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Abstract. In this paper we introduce the notion of constrained nearest
neighbor queries (CNN) and propose a series of methods to answer them.
This class of queries can be thought of as nearest neighbor queries with
range constraints. Although both nearest neighbor and range queries
have been analyzed extensively in previous literature, the implications
of constrained nearest neighbor queries have not been discussed. Due to
their versatility, CNN queries are suitable to a wide range of applications
from GIS systems to reverse nearest neighbor queries and multimedia ap-
plications. We develop methods for answering CNN queries with different
properties and advantages. We prove the optimality (with respect to I/O
cost) of one of the techniques proposed in this paper. The superiority of
the proposed technique is shown by a performance analysis.

1 Introduction

Two dimensional range queries are used frequently in various applications
such as spatial databases [Sam89,GG98] and Geographic Information Sys-
tems [CDN+97]. In such applications the data points are usually represented
by two dimensional vectors corresponding to their locations. Since rectangular
geometry is easy to handle, a typical approach in GIS is to handle complex shapes
by simplifying them to their minimum bounding boxes. However, emerging ap-
plications are being required to offer more user flexibility in defining queries over
various types of regions. In the context of geo-spatial digital libraries for exam-
ple, recently there have been proposals for GIS applications to handle queries
with more complex and accurate structures, such as polygons. Numerous index
structures have been developed to facilitate range searching in two and higher
dimensions including grid files [NHK84], quad-trees [Sam89], kdb-trees [Rob81],
hB-trees [LS90], R-trees and variants [Gut84,BKSS90,BKK96], and partitioning
based techniques [BBK98,FAA99a,FAA99b].

Another very important class of queries in applications that involve spatial
data is that of nearest neighbor (NN) queries [RKV95]. Similar to range queries,
nearest neighbor queries are also commonly used in spatial applications. In gen-
eral, the k-nearest neighbor, k−NN, problem is defined as finding the k nearest
data points to the query point q. Traditionally NN queries span over the entire
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data set, and the similarity comparison is based on a distance function (e.g.
Euclidean) between two points. In GIS systems for example, there are various
applications of nearest neighbor queries, such as finding the closest city to the
given city or the closest restaurant to the current location. In an image database
a possible similarity query is to find the images most similar to a given image,
where images are represented as d dimensional feature vectors.

In this paper, we highlight the importance of another type of query where the
above independent classes of queries are combined. We define constrained nearest
neighbor (CNN) queries as nearest neighbor queries that are constrained to a
specified region. This type of query is targeted towards users who are particularly
interested in nearest neighbor in a region bounded by certain spatial conditions,
rather than in searching for nearest neighbors in the entire data space.

We develop techniques to process such constrained nearest neighbor queries,
considering the following objectives. The amount of data becomes larger each day
and the structure that supports indexing and query processing on large data sets
should optimize the I/O cost during query processing [BBC+98]. Reducing the
number of pages accessed during query processing is crucial, and a large amount
of pruning of the search space during an NN search is therefore necessary. A
desirable CNN technique should minimize the number of pages accessed and in
general avoid the retrieval of unnecessary pages. Since both range and nearest
neighbor queries are independently well-studied and efficient index structures
are developed for them, the proposed technique should build upon of the cur-
rent state-of-art indexing techniques that have been developed for such queries.
In this paper, we focus on R-tree based structures that are widely and success-
fully used in spatial databases [SR87,Gut84,BKSS90,KF93,KF94,BKK96,PF99,
EKK00]. We discuss techniques for constrained nearest neighbors by either merg-
ing conditions for range and nearest neighbor queries, or by modifying the current
NN algorithms for R-tree like structures without changing the underlying index
structure.

After presenting several examples of applications of CNN queries in Section
2, we propose methods for answering constrained nearest neighbor queries. We
briefly mention two simple algorithms, i.e., the Incremental NN Search and NN
Search with Range Query, which are straight forward approaches for solving
the problem. They sequentially execute range and nearest neighbor queries and
hence can be grouped under the common idea of 2-Phase Methods (Section 3).
We propose a single-phase technique, the Integrated Method in Section 4, that
interleaves the range constraints with nearest neighbor conditions effectively. We
show how to adapt the existing NN algorithms for processing CNN queries effi-
ciently. In Section 5, we prove the optimality of one of the proposed techniques.
In Section 6, we evaluate the proposed integrated CNN algorithm and compare
it with the two-phase method. Conclusion is in Section 7.
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2 Motivating Examples

There are several cases where a user may enforce spatial constraints on a nearest
neighbor search. In a GIS application, an example of a CNN search is a query
asking ‘the nearest city, or cities, to the south of a given location’. The query
point is defined in the same way as in a regular nearest neighbor query, i.e.,
a two dimensional point that represents the location. The query result is the
closest data point to the query point that satisfies the given constraint, i.e., to
the south of the query point. Note that, in a regular nearest neighbor query
no such restriction can be directly specified for the query result. Figure 1(a)
illustrates this query q on a simple spatial data set where the cities are stored
on a map, i.e., a bounded two-dimensional data space, and represented as points
with (x, y) coordinates of their locations. The query result of this particular
query includes only the point(s) that have y coordinate(s) less than the query’s
y coordinate. The query result set r is defined as {r|ry < qy ∧ ∀p py < qy →
d(p, q) ≥ d(r, q)} where ry and qy represent the y coordinates of the result and
query point respectively, and d is the distance function between points. As can
be seen in Figure 1(a) the regular nearest neighbor of the query point is point a,
however the constrained nearest neighbor query returns r1 as the query result.
We note that, since the data space is bounded within a rectangle, this query is
actually a nearest neighbor query restricted to the lower rectangle in Figure 1(a).

�
�
�
�

.q. a

.

.
.

.

.

.
. .

.

. r1
.
.

.

(a)

��
��
��

��
��
��

.q. a

.

.
.

.

.

.
. .

.

.
.
.

.r2

(b)

Fig. 1. Constrained NN Query: Examples 1 and 2

Figure 1(b) illustrates the query ’find the nearest city to the south-west of
the query point location q’. Now the query result becomes r2 where again a is
the regular nearest neighbor and r1 was the query result of the same point q with
the previous constraint. Similar to the previous example, the spatial constraint
defined in this query is the restriction to the lower-left rectangle in the data
space. Note that r2 is actually the furthest point in the data set to the query
point.

In the previous examples, the query point was spatially connected to the
constraint. An example of a different type of constrained nearest neighbor query
can be described as follows. A user who lives in the city of San Francisco may
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request to find 5 casinos in the state of Nevada that are the closest to San
Francisco. The system defines the city of San Francisco as a two-dimensional
query point q and defines a range for the state of Nevada (Figure 2(a)). The
region for the state of Nevada can be defined by the user as a two-dimensional
geometrical shape, such as a rectangle or an n-sided polygon. The query needs
to find the closest points within this specific range. The state of Nevada is
approximated by a convex pentagon and the city of San Francisco is denoted by
q. The result of this query is the point r although point a would be the result
of a regular NN query.
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Fig. 2. Constrained NN Query: Examples 3 and 4

It is also desirable to be able to define multiple ranges for a single nearest
neighbor query, such as asking for the nearest neighbor within multiple regions
on the map, e.g. possible vacation places in several desired regions. Figure 2(b)
shows a CNN query constrained to two spatial regions (a hexagon and a quadri-
lateral). The regular nearest neighbor of the point q is point a, while the nearest
negibhor restricted to the hexagonal constraint is point p, and the result of the
NN query constrained to both regions is point r.

A final example is derived from the domain of information management for
advanced transportation systems. A traveler may pose a query asking for the
closest restaurants within a 2 miles neighborhood of his/her route on a particular
region of a highway. The constraint is a region that covers 2 mile neighborhood,
from left and right, of the highway. This region can be complicated depending
on the shape of the highway. If the portion of the highway that is of interest is
through a straight line, then this range is defined as a two-dimensional rectangle
traversed in the middle by the highway. For more complicated highway routes, in
general, the constrained range can be defined with a two-dimensional polygon.

In this paper, we present a general model for constrained nearest neighbor
queries, where all the above motivational examples are subsets of this framework.
We develop the algorithm for NN queries constrained to convex polygons which
can be used as a primitive for several more complex queries, e.g. NN queries
with non-convex polygon constraints.
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3 2-Phase Algorithms for Answering CNN Queries

Constrained Nearest Neighbor Queries naturally involve both range and nearest
neighbor queries. A simple solution for CNN queries can comprise two phases,
incorporating in sequence these two types of queries. Different orders of these
phases lead to specific advantages, that can be beneficial to different applications.
We present these two alternatives to serve as a comparison with an integrated
single phase approach.

Incremental NN Search. In the incremental NN search approach, the first
step computes the non-constrained nearest neighbors by an incremental NN al-
gorithm that outputs the nearest points in the order of their distance to the query
point. While outputing the nearest neighbors, the algorithm checks whether the
current output NN point satisfies the given constraint. The algorithm continues
retrieving all the pages that contain the regular nearest neighbors, until a point
is retrieved that satisfies the constraints. There may be several regular neigh-
bors that do not satisfy the given condition but need to be retrieved since they
are closer than the query result point that satisfies the constraint. As seen in
the example given in Figure 1(b), the query result of the constrained NN query
is actually the furthest point to the query point. The Incremental NN Search
approach first considers and then discards all other points in the data set before
finding r2. One special case that arises is that the queried region R might not
actually contain any data points. To avoid querying the entire search space, we
enforce a limit on the search: when a possible nearest neighbor is further from
the query point than the constraining region R (measured by maxdist(q, R)),
then there is no nearest neighbor in R(see Figure 3). In [HS99], this approach
was suggested to be used to answer general queries that imposes additional con-
dition to the NN query, and it is particularly useful when a small but unknown
number of neighbors is asked. An example is a query that asks the nearest city
to Chicago that has more than a million inhabitants.
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Fig. 3. Illustrative Example
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NN Search with Range Query. Another approach for answering constrained
NN queries can reverse the two phases. For some cases, the method of first
retrieving candidates for nearest neighbor data points and then testing for in-
clusion in the constrained region, can lead to unnecessary access of leaf nodes.
Depending on the size and positioning of the constrained region R, it may be
more efficient to first perform a range query that retrieves the data points in R
and then testing for the nearest neighbor condition. The obvious tradeoff is that
if the size of region R is comparable to the entire data space, then testing for
nearest neighbor by comparing all distances of points in R to the query point
can be computationally expensive. However, if the constrained region R includes
only a relatively small number of data points/pages to be accessed, this approach
can be considerably more efficient than the previous algorithm.

4 Integrated Single Phase Approach

We now propose a more efficient approach that merges the conditions of nearest
neighbor and regional constraints in one phase. Our goal is to obtain the benefits
of pruning the search space early on, according to both the range and nearest
neighbor conditions. This requires the modification of previous nearest neighbor
algorithms that search over the entire data space. We start by briefly describing
prior NN algorithms and then develop an integrated CNN method.

4.1 Overview of the NN Approach

Recently, several indexing structures have been developed based on R-trees under
various assumptions. Points in a data space can be grouped in clusters limited
by their minimum bounding rectangles (MBR), which in turn are grouped to
form larger clusters. An MBR is defined as the smallest rectangle parallel with
the axis that completely encloses a given set of points or sub-rectangles. Each of
its faces must therefore contain at least one of the enclosed data points. Different
levels in the indexing tree correspond to different levels of granularity, where each
internal node stores pointers to the rectangles contained and the coordinates to
position the corresponding MBRs. An example of a section of such a tree is
shown in Figure 4. Note that for 2-dimensional data an MBR can be defined by
the x and y coordinates of two diagonally opposite corners.

R-trees are not only very effective as underlying indexing structures in a
database, but their properties facilitate knowledge discovery algorithms. Hjalta-
son and Samet proposed an incremental nearest neighbor (NN) searching algo-
rithm [HS95] and later adapted it to R-trees [HS99]. Roussopoulos et al. [RKV95]
proposed to take advantage of the mapping of the data space into R-trees, and
developed techniques for finding a nearest neighbor NN(q) to a query point q. In
order to reduce the I/O overhead, a crucial part of NN algorithms is the exclusion
from the search space of regions that cannot be part of the query answer. At each
level, the pruning comparison involves distances to the children nodes as well
as the distance to the previously found nearest neighbor candidate. Only nodes
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Fig. 4. A section of an R-tree and the corresponding MBRs

that can lead to a possible nearest neighbor are further considered, while the
remaining leaves and corresponding subtrees are pruned out of the search space.

In [RKV95], a branch-and-bound approach was used to search for near-
est neighbors to a query point, based on the depth-first traversal and prun-
ing of the R-tree. The proximity comparisons in [RKV95], based on the Eu-
clidean distance metric, use the notion of mindist(q, M) (the shortest dis-
tance from the query point to a given MBR M) and minmaxdist(q, M) (mini-
mum, over all dimensions, of the distance from the query point to the furthest
point on the closest face of the MBR). These metrics ensure that for a mini-
mum bounding rectangle M , there is at least one data point within the range
[mindist(q, M), minmaxdist(q, M)]. An MBR M ′ whose mindist(q, M ′) >
minmaxdist(q, M) will not lead to a nearest neighbor of query point q and
therefore can be safely discarded. Similarly, a data point p whose distance to the
query point satisfies the condition dist(p, q) > minmaxdist(q, M), cannot be a
candidate to the set of nearest neighbors. Furthermore, if there exists a point p
such that dist(q, p) < mindist(q, M), then the subtree rooted at MBR M should
be discarded from the search space.

Besides pruning, both mindist and minmaxdist can be used also for ordering
in branch and bound algorithm [RKV95]. In [HS99], it is suggested that mindist
usually provides better ordering than minmaxdist, which is consistent with the
experiments in [RKV95]. In this case, where the ordering is based on mindist,
they showed that minmaxdist does not add additional pruning power for the
NN search. However, [RKV95] also mentions that mindist may not be always
the better ordering and presents some scenerios where minmaxdist may be
preferable. Since we are interested in supporting NN queries constrained to a
given region, we modify these two metrics (mindist and minmaxdist) to satisfy
the necessary constraints.
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It has been shown in [BBKK97,HS99] that, as opposed to the method for an-
swering NNqueries in [RKV95], solution in [HS95,HS99] accesses only the pages
necessary for the query answer. In [HS99], it is mentioned that the algorithm
in [RKV95] can only make local decisions on the traversal of the nodes because
of the depth-first travel methodology. On the other hand [HS99] makes global
decisions. Visiting order of the branches is based on the comparison of the nodes
in a Partition List, which includes the children of the current branch as well as
the last nodes visited in other branches. By comparison, the method of [RKV95]
at each step only compares the position of the children, and consequently follows
a branch entirely. It may be the case that, during the visit of one branch, some of
the nodes can be pruned out because of the comparison with other branches. The
visiting order proposed by [HS95,HS99] is therefore optimal [BBKK97], hence
we adapt it for the CNN Algorithm. Sorting the nodes in the Partition List is
based on the mindist from the current MBR to the query point.

4.2 Modifications

Whichever algorithm is used for constrained nearest neighbor queries, the met-
ric(s) that is (are) used for sorting and/or for pruning purposes need to be
adapted for CNN queries by taking the constraint into account.

Applying the pruning conditions of the non-constrained nearest neighbor
approach can lead to incorrect results. The guarantees of the mindist(q, M) and
minmaxdist(q, M) measures either can be improved or do not necessarily hold
in the case of constrained nearest neighbor searches. To illustrate the necessity of
new conditions (rather than using the old ones for NN search), Figure 5 presents
the different cases for containment of an MBR in a region R.
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Fig. 5. Different cases for positioning of MBRs with respect to a region R

As shown, an MBR can be outside of the given region, or either fully or
partially in R. Consider the different cases, and the implication of the various
positioning of MBRs:



Constrained Nearest Neighbor Queries 265

1. MBR A: lies outside R, and should not be considered in the constrained
NN(q) search.

2. MBR B and F: although there is an overlap with the constraining region R,
no edge in these rectangles belongs entirely to R. Hence there is no guarantee
that there exist any data points in the region of intersection with region R
and both B and F should not be used to discard other MBRs from the NN
search. On the other hand, mindist (so the pruning power) may be increased
by excluding the parts of the MBR that do not intersect the constraint R.

3. MBR C: all edges in C belong to R. In this case the pruning conditions can be
used as in the case of searching the whole data space and (no modifications
to mindist(q, C) and minmaxdist(q, C)) are necessary.

4. MBR D: one edge of D is contained entirely in the queried region R. Fol-
lowing the definition of MBRs, we can make the assumption that there is
at least one data point on the overlapping edge and the pruning rules can
be used by considering minmaxdist(q, D) only with respect to this edge.
mindist can be improved by considering R.

5. MBR E: two of the edges of rectangle E are also contained in region R.
Then there must be at least one data point on each of these edges, and
the minmaxdist(q, E) should be computed solely over the two overlapping
edges. mindist can be improved by considering R.

Note that in several cases mindist can be improved, and the guarantees
brought by the measure minmaxdist(q, M) do not hold if a minimum bounding
rectangle is only partially in the constrained search space. In the case where
the boundaries of the search region coincide with those of the data space, the
constrained NN(q) problem is reduced to the previously defined NN(q) search.

In this section we extend the existing solutions to nearest neighbor queries
in order to integrate CNN query processing over R-trees. We concentrate on
the case of a convex polygon region, because we believe it represents a large
variety of queries. Besides constraint regions that are directly defined as convex
polygons, our model also characterizes regions that implicitly fall in the class of
convex polygons. As described in Section 2, an application of the CNN method in
GIS systems is answering queries of the type ”find the nearest neighbor limited
to the north-east area of a certain region”. This is a special case of the convex
polygon constraint, since the query conditions together with the boundary of the
data space form a rectangle. Another case worth mentioning is the application
of CNN methods to answering reverse nearest neighbor (RNN) queries [KM00].
One solution for RNN queries is the division of a 2-D data space into six equal
regions by lines through the query point [SAA00]. In this case, the boundaries
of the data space are restricted by two lines which again form a convex polygon.

In the following, we discuss the following modifications:

1. For optimality, we redefine the notion of mindist(q, M) to assure minimum
access of the pages.

2. We redefine containment of a minimum bounding rectangle into the con-
straining region.
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Modifying mindist(q, M). mindist(q, M) is used as a minimum bound for
the distance of a point in M to the query. This bound is used in the algorithm to
eliminate the unnecessary MBRs, therefore also the pages in the subtrees rooted
at these MBRs. In a typical database application, the data set does not fit into
memory, hence the goal during the computation of constrained nearest neighbors
is to prune the search space as early as possible. We now discuss how to modify
the notion of mindist to improve the pruning of the search space.
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Fig. 6. Modifying both mindist(q, M) and minmaxdist(q, M)

Let the intersection of an MBR with the polygon R be IR. From the def-
inition of mindist(q, M), the distance between any data point in an MBR M
must be greater than the mindist of the query point to M . Since the region IR

is a subset of the MBR M , there is a tighter bound mindist(q, IR), such that
mindist(q, IR) ≥ mindist(q, M), which offers the same guarantees as using the
mindist(q, M) value for non-conditional nearest neighbor search. During prun-
ing, mindist(q, IR) can be used to exclude the corresponding MBR M from the
search, if it is larger than the minmaxdist(q, M ′, R) of any other MBR M ′.

Since the intersection region, IR can have a complex geometrical shape, we
use the fact that finding the intersection of a rectangle with a polygon is a
well-known problem in computer graphics. There are several techniques that
efficiently identify the intersection polygon. One such an algorithm is Sutherland
and Hodgman’s polygon-clipping algorithm [FVFH96]. Once the edges of the
intersection polygon are calculated, mindist(q, M, R) is simply the minimum of
all distances from the query point q to these edges.

Redefining the Containment for CNN. We need to redefine containment
of a minimum bounding rectangle into the constraining region. In Figure 7 we
illustrate a case where minmaxdist(q, M) is calculated over the entire minimum
bounding rectangle M and leads to a false dismissal. Since minmaxdist(q, M)
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Fig. 7. Example of minmaxdist(q, M) and minmaxdist(q, M, R)

happens to fall on a face that is outside of the constraining region R, there is
actually no guarantee that there exists a data point contained both in M and
in R. To extend the meaning of minmaxdist(q, M) it should be computed only
over the faces of M that are completely contained in region R (Figure 8). We
refer to it as minmaxdist(q, M, R). In general, if all faces of an MBR are either
partially included or not included in R, then there is no guarantee that there
exists a data point in the constrained area.

minmaxdist(q, M, R)

minmaxdist(q,M,R)




= minimum over all dimensions of the distance to furthest
vertex on closest face IN R
= ∞ if no face IN R

Fig. 8. Modifications to minmaxdist

Since minmaxdist(q, M, R) depends only on M’s faces entirely included in
region R, we need a simple way to test their containment:

1. construct infinite lines parallel with the x-axis, through the upper and lower
corners of the MBR.

2. we calculate the x-coordinate of the intersection of these lines with the edges
of polygon R.

3. considering the positioning of the x-coordinate of MBR’s corners with respect
to these intersection points, test if each of these corners is included in R.

4. an edge of the MBR is entirely contained in R iff its vertices are both con-
tained in R.

5. finally, the value of minmaxdist(q, M, R) is calculated over the MBR’s edges
that are entirely in R.

To explain these steps in more detail, assume that a polygon is described by
its vertices as pairs according to the edges of the region. Note that for a convex
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polygon this is enough information to figure out the line equations and fully
describes the region.
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(x{high},y{high})

Fig. 9. Construction of lines y and y′

Note that, for an MBR defined as [(xlow, ylow), (xhigh, yhigh)], by constructing
the lines y = ylow and y′ = yhigh, (Figure 9), we obtain y and y′, where each
is parallel with the x-axes and intersects either two or none of the edges of the
constraining polygon. Then, by construction, vertices [xlow, ylow] [xhigh, ylow] are
on line y and the upper corners of the MBR, [xlow, yhigh] [xhigh, yhigh], are on
line y′. If, for example, line y does not intersect any edge of the convex polygon,
then both of the MBR vertices on y will be outside of region R. Otherwise
the positioning of the MBR’s vertices with respect to the intersection of the
corresponding y or y′ with the edges of R should be tested. If an intersection
exists, the polygon edges that intersect y are the only two edges, say e1 and e2,
that have one end below and one above the y-coordinate ylow. Let the segment
e1 be bounded by vertices [xe1i, ye1i] and [xe1j , ye1j ], and the segment e2 have
vertices [xe2i, ye2i] and [xe2j , ye2j ]. Then e1 and e2 must have the property that
ye1i ≥ ylow, ye2i ≥ ylow and respectively ye1j ≤ ylow, ye2j ≤ ylow.

Let y intersect the edges e1 and e2 of R, and y′ intersect edges e′
1 and e′

2 of
polygon R. Also, let the points of intersection be [x1, ylow],[x2, ylow] for y and
[x′

1, yhigh],[x′
2, yhigh] for y′. The x-coordinates of the points of intersection will

therefore be :

1. x1 = ylow × ye1i−ye1j

xe1i−xe1j
− 1, x2 = ylow × ye2i−ye2j

xe2i−xe2j
− 1 for y

2. x′
1 = yhigh × ye1i−ye1j

xe1i−xe1j
− 1, x′

2 = yhigh × ye2i−ye2j

xe2i−xe2j
− 1 for y′

Knowing the intersection, the positioning of MBR’s corners is checked for
inclusion in R as follows:

1. [xlow, ylow] ∈ R iff x1 ≤ xlow ≤ x2.
2. [xhigh, ylow] ∈ R iff x1 ≤ xhigh ≤ x2.
3. [xlow, yhigh] ∈ R iff x′

1 ≤ xlow ≤ x′
2.

4. [xhigh, yhigh] ∈ R iff x′
1 ≤ xhigh ≤ x′

2.
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5 Optimal CNN Algorithm

Single-Phase CNN Search Algorithm

1. initialize Partition List with children of the root
2. sort Partition List by mindist(q, R) (where R is the constraint region)
3. while (Partition List not empty)

a) if node is leaf, compute distance dist from query point.
i. if dist less than current distance to nearest neighbor, node becomes nearest

neighbor
b) else, if non-leaf node, continue traversal and prune tree:

i. add children of current node to Partition List
ii. Sort Partition List by mindist(q, R)

Fig. 10. Single-Phase Algorithm for Answering CNN Queries

Figure 10 illustrates the CNN algorithm that adapts the NN technique pro-
posed in [HS99] by integrating the constraint within the algorithm by using the
new definition of mindist. In this section, we will show that this CNN algorithm
is optimal with respect to the number of I/O accesses. Our development follows
the methodology given in [BBKK97] and considers the techniques that are based
on tree traversal. Let Q be a query point and CNN be the constrained nearest
neighbor of Q. Then CNN-dist = ||Q−CNN || is the distance of the constrained
nearest neighbor and the query point. The CNN-sphere of a query point Q is
defined as the sphere with center Q and radius r=CNN-dist. In previous sec-
tions, we defined the intersection of CNN-sphere and the constraint R as the
CNN-region and denoted it as IR.
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Fig. 11. Different cases of pages with respect to R and CNN-sphere

Consider the different cases and the implications of the various positioning
of the pages (Figure 11):
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1. Page A intersects neither the constraint R nor the CNN-sphere.
2. Page B intersects the CNN-sphere but not R.
3. Page C intersects R but not CNN-sphere.
4. Page D intersects both R and CNN-sphere but not CNN-region IR.
5. Page E intersects the CNN-region IR.
We define the optimality of a CNN algorithm as follows.

Definition 1. Optimality
An algorithm for constrained nearest neighbor search is optimal iff it retrieves

only the pages that intersect the CNN-region IR.

From the definitions, an algorithm is optimal iff it retrieves only the pages
in case 5.

Lemma 1. The proposed single phase integrated algorithm is an optimal CNN
algorithm.

Proof. It is easy to see that any partition intersecting the CNN-region IR is ac-
cessed during the search since they are not pruned in any phase of the algorithm.
We need to prove the minimality of the accessed partition set. The algorithm
prunes Page A and B by checking the intersection of the constraint with the
bounding boxes that contain them. Page C is pruned by the mindist elimination
(the same reasoning in [BBKK97] applies). We need to show that a page in case
4 (page D) is pruned by the algorithm.

Assume CNN-opt accesses a page D, i.e., a page that intersects both R
and CNN-sphere but not IR. During the algorithm, the constrained mindist
(mindist(q, D, R)) is computed with respect to the CNN-Region IR, i.e., inter-
section of the page D and the constrained R. The constrained mindist cannot
be less than r, the radius of the CNN-sphere, i.e., mindist(q, D, R) ≥ r. (Other-
wise the intersection of the page and the constraint would have intersected the
CNN-sphere and hence intersected the IR, which is a contradiction).

Let CNP0 be the partition (data page) that contains the constraint nearest
neighbor, CNP1 be the partition that contains CNP0, . . ., and CNPk be the
root partition that contains CNP0, . . ., CNPk−1. Thus,

r ≥ mindist(q, CNP0, R) ≥ . . . ≥ mindist(q, CNPk, R).

Consequently,

mindist(q, D, R) > r ≥ mindist(q, CNP0, R) ≥ . . . ≥ mindist(q, CNPk, R).

Since CNPk is in the root-page, CNPk is replaced during the search process
by CNPk−1 and so on, until CNP0 is loaded. If as assumed, the algorithm
accesses D, D has to be on top of the partition list at some point during the
search. Since mindist(q, D, R) is smaller than the constrained mindist of any
partition containing the nearest neighbor, D can not be loaded until CNP0 has
been loaded. If CNP0 is loaded, however, the algorithm prunes all partitions
which have a constrained mindist smaller than r. Therefore, D is pruned and
not accessed which is in contradiction to the assumption.
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6 Performance Evaluation

In this section, we analyze the performance of the proposed integrated CNN
algorithm on multi-dimensional data and compare it with the two-phase method
(which employs incremental NN and checks the constraint while finding the NN
of the given point). We have performed several experiments using real data sets.

The first data set, Color Histogram, is a 64-dimensional color image histogram
data set of size 10,000. The vectors represent color histograms computed from a
commercial CD-ROM. The second data set, Satellite Image Texture (Landsat), is
a 10,000 60-dimensional vectors representing texture feature vectors of Landsat
images [MM96]. Texture information of blocks of large aerial photographs are
computed using Gabor filters. The Gabor filter bank consists of 5 scales and
6 orientations of filters, therefore the total number of filters is 5 × 6 = 30.
The mean and standard deviation of each filtered output are used to create the
feature vector. Therefore the dimensionality of each vector becomes 30×2 = 60.
This data set poses challenging problems in multi-dimensional indexing and is
widely used for performance evaluation of index structures and similarity search
algorithms [Man00,GIM99,FTAA01].

We built an R*-tree for both data sets. The page size is 8K, and the leaves
are stored in disks. We implemented CNN algorithms (both integrated and two-
phase algorithms) on these structures. We ran 10, 30, and 50 CNN queries and
the cost metric is the number of page accesses during the CNN queries.

We picked the query points randomly from the data set. The constraint re-
gions R was chosen again randomly with varying selectivities. The constraints are
created as hyper-cubic range queries. We performed experiments on constraints
from a spectrum of high-selectivity to low-selectivity. The average number of
points covered by constraints with smaller edges is less than the average number
of points covered by constraints with larger edges. Even the smallest constraints
in the experiments had a reasonable selectivity (covers more than k number of
points which is asked by the query). We varied the selectivity of the constraint
and analyze the effects of the constraint range on the performance of the tech-
niques.

Figure 12 shows the performance of the integrated technique and two-phase
technique for Color Histogram data set. The x-axis shows the side length of
the range constraint and the y-axis shows the number of page accesses as the
result of the k-CNN queries. Figure 12(a) illustrates the results for 10-CNN
and Figure 12(b) illustrates the results for 50-CNN queries. The results are
very similar for other values of k, e.g. 30-CNN. The color histogram data set is
very skewed and clustered. The dimensions are normalized within [0..1]. Even
a small size range query returns a reasonable amount of data. The data set
is clustered around the origin, therefore we picked our constraint regions by
fixing one corner of the constraint to the origin and varied the region. As the
constraint size increases, both techniques naturally merges to the same number
of page accesses. For example, with a constraint which covers the whole data
space, the CNN query is simply an NN query over the entire data space. As
the constraint size decreases, and hence the selectivity of the range constraint
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increases, the speedup achieved by the integrated CNN approach increases. For
example, for a 50-CNN query with an hyper-cubic constraint of side length 0.15
integrated approach returns 50 neighbors by accessing 115 pages, where the two-
phase approach accesses 398 pages. The integrated approach is approximately
3.46 times faster than the two-phase approach. The speedup for 10-CNN query
is 3.41.
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Fig. 12. CNN queries on Color Histogram



Constrained Nearest Neighbor Queries 273

100

150

200

250

300

350

400

450

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
um

be
r 

of
 P

ag
e 

A
cc

es
se

s

Range Query Size

Page Accesses vs Constraint Range Size for 10-CNN Queries

Integrated CNN(k=10)
Two-phase(k=10)

(a) 10-CNN

100

200

300

400

500

600

700

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
um

be
r 

of
 P

ag
e 

A
cc

es
se

s

Range Query Size

Page Accesses vs Constraint Range Size for 50-CNN Queries

Integrated CNN(k=50)
Two-phase(k=50)

(b) 50-CNN

Fig. 13. CNN queries on Landsat Texture Features

Figure 13 illustrates the results of similar experiments for Landsat data set.
Landsat data is also clustered, but data points are distributed more in the data
space. They are not normalized as the color histogram data, therefore the range
constraints were bigger than the Color Histogram data case to cover same num-
ber data points. Similar to the results in the previous data set, as constraints
become very large both techniques access similar numbers of pages. For exam-
ple, for an hyper-cubic range constraint of side length 4, the integrated approach
accesses 169 pages while the two-phase approach accesses 227 pages for 10-CNN
queries. For smaller constraint sizes (but still with reasonable selectivities), the
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integrated approach clearly outperforms the two-phase technique. For an hyper-
cubic range constraint of side length 1.2, the integrated approach achieves a
speedup of 3.9 over the two-phase approach. The speedup even becomes more
as the number of neighbors is increased. For 50-CNN queries of the same con-
straint size, the integrated technique achieves 5.63 speedup over the two-phase
technique. The single phase integrated technique accesses 111 pages where the
two-phase technique accesses 625 pages.

7 Conclusion

In this paper we introduced the notion of constrained nearest neighbor queries
(CNN) and propose a series of methods to answer them. CNN queries are suitable
for a wide range of applications. We presented various solutions, that either
process the conditions of the NN search in sequential separate steps or interleave
them into one phase. These approaches have inherent properties that lead to
specific advantages for different constraints on the NN search. Since both range
and nearest neighbor queries are independently well-studied and efficient index
structures are developed for them, the proposed technique should build upon of
the current state-of-art techniques that have been developed for these queries.
We showed how to adapt the well-known NN query algorithms to support CNN
queries without changing the underlying structure. We proved that the single-
phase integrated approach is optimal with respect to the I/O cost. Experiments
on real-life data sets show that the integrated approach is very effective for
answering CNN queries.
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