
1

1

Trees
Linear lists
• e.g.,arrays, stacks, queues, and linked

lists
• have a unique first and last element
• each interior item has a unique

successor

Tree is a nonlinear structure
• a member may have multiple successors

A Family Tree

brother child sister

father uncle aunt

grandfather

2

Tree Terminology

• A tree consists of nodes and branches.

brother child sister

father uncle aunt

grandfatherroot

leaves

parent

children

E

I J

F

B

G

C

H

D

A

ancestors
of H

descendants
of A

leaves (leaf nodes)

A subtree
rooted at B

3

• The level of a node is the length of
the path from the root to the node.

• The depth of a tree is the maximum
level of any node in the tree.

A

B C D

E F

G H

Level 0

Level 1

Level 2

Level 3

4

Binary Trees
• Each node may have 0, 1, or 2 children.
• A binary tree has a recursive

structure: each node is the root of its
own subtree and has children.

• At any level n, a binary tree may
contain from 1 to 2n nodes.

• Density is a measure of the size of a
tree (number of nodes) relative to the
depth of the tree.

E

G H

left
child

right
child

5

Various Tree Types
Degenerate tree
• there is a single leaf node and each

nonleaf node has only one child
– this is equivalent to a linked list

Complete binary tree
• N is a tree in which each level 0 to

N-1 has a full set of nodes and all
leaf nodes at level N occupy the
leftmost positions in the tree.

Full tree
• A complete binary tree that contains

2N nodes at level N.

6

Binary Tree Structure
• A binary tree structure is built with

nodes.
• A tree node contains a data field and

two pointer fields:
– left pointer (left)
– right pointer (right)

• The root node defines an entry point
into the binary tree

• A pointer field specifies a node at
the next level in the tree.

• A leaf node has a NULL left and
right pointer.

left data right

left data right

TreeNode

2

7

TreeNode Class
#ifndef TREENODE_CLASS
#define TREENODE_CLASS

#ifndef NULL
const int NULL = 0;
#endif // NULL

// BinStree depends on TreeNode
template <class T>
class BinSTree;

// declares a tree node object for a binary tree
template <class T>
class TreeNode
{

. . .
}
#endif // TREENODE_CLASS

8

// TreeNode applications, protected and private are equivalent
template <class T>
class TreeNode
{
protected:

// points to the left and right children of the node
TreeNode<T> *left;
TreeNode<T> *right;

public:
// public member allowing the client to update its value
T data;

// constructor
TreeNode (const T& item,

TreeNode<T> *lptr = NULL,
TreeNode<T> *rptr = NULL);

// virtual destructor.
virtual ~TreeNode(void);

// access methods for the pointer fields
TreeNode<T>* Left(void) const;
TreeNode<T>* Right(void) const;

// BinTree needs access to left and right
friend class BinSTree<T>;

};

9

// constructor. initialize the data and pointer fields.
// the pointer NULL assigns an empty tree
template <class T>
TreeNode<T>::TreeNode (const T& item,

TreeNode<T> *lptr,
TreeNode<T> *rptr)

: data(item), left(lptr), right(rptr)
{}

// method Left allows the user to reference the left child
template <class T>
TreeNode<T>* TreeNode<T>::Left(void) const
{

// return the private member value left
return left;

}

// method Left allows the user to reference the right child
template <class T>
TreeNode<T>* TreeNode<T>::Right(void) const
{

// return the private member value right
return right;

}
10

// does nothing. exists so nodes derived from it will be
// destroyed properly by delete. used in Chapter 13 for
// AVL trees
template <class T>
TreeNode<T>::~TreeNode(void)
{}

