R. Agrawal, T. Imielinski, and Swami, "Mining Association Rules between Sets of Items in Large Databases" Proc. of the ACM-SIGMOD 1993 Int'l Conference on Management of Data, Washington D.C., pp. 207-216, (May 1993). (Postscript copy)
R. Agrawal, and R. Srikant,
"Fast Algorithms for Mining Association Rules"
Proc. of the 20th Int'l Conference on Very Large Databases,
Santiago, Chile, (Sept. 1994).
(Postscript copy)
D. Boley, "Principal Direction Divisive Partitioning" Data Mining and Knowledge Discovery, Vol. 2, No. 4, pp. 325-344, (1998). (Postscript copy)
G. Karypis, E. H. (Sam) Han, and V. Kumar, "Chameleon: Hierarchical Clustering Using Dynamic Modeling" Computer, pp. 68-75, (Aug. 1999). (Postscript copy)
J. Fürnkranz, T. Mitchell, and E. Rilof, "A Case Study in Using Linguistic Phrases for Text Categorization on the WWW" Working Notes of the 1998 AAA/ICML Workshop on Learning for Text Categorization, (Postscript copy)
H. Mannila, H. Toivonen, and A. I. Verkamo, "Discovery of Frequent Episodes in Event Sequences" Data Mining and Knowledge Discovery, Vol. 1, pp. 259-289, (1997).
H. Maeda, K. Koujitani, and T. Nishida, "Constructing Information Bases Using Associative Structures" Applied Intelligence, Vol. 10, pp. 85-99. (1999). (Postscript copy)
R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, "An Interval Classifier for Database Mining Applications" Proceedings of the 18th VLDB Conference, Vancouver, British Columbia, Canada, pp. 560-573, (1992). (Postscript copy)
Z. Huang, "Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values" Data Mining and Knowledge Discovery, Vol. 2, pp. 283-304, (1998).
R. Agrawal, T. Imielinski, and A. Swami, "Database Mining: A Performance Perspective" IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, pp. 914-925, (1993). (Postscript copy)
S. C. Yoon, I. Y. Song, and E. K. Park, "Intensional Query Processing using Data Mining Approaches", CIKM, pp. 201-208, (1997). (PDF copy)
S. Guha, R. Rastogi, and K. Shim, "ROCK: a robust clustering algorithm for categorical attributes" Proc. of the 15th Int'l Conf. on Data Eng, (1999). (Postscript copy)
H. Mannila, H. Toivonen, and A. I. Verkamo, "Efficient Algorithms for Discovering Association Rules" Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, Usama M. Fayyad and Ramasamy Uthurusamy (Eds.), Washington, pp. 181-192, (July 1994). (Postscript copy)
A. A. Freitas, "On Rule Interestingness Measures" Knowledge Based Systems, Vol. 12, pp. 309-315, (1999). (PDF copy)
M. Perkowitz, and O. Etzioni, "Adaptive Web Sites: Automatically Synthesizing Web Pages" Fifteenth National Conference on Artificial Intelligence (AAAI'98), Wisconsin, (1998). (Postscript copy)
R. Srikant, and R. Agrawal, "Mining Quantitative Association Rules in Large Relational Tables", Proc. of the ACM-SIGMOD 1996 Conference on Management of Data, Montreal, Canada, (June 1996). (Postscript copy)
S. Brin, R. Rastogi, and K. Shim, "Mining Optimized Gain Rules for Numeric Attributes" Proceedings of KDD'99, San Diago, ACM, pp. 135-144, (1999). (PDF copy)
D. Hershberger, and H. Kargupta, "Distributed Multivariate Regression Using Wavelet-based Collective Data Mining", Special Issue on Parallel and Distributed Data Mining of the Journal of Parallel Distributed Computing, Vipin Kumar, Sanjay Ranka, and Vineet Singh (Guest Eds.) (1999) (Postscript copy)
S. M. Weiss, and N. Indurkhya, "Rule-based Machine Learning Methods for Functional Prediction" JAIR, Vol. 3, pp. 383-403, (1995). (Postscript copy)
B. Liu, W. Hsu, Y. Ma, "Integrating Classification and Association Rule Mining" in: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98, Plenary Presentation), New York, (1998) (Postscript copy)
T. zhang, R. Ramakrishnan, and M. Livney, "BIRCH: An Efficient Data Clustering Method for Very Large Databases" Data Mining and Knowladge Discovery, Vol. 1, pp. 141-182, (1997). (PDF copy)
Z. Fu, "Dimensionality Optimization by Heuristic Greedy Learning vs. Genetic Algorithms in Knowledge Discovery and Data Mining" Intelligent Data Analysis, Vol. 3, pp. 211-225, (1999), (PDF copy)
J. D. Holt, and S. M. Chung, "Efficient Mining of Association RUles in Text Databases" CIKM'99, Kansas City, USA, pp. 234-242, (1999). (PDF copy)
O. R. Zaiane, M. Xin, and J. Han, "Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs" (1998). (Postscript copy)
K. A. Kaufman, and R. S. Michalski, "Discovery Planning: Multistrategy Learning in Data Mining" (Postscript copy)
R. S. Michalski, and K. A. Kaufman, "Data Mining and Knowledge Discovery: A Review of Issues and a Multistrategy Approach", (March 1997). George Mason University, Technical Report No: P97-3, MLI 97-2, (Postscript copy)
S. Arya, D. M. Mount, N. S. Netenyahu, R. Silverman, and A. Y. Wu, "An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions" Journal of the ACM, Vol. 45, pp. 891-923, (1998). (Postscript copy)
N. F. Ayan, A. U. Tansel, and Erol Arkun, "An Efficient Algorithm to Update Large Itemsets with Early Pruning" ACM SIGKDD Intl. Conf. on Knowledge Discovery in Data and Data Mining (SIGKDD'99), San Diego, California, (August 1999). (Compresed Postscript copy)
N. F. Ayan, "Updating Large Itemsets With Early Pruning" M.Sc Thesis, Bilkent University, (1999) (Compresed Postscript copy)
M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo, "Finding Interesting Rules from Large Sets of Discovered Association Rules" Third International Conference on Information and Knowledge Management, N. R. Adam, B. K. Bhargava and Y. Yesha (Eds.), Maryland, ACM Press, pp. 401-407, (Nov. 1994). (Postscript copy)
R. J. Bayardo, and R. Agrawal, "Mining the Most Interesting Rules" Proc. of the 5th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining pp. 145-154, (Aug. 1999) (Postscript copy)
Oracle Darwin Data Mining Software
R. Agrawal, R. Srikant, "Mining Generalized Association Rules", Proceedings of the 21st VLDB Conference, Zurich, Switzerland, (1995). (Postscript copy)
R. D. Lawrence, G. S. Almasi, and H. E. Rushmeier, "A Scalable Parallel Algorithm for Self-Organizing Maps with Applications to Sparse Data Mining Problems, Data Mining and Knoeledge Discovery, Vol. 3, pp. 171-195, (1999).
C. Ordonez, and E. Omiecinski, "Discovering Association Rules Based on Image Content" IEEE Advances in Digital Libraries (ADL'99), (1999) (Postscript copy)
C. Ordonez, and E. Omiecinski, "Image Mining: A New Approach for Data Mining" Technical Report GIT-CC-98-12, Georgia Institute of Technology, College of Computing, (1998). (Postscript copy)
C. Silverstein, S. Brin, and R. Motwani, "Beyond Market Baskets: Generalizing Association Rules to Dependence Rules" (Postscript copy)
S. Maneewongvatana and D. M. Mount, It's okay to be skinny, if your friends are fat,'' Proceedings of the 4th Annual CGC Workshop on Comptutational Geometry, (1999). (Postscript copy)
T. Kanungu, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu, ``Computing nearest neighbors for moving points and applications to clustering'' Proceedings of the 10th Ann. ACM-SIAM Symposium on Discrete Algorithms, pp. S931-S932, (1999). (Postscript copy)
U. Fayyad, D. Haussler, and P. Stolorz, "KDD for Science Data Analysis: Issues and Examples" Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Oregon, AAAI Press., (August, 1996) (Postscript copy)
B. Mobasher, N. Jain, E.-H. Han, and J. Srivastava, "Web Mining: Pattern Discovery from World Wide Web Transactions" Department of Computer Science, University of Minnesota, Technical Report TR96-050, (March, 1996). (Postscript copy)
S. Djoko, D. J. Cook, and L. B. Holder, "An Empirical Study of Domain Knowledge and Its Benefits to Substructure Discovery" IEEE Transactions of Knowledge and Data Engineering, (1999). (Postscript copy)
J. Han, Y. Fu, "Mining Multiple-Level Association Rules in Large Databases" IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 5, (1999). (PDF copy)
A. Savasere, E. Omiecincki, and S. Navathe, "An Efficient Algorithm for Mining Association Rules in Large Databases" Technical Report GIT-CC-95-04, Georgia Institute of Technology, College of Computing, (1995). (Postscript copy)
K. Alsabti, S. Ranka and V. Singh, "An Efficient K-Means Clustering Algorithm" IPPS/SPDP Workshop on High Performance Data Mining (Postscript copy)
Y.-W. Huang, N. Jing, E. A. Rudensteiner, "Effective Graph Clustering for Path Queries in Digital Map Databases" CIKM, pp. 215-222, (1996). (Postscript copy)