
1

1

Function Overloading
C++ enables several functions of the same name to be 
defined

– as long as those functions’ signatures (i.e., arguments’ 
type, order, and number ) are different.

#include <iostream.h>
int square(int x) {return x * x};

double square(double y) {return y * y};

main() {
cout << “The square of 7 is ” << square(7) 

<< “The square of 7.5 is ” << square(7.5);
}

Compare this 
to macros in C

2

C Macros
#define INVALIDSQUARE(x)  x * x 

#define SQUARE(x)  (x) * (x)

cout << SQUARE(7);
is expanded to . . .

cout << SQUARE(2 + 3);
is expanded to . . . 

+ C++ has inline functions that also does type checking of args: 
inline int square(int x) { return x * x; } 

+ C++ has function templates that does a similar job but also do
type checking of args.

Why invalid?

3

Function Templates
Overloaded functions are normally used to perform similar
operations on different types of data; this may be performed
more compactly and conveniently using template functions.

template <class T>
void printArray(T *array, const int count)
{

for (int i=0; i<count; i++)
count << array[i] << “ ”;

cout << ‘\n’;
}

When the compiler detects a printArray invocation in client’s 
source code, the type of first arg. in caller function is
subsituted for T.

4

main()
{

const int aCount = 5, bCount = 7, cCount = 6;
int a[aCount] = {1, 2, 3, 4, 5};
int b[bCount] = {1.1, 2.2., 3.3., 4.4., 5.5, 6.6, 7.7};
int c[cCount] = “HELLO”;

cout<<“Array a contains: \n”;
printArray(a, aCount);

cout<<“Array b contains: \n”;
printArray(b, bCount);

cout<<“Array c contains: \n”;
printArray(c, cCount);

}

5

class Rational {
public: 

// constructors
Rational       ();
Rational       (int);
Rational       (int, int);
Rational       (const Rational &);

// accessor functions
int numerator () const;
int denominator () const;

// assignments
void operator = (const Rational &);
void  operator +=     (const Rational &);

private:
// data areas
int top;
int bottom;

// operation used internally
void normalize ();

};

Now we can treat instances of our 
rational data type as mathematical 
objects

6

How to declare new rational numbers? 

Rational x; // implicitly activates(calls) default constructor
Rational y(3); // implicitly activates Rational(int)
Rational y = 3; // equivalent to the above declaration
Rational z(2, 3); // implicitly activates Rational(int, int)

Rational t (y); // implicitly activates Rational(const Rational&)

Accessor functions
int Rational::numerator() const
{   // return the numerator field of a rational number 

return top;
}

int Rational:: denominator() const
{ // return the denominator field of a rational number 

return bottom;
}



2

7

Overloaded Operator Functions
Rational  operator + (const Rational &left, 

const Rational &right)
{ // return sum of two rational numbers

Rational result (
left.numerator() * right.denominator() +
right.numerator() * left.denominator() );

return result;
}

Rational  Rational::operator + (const Rational &right)
{ // return sum of two rational numbers

Rational result (
this.numerator() * right.denominator() +
right.numerator() * this.denominator() );

return result;
}

Note that, 
this is not 
a method of 
the class

Note that, 
this is a method 
of the  Rational 
class, and the 
first arg. is
implicitly “this”

Think about implementation of  
operator unary – and  operator < 

top

bottom

8

Member Function Operators
Assignments operators are not defined as simple functions but as
member functions in order to be able to access the private data members. 
Operator = is an operator, not a statement.

void Rational::operator = (const Rational &right)
{ // simply copy values from rhs of assignment

top =  right.numerator();
bottom = right. denominator();

}
void Rational::operator += (const Rational &right)
{ // modify by adding  rhs

top =  top * right.denominator() + bottom * right.numerator();
bottom *= right. denominator();

// normalize the result, ensuring lowest denom.
normalize();

}

Note that, 
these are 
methods
of the  Rational 
class, and the 
first arg. is
implicitly “this”

Think about implementation of  
operator /=  function

9

Constructor Implementation
Note that a constructor does not declare any return type
The heading for a constructor can be followed by a sequence of initializers.

Rational::Rational(int numerator) : top(numerator)
{ // by default initialize the denominator to one

bottom = 1;
}
Rational::Rational(int numerator) : top(numerator), bottom(1)
{ 

// no further initialization is necessary
}

Rational::Rational() : top(0), bottom(1)
{ 

// no further initialization is necessary
}

Default 
constructor
i.e., no args

10

Copy Constructor 
In addition to being invoked in response to a declaration statement, a 
constructor will also be invoked when it is necessary to copy a data value 
from one location to another

Rational::Rational(const Rational &value)
: top(value.numerator()), bottom(value.denominator())

{ 
// no further initialization is necessary

}

Constructors are also used implicitly by the C++ language to define 
conventions:

Rational x, y;
. . .
x = y  * 3;

3 converted into a rational number

11

Streams 
There is a standard output stream (ostream) and a standard input stream 

(istream). 
We can overload << and >> operators to define print methods for new classes

ostream & operator << (ostream &out, const Rational r)
{ // print representation of rational number on an output stream

out << r.numerator() << ‘/’ << r.denominator();
return out;

}
istream & operator >> (istream &in, Rational &r)
{ // read a rational number from an input stream

int t, b;
char ch;
// read top, / character, and bottom (assuming they are consecutive: 3/7)

in >> t >> ch >> b;
r = Rational(t, b);
return in;

}


