
1

1

Abstract Data Types (ADTs)

Data abstraction defines the domain and structure
of the data, along with a collection of operations that
access the data.

ADT is an abstract model that describes an interface
between a client (user) and the data.

An ADT describes
• The data elements which make up the type,
• Data handling operations which can be performed

on those elements.

2

ADT Format: A special format to describe an ADT.
ADT ADT_Name is

Data
Describe the structure of the data.

Operations
Constructor

Initial values:Data used to initialize an object.
Process: Initialize the object.

Operation1
Input: Data from the client.
Preconditions: Necessary state of the system before

executing the operation.
Process: Actions performed on the data.
Output: Data returned to the client.
Postconditions:State of the system after executing

the operation.
Operation2

. . .
OperationN

. . .
end ADT ADT_Name

3

Application: Dice Game
• A gaming program involves tossing a set of dice.
• In the design, the dice are described as an ADT.

• Dice ADT’s data includes :
– the number of dice that are tossed, and
– a list that identifies the value of each die in the last toss.

• Dice ADT’s operations include :
– tossing the dice,
– returning the sum of the dice on a toss, and
– printing the value of each individual dice in the list.

Data: diceTotal, diceList
Operations: Toss, Total, DisplayToss

4

Ex: Dice ADT
ADT Dice is

Data
The number of dice (>=1) in each toss.
An integer value containing the total of the dice on last toss.

Operations
Constructor

Initial values:The number of dice to be tossed.
Process: Initialize the data values

Toss
Input: None.
Preconditions: None.
Process: Toss the dice and compute the dice total.
Output: None.
Postconditions:The total contains the sum of the dice

on the toss, and the list identifies
the value of each die in the toss.

DieTotal
. . .

DisplayToss
. . .

end ADT Dice

5

Application: Pool Construction
• Building code requires that a concrete

walkway must surround a swimming pool and
that the entire area must be enclosed by a
fence.

• The current fencing costs are $10 per meter
and concrete costs are $5 per square meter.

• The application assumes that the width of the
walkway is 1 meter, and the client specifies
the radius of the circular pool.

6

Ex: Circle ADT
ADT Circle is

Data
A non-negative real number specifying the radius of
the circle.

Operations
Constructor

Initial values:The radius of the circle.
Process: Assign an initial radius value.

Area
Process: Compute the area of the circle.
Output: Return the area.

Circumference
Process: Compute the circumference of the

circle.
Output: Return the circumference.

end ADT Circle

2

7

C++ Classes (cont’d)
Message Passing: giving of an order to a receiving

object by a client (sender) for it to perform some
task.

State Change: When the receiving object performs
some operation, it may update some of its internal
data values and its state changes (i.e., new
postconditions occur)

Class declaration: A C++ class is normally given by
first declaring the class without defining the member
functions. This is a concrete representation of an ADT.

Class definition: The actual definition of the class
methods.

8

C++ Classes and ADTs
C++ provides the class data type to represent ADTs.

A class type consists of:
• Data members
• Methods: operations for handling data members.

Object: a variable of the class type.
Circle Class

private:
radius

public:
Constructor

Area
Circumference

9

C++ Classes (cont’d)
A class contains two separate parts:
• The public part: describes an interface for the

client.
• The private part: contains the data and internal

operations that assist in the implementation of
the data abstraction.

Encapsulation: The class encapsulates
information by bundling the data items and
methods , and treating them as a single entity.

Information hiding: The class structure hides
implementation details and carefully restricts
outside access to both the data and operations.

10

#include <iostream.h> // Application: Pool Construction

const float PI = 3.14152;
cost float FencePrice = 10;
const float ConcretePrice = 5;

. . .

void main()
{

float radius;
float FenceCost, ConcreteCost;

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

cout << “Enter the radius of the pool:”;
cin >> radius;

. . .
}

11

Designing New Objects by Code Reuse

Composition: more complex classes may contain that are
themselves data objects

Point Class Line Class Rectangle Class

12

Designing New Objects by Code Reuse
Class Inheritance: a new class may be built as refinement

of a previously defined class.

My Parent

Me

Mammal
Warm blooded, has hair, nourishes its young with milk

Dog
Canine teeth, meet eater, particular skeletal structure

Çoban
Thick hair, white and black hair

Base class

Derived class

A derived class can use data and operations of the base class
and can add new operations or overwrite some of its base
class operations.

3

13

The SeqList ADT
ADT SeqList is
Data
A nonnegative integer
specifying the size of the
list.
A list of data items.

Operations
Constructor
In:None.
Process: Set the size to 0.

ListSize
In:
Pre:
Process:
Output:
Post:

ListEmpty
In:
Pre:
Process:
Output:
Post:

ClearList
In:
Pre:
Process:
Output:
Post:

Find
In:
Pre:
Process:
Output:
Post:

Delete
In:
Pre:
Process:
Output:
Post:

14

The SeqList ADT (cont’d)
DeleteFront

In:
Pre:
Process:
Output:
Post:

GetData
In:
Pre:
Process:
Output:
Post:

end ADT SeqList

ADT OrderedList is
Data <same as SeqList ADT>
Operations
Constructor <executes the base

class constructor>
ListSize <same as SeqList ADT>
ListEmpty <same as SeqList ADT>
ClearList <same as SeqList ADT>
Find <same as SeqList ADT>
Delete <same as SeqList ADT>
DeleteFront <same as SeqList ADT>
GetData <same as SeqList ADT>
Insert

In: Item to insert in the list
Pre: -
Process: Add new item in order
Output: -
Post: List has new item and its

size increases by 1.
end ADT OrderedList

15

SeqList Class

private:
<impl.details>

public:
Constructor
ListEmpty
ClearList
ListSize
Find
Insert
Delete
DeleteFront
GetData

OrderedList Class

private:

public:
Constructor
Insert

Base class

Derived class

16

SeqList and OrderedList Class Specifications
class SeqList {

private:
DataType listitem[SIZE];
int size;

public:
SeqList(void);

int ListSize(void) const;
int ListEmpty(void) const;
int Find(DataType& item)const;
DataType GetData(int pos)const;

void Insert(const DataType&item);
void Delete(const DataType&item);
DataType DeleteFront(void);
void ClearList(void);

};

class OrderedList:public SeqList
{

public:
OrderedList(void);
void Insert(const DataType&

item);
};

