to

other collaborators, to engage in
communication with them

• be able to connect to send messages
and to be notified of incoming
messages

A Collaborator Interface

Example 9-3

• getIdentity() – returns an identity
• connect() – opens a remote connection to a

remote mediator or collaborator
– arguments specify how to locate the agent on

the network
• send() and broadcast() to send messages
• notify() – through which messages are

received

A mediator needs to
• be able to register new collaborators

by providing them with unique
identifiers

• send messages to individual
collaborators

• broadcast messages to all
collaborators that it has registered

A Mediator Interface

Example 9-4

• newMember() – generates a unique id
for a new collaborator

• removeMember() – removes
collaborator from Mediator’s registry

• send() and broadcast() Same interfaces can be used
whatever the underlying
communication scheme is.

MessageMediator class
• implementation of Mediator interface
• uses MessageHandler to route messages

back and forth between remote agents
• Has a

– a MessageHandler to route messages
– a ServerSocket to accept socket connections

from remote agents
– a port number that it listens to for connections

• It also implements Runnable interface

run() method
• creates a ServerSocket listening for

asynchronous connections from agents at its
designated port - loops continuously trying to
accept connections over the socket

• When a new connection is made, a new agent
is added to the handler by calling its
addAgent() method

• Mediator: creates a new Identity for the
agent and sends a message to the agent
containing its identity

A Mediator Based on
Message Passing

Example 9-5

