Chapter 9
Collaborative Systems

What is a Collaborative
System ?

A system where multiple users or
agents engage in a shared activity,
usually from remote locations.

Characteristics of CS

= agents working together towards a
common goal

« have a critical need to interact closely
w/each other
- sharing info
— exchanging requests
— checking on each others’status

« have certain level of concurrency

— agents interacting with system and with each
other at roughly the same time

Examples

* A chat session is a CS
* An e-mail client is not

Elements of a CS (or DS)

= Autonomous or user-driven agents

= Operational or data servers

« Dynamic and persistent data
repositories

* Transactions between agents,
servers, and data

weco3I oS ome >

CS Examples

« Shared whiteboards

« Interactive chat

= Distributed or parallel compute
engines

« Coordinated data search agents (e.g.,
web robots)




Issues with COllaboration

e Communication needs

= Maintaining agent identities
* Shared state information

« Performance

Communication needs

« Must be flexible in its ability to route
transactions
— underlying communication must support
- pt-to-pt messages between agents,
« broadcast messages
= “narrowcast” or multicast messages
= passing objects
« E.g., An interactive chat server
supporting chat rooms

Maintaining agent identities

* To be able to address and deliver
messages,

« To restrict access to certain resources by
using authentication

« To maintain resources associated with
individual agents

E.g.,shared whiteboard application: a virtual drawing
space that multiple remote users can view and
write on in order to share information, ideas, etc.

Shared state information

= Data and resources are shared among
participants in CS
— A cooperative effort among computing
agents is usually expressed in terms of a
set of shared data

E.g., in shared whiteboard application, a reasonable
and consistent way to determine how to merge
incoming requests.

Performance

* There exists a tradeoff between keeping
shared state consistent across all agents
and maximizing the overall performance.

— A central mediator acting as a clearinghouse
for agent events
- updates are sequenced correctly across all agents
- can become a bottleneck
— Peer-to-peer system
+ better performance
- difficult to maintain concurrency

A Basic Collaborative
Infrastructure

= Involves a single mediator (the server)
handling interactions among multiple
collaborators (clients).
= Each collaborator has a unique identity,
issued by the mediator
« Each collaborator can
— either broadcast messages to all of the
collaborators registered with the mediator,
— or it can send a message to a single
collaborator.




The right communication
scheme ?
= basic socket communications
O e message passing
= RMI remote objects
= CORBA remote objects

Building the Infrastructure
with Message Passing

* We start with message-passing
framework of Ex 6-10, Ex 6-11.

= Multiple agents pass Messages to
each other through a single
MessageHandler

— Each Message object has an identifier
and a set of arguments.

MessageHandler class

= read messages from network
= construct Message objects from the data
received

— according to message identifier, choose the
right Message prototype from the list

— The set of Message prototypes serves to
define the message protocol that the
MessageHandler understands and can be
updated on the fly if needed

« call the Message s Do() method to handle
the message locally

MessageHandler of Ex 6-10
is not sufficient

« Only supports point-to-point message
passing
« Options:
— create a MessageHandler object for
each agent we want to talk to

— upgrade MessageHandler to manage
multiple network connections to agents

Multi-Agent Message
Handler Class

Two utility classes:
« AgentConnection
— holds a pair of input and output streams
connected to a remote agent
« AgentHandler

— takes care of listening to a particular
agent for asynchronous messages

Updated MessageHandler class

Ex 9-1




* MessageHandler maintains a table of agent
connections, associating each connection
with an 1D number (see buildMessage
method)

« A set of methods for adding, removing, and

getting agent connections has been added:

— addAgent()

— removeAgent()

— protected getAgent() — to get the associated
AgentConnection

To be able to specify which agent to talk to

readMsg() and sendMsg() were overridden

Adding a new agent to
MessageHandler

= one of the addAgent() methods is used

= an AgentConnection is made

— to hold InputStream and OutputStream
connected to the agent

— the connection is stored in a Hashtable using
the agent’ ID number as the key, along with
a reference to the MessageHandler

— anew thread is started for AgentHandler

* Synchronizations are necessary

— in readMsg() and sendMsg() to
synchronize on the input and output
streams of each agent.

— in all methods for adding and removing
agents from the MessageHandler to
allow asynchronous agent handling.

Building Collaborative
Infrastructure

= Collaborators — agents that work
together towards the common goal of
the system

* Mediators — serve to facilitate the
communications among the
collaborators

The Identity class

« CS need to provide an identity for each
agent in the system,
— so that transactions can be targeted and traced
to individual agents
— Properties list
= name property —a descriptive name
= id property - an internal identifier used to tag each
collaborator uniquely
= further properties in the form of serializable objects

— Why implements Serializable interface?

A collaborator needs to ..

= have a unique identifier in the system,
so that messages can be routed to it

« be able to connect to mediators, or to
other collaborators, to engage in
communication with them

« be able to connect to send messages
and to be notified of incoming
messages




A Collaborator Interface

Example 9-3

getldentity() — returns an identity
connect() — opens a remote connection to a
remote mediator or collaborator

— arguments specify how to locate the agent on
the network

send() and broadcast() to send messages

notify() — through which messages are
received

A mediator needs to

« be able to register new collaborators
by providing them with unique
identifiers

= send messages to individual
collaborators

* broadcast messages to all
collaborators that it has registered

A Mediator Interface

Example 9-4

= newMember() — generates a unique id
for a new collaborator

« removeMember() — removes
collaborator from Mediator’ registry

= send() and broadcast()

Same interfaces can be used
whatever the underlying
communication scheme is.




MessageMediator class

implementation of Mediator interface
uses MessageHandler to route messages
back and forth between remote agents
Has a

— a MessageHandler to route messages

— a ServerSocket to accept socket connections
from remote agents

— a port number that it listens to for connections
It also implements Runnable interface

run() method

« creates a ServerSocket listening for
asynchronous connections from agents at its
designated port - loops continuously trying to
accept connections over the socket

« When a new connection is made, a new agent
is added to the handler by calling its
addAgent() method

« Mediator: creates a new ldentity for the
agent and sends a message to the agent
containing its identity

A Mediator Based on
Message Passing

Example 9-5




