
Topic 3
Distributed Objects

Part A

Overview
• Early Distribution – RPC
• CORBA – Common Object Request

Broker Architecture
• RMI – Remote Method Invocation

Distributed Computing
• The search for ways to unify multiple

networked machines so that they can
– share information
– share resources

• Driving force:
– workstations and local area networks

• But, progress has been slow

Difficulties in distributed
computing

• Heterogeneous environments
– different operating systems, languages

• Network reliability
– life is easier on a single machine

The Goal of Distributed
Object Computing

foo()

Objects in a single address space

The Goal of Distributed
Object Computing

foo()

talk to objects
in a different address space

as if the object is local

Internet

foo()

Remote Procedure Call
(RPC)

• Available in pre-Java era
• Allows a procedure call to be made

from one machine to another
• To the programmer it looks like a

local call
• RPC requires programmers to register

their programs with Port Mapper

Remote Procedure Call
• Allows a thread of control in one

process to call a function in another
process – perhaps on another machine

foo(data)

data returned

RPC
if (x > 3)

foo ();
else

bar();

Lives on local machine

Lives on remote machine –
193.164.1.20 on port 2345

Vocabulary
• remote object

– an object that can be called from
another machine

– implements a remote interface
– also called a server

• client
– an object that talks to a remote object;

the call can come from an applet or
application

Programming with Sockets
and Streams

ObjectStreams

• PRO
– Efficient, programmer is in control

• CON
– Programmer must be in control
– Some object must “know” about the

sockets and streams

Ideal World
(no Sockets or Streams)

object A object B

A talks to B
as if B were local

General architecture for
distributed object systems

Object
Interface

Specification

ID
L

C
om

pi
le

rs

Registration
Service

Server
Implementation

Object
Skeletons

Object
Storage

Object Manager

Naming Service

Client Application

Client stub
interface

Remote object transactions
at runtime
Server Object

Implementations

Object
Skeletons

Object Manager Naming Service

Client Application

Object
Stubs1. Request

object

3. Object
handle

2. Resolve
object 4. Object

interactions

Environment may be also
used in

a peer-to-peer manner!

Shared
or not

Object Interface
Specification

• Consider a truly open system for
distributing objects:
– clients should be able to access

regardless of their impl. details
• hardware platform, software language

– server should be able to implement an
object in whatever way it needs to
• option of wrapping existing services with

object interfaces

• Platform-independent means for
specifying object interfaces:
– Interface Definition Language (IDL) in

CORBA
– Interface Specification Language (ISL) in

Xerox’s Inter-Language Unification (ILU)
system

– Component Model Language (COM) in
Microsoft’s DCOM system

Object manager
• manages the object skeletons and

object references on an object
server

• Its role (object creation, call/result
routing, destruction) is similar to
– CORBA’s Object Request Broker (ORB)
– RMI’s registry system

• Further roles:
– dynamic object activation/deactivation

• via corresponding registered methods
– persistent objects

• via a method for storing/retrieving state
after de/activation

• Where to put object manager?

Registration/Naming Service
• Implementation of an interface needs

to be registered so that it can be
addressed by clients
– routes clients’ requests/method

invocations to proper object server
– helps OM in supporting object

de/activation, and persistent objects

Object Communication
Protocol

• A general protocol for handling
remote object requests
– a means for transmitting and receiving

object references, method references,
and data in the form of objects of basic
data types.

Development Tools
• Object i/f editors
• Project managers
• Language cross-compilers
• Symbolic debuggers
• Tools for monitoring and diagnosing

object systems
• Load simulation and testing tools

Security
• Agents making requests of the object

broker
– authentication, authorization, access

control
• Transactions between agents and the

remote objects
– encryption

Distributed object schemes
for Java

• To be explained using an Example
involving a generic problem solver,
which we will distributed using both
CORBA and RMI
– Solver: acts as a generic computing

engine that solves numerical problems
– ProblemSet : holds all information

describing a problem and fields for
solution

package dcj.examples;
import java. io.OutputStream ;
public interface Solver {

// Solve the current problem set
public boolean solve();

// Solve the given problem set
public boolean solve(ProblemSet s, int numIters);

// Get/set the current problem set
public ProblemSet getProblem ();
public void setProblem(ProblemSet s);

// Get/set the current iteration setting
public int getIterations ();
public void setIterations (int numIter);

// Print solution results to the output stream
public void printResults (OutputStream os);

}

A Problem Set Class
package dcj.examples;

public class ProblemSet {
protected double value = 47.0;
protected double solution = -1.0;

public double getValue() { return value; }
public double getSolution () { return solution; }
public void setValue(double v) { value = v; }
public void setSolution(double s) { solution = s; }

}

CORBA (Common Object
Request Broker Adapter)

object A object B

A talks to B
as if B were local

CORBA
• Based on a consortium of over 700

companies called the Object
Management Group (OMG)
– except Microsoft which has its own

Distributed Component Object Model
(DCOM)

• Designed to allow components to find
and talk to each other on an Object
BUS

CORBA
• 1991 – Specification for object interaction

– based on IDL – Interface Definition Language
• 1994 – CORBA 2.0

– defined interoperability between objects in
heterogeneous systems

• IIOP – Internet Inter-ORB Protocol
– for interoperability over the Internet

CORBA
• meant to be platform- and language-

independent
– client stub interfaces to the objects
– the server implementations of these

object interfaces
can be specified in any programming language

Elements of CORBA
framework

• An Object Request Broker (ORB)
– means to make/receive requests

• Methods for specifying interfaces
that objects in the system support
– IDL (static) and DII (dynamic)

• Inter-ORB Protocol (IIOP)
– a binary protocol for communication

between ORBs

C C++ Java

IDL IDL IDL

Client

C COBOL Smalltalk

IDL IDL IDL

Server

ORB

IDL
• Interface Definition

Language
• The CORBA “glue”
• Language

independent
interfaces to the
ORB (the BUS)

IDL

ORB

ORB
• The object “BUS” =

middleware
• Allows objects make

requests to – and
receive responses
from other objects
on the bus

IDL

ORB

CORBA’s ORB is an interface
specification
• Different vendor ORBs may

make very different
implementation choices

• Each vendor supplies their own
IDL compiler

• How object references are
passed on an ORB is up to each
vendor

IDL

ORB

IIOP
Internet Inter-ORB Protocol

• Defines interface for passing
object references across
different vendor ORBs

IDL

ORB

ORB

IIOP

CORBA Services
• CORBA provides services to

support component
communicationIDL

ORB

Naming Persistence Transaction Security

CORBA ORB Vendors
• Visigenic
• Iona
• Inprise

CORBA Development

Ideal World
(No Sockets of Streams)

object A object B

A talks to B
as if B were local

Local

CORBA World

object A
object B

stub

talks to a
proxy for B

ORB

skeleton

Example: Remote Object
Count

int sum;

int increment()
// increments and returns sum

need to define an IDL interface

int sum

int increment()

IDL Types vs Java Types
IDL Type
• long
• short
• float
• double
• char
• boolean
• octet

Java Mapping
• int
• short
• float
• double
• char
• boolean
• byte

Count IDL
module Counter {

interface Count {
attribute long sum;
long increment()

};
}; Uses IDL datatypes

module DCJ {
module examples {

interface ProblemSet {
double getValue();
double getSolution ();
void setValue(in double v);
void setSolution(in double s);

};
interface Solver {

boolean solveCurrent ();
boolean solve(inout ProblemSet s,

in long numIters);
ProblemSet getProblem ();
void setProblem(inout ProblemSet s);
unsigned long getIterations ();
void setIterations (in unsigned long numIter);

};
};

};

Uses IDL datatypes
No constructors

No method overloading

CORBA IDL

idl2 java
compiler

stub

Client java files Server java source files
skeleton interface

count.idl

idl2 java
compiler

stub
skeleton

java compiler
(javac)

Java Interface
(generated by idl2.java)

public interface Count extends CORBA.Object
{

public int sum() throws CORBA. SystemException ;
public void sum(int val) throws CORBA. SystemException ;
public int increment() throws CORBA. SystemException ;

}

idl2java JavaIDL
package DCJ.examples;
public interface Solver extends org. omg.CORBA.Object
{

boolean solveCurrent ();
boolean solve(DCJ.examples. ProblemSetHolder s,

int numIters);
DCJ.examples. ProblemSet getProblem ();
void setProblem(DCJ.examples. ProblemSetHolder p);
int getNumIterations ();
void setNumIterations (int i);

}

modules converted to packages
inout method args -> holder types

The holder classes act as streamable versions of the main class;
ORB uses these to xmit instances of the i/f as remote method args

Client stubs
• The compiler also generates client stubs

for interfaces in IDL that implements
the Java base class for the object:
public class _ SolverStub
extends org. omg.CORBA.portable. ObjectImpl
implements dcj.examples.Solver {
. . .

ObjectImpl class provides the i/f used by client ORB
to un/marshal remote method args.

Server skeleton
• The compiler also generates a skeleton for

object implementation:

public abstract class _SolverImplBase
extends org. omg.CORBA.portable. ObjectImpl
implements dcj.examples.Solver
implements org. omg.CORBA.portable. Skeleton{
. . .

The server ORB will be looking for Skeleton interface
when invoking methods on the object implementation

_ProblemSetImplBase class
is also generated

• The last step in setting up our remote
object for business is:
– to extend the _SolverImplBase class and

the _ProblemSetImplBase class
– and to implement the methods defined in

their base interfaces.

idl2 java
compiler

Template for
implementation

public void sum(int sum) throws
CORBA.SystemException {

// implement operation
}

add
actual
code

idl2 java
compiler

Template for
implementation

public void sum(int sum) throws
CORBA.SystemException {

sum = val;
}

add
actual
code

Java Count Implementation
(generated by idl2java)

public class CountImpl extends _sk_Count
implements Count{

private int sum;

public CountImpl(String name) {
super(name); }

public int sum() throws CORBA. SystemException {
//implement attribute reader }

public void sum(int val) throws CORBA. SystemException {
// implement attribute writer }

public int increment() throws CORBA. SystemException {
// implement operation }

}

Java Count Implementation
(modified by programmer)

public class CountImpl extends _sk_Count
implements Count{

private int sum;

public CountImpl(String name) {
super(name); sum = 0; }

public int sum() throws CORBA. SystemException {
return sum; }

public void sum(int val) throws CORBA. SystemException {
sum = val; }

public int increment() throws CORBA. SystemException {
sum++; return sum; }

}

Server Program
public class CountServer
public static void main(String[] args)
{

// initialize the server orb
CORBA.ORB orb = CORBA.ORB.init();
// initialize the BOA (Basic Object Adapter)
CORBA.BOA boa = orb.BOA_Init();
// init the Count object and connect to ORB
CountImpl count = new CountImpl(“myCount”);
orb.connect(count);
// export the ORB
boa.obj_is_ready(count);
// ready to service requests …

Object can also be registered
to ORB’s naming service

Client Program
public class CountClient
public static void main(String[] args)
{

// initialize the orb
CORBA.ORB orb = CORBA.ORB.init();
// bind the Count object
// Count_var is class created by idl2java
Count counter = Count_var.bind(“ myCount”);
// use the Count object
counter.sum(0);
counter.increment();

remote

