
S
g

T
U
B
D
0
A
E

1
V
l
u
t
a
e
n
t
g

V
o
p
O
o

l
n
t
c
o
t
c
t

o
3
t
t

0

Optical Engineering 47�9�, 097005 �September 2008�

O

tereoscopic urban visualization based on
raphics processor unit

ürker Yılmaz
ğur Güdükbay
ilkent University
epartment of Computer Engineering
6800 Bilkent
nkara, Turkey
-mail: gudukbay@cs.bilkent.edu.tr

Abstract. We propose a framework for the stereoscopic visualization of
urban environments. The framework uses occlusion and view-frustum
culling �VFC� and utilizes graphics hardware to speed up the rendering
process. The occlusion culling is based on a slice-wise storage scheme
that represents buildings using axis-aligned slices. This provides a fast
and a low-cost way to access the visible parts of the buildings. View-
frustum culling for stereoscopic visualization is carried out once for both
eyes by applying a transformation to the culling location. Rendering us-
ing graphics hardware is based on the slice-wise building representation.
The representation facilitates fast access to data that are pushed into the
graphics procesing unit �GPU� buffers. We present algorithms to access
this GPU data. The stereoscopic visualization uses off-axis projection,
which we found more suitable for the case of urban visualization. The
framework is tested on large urban models containing 7.8 million and 23
million polygons. Performance experiments show that real-time stereo-
scopic visualization can be achieved for large models. © 2008 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2978948�

Subject terms: urban visualization; slice-wise representation; vertex buffer object
�VBO�; OpenGL graphics library; stereoscopic visualization.

Paper 080297R received Apr. 18, 2008; revised manuscript received Jul. 12,
2008; accepted for publication Jul. 18, 2008; published online Sep. 22, 2008.
Introduction
isualizing urban environments is one of the most chal-

enging areas in computer graphics, mainly because of the
norganized geometry and their complex nature. Attempts
o reduce this complexity include either preprocessing or
ssuming simpler geometry for the buildings in the urban
nvironment or both. And since virtual reality applications
eed twice the processing power of their monoscopic coun-
erparts, it is crucial to send only the visible parts of the
eometry to the rendering pipeline.

There are three ways to increase rendering performance.
iew-frustum culling �VFC� discards the objects that are
ut of the field of view. Back-face culling discards those
olygons whose normals are facing away from the viewer.
cclusion culling eliminates the parts that are occluded by
bjects in front.

Urban environments provide the opportunity to detect a
ot of occlusion during a walkthrough, which can be elimi-
ated from the graphics pipeline as it does not contribute to
he final view. Therefore, previous work has mostly con-
entrated on determining these occluded parts. The quality
f a visibility algorithm depends on how fast it determines
he visible parts of the model for different views, which are
alled potentially visible sets �PVSs�, and the degree of
ightness of the PVSs.

The advances in graphics hardware allow detection of
ccluded regions of urban geometry, even with complex
-D buildings. Visual simulations, urban combat simula-
ions, and city engineering applications require highly de-
ailed models and realistic views of an urban scene. Occlu-

091-3286/2008/$25.00 © 2008 SPIE
ptical Engineering 097005-
sion detection using preprocessing is a very common
approach, because of its high polygon reduction and its
ability to handle general 3-D buildings.

Virtual reality applications require special treatment be-
cause the geometry is rendered twice, once for each eye.
Generally, performance-enhancing techniques such as
view-frustum culling �VFC� are applied twice for both
eyes; this increases the overhead. We apply VFC only once
for a viewpoint that is well placed for both eye coordinates
rather than twice for stereoscopic visualization. The view
calculated from this location has the same coverage as both
eyes together.

We use the slice-wise representation of buildings for oc-
clusion culling and rendering based on graphics processing
unit �GPU�. We assume that the PVSs are determined in
preprocessing time, and the resultant visibility list is stored
using a slice-wise building representation. We improve ren-
dering performance using this representation through GPU-
based rendering. In particular, we demonstrate how GPU
can achieve high frame rates during stereoscopic visualiza-
tion.

In the next section, we discuss related work in terms of
occlusion culling, stereoscopic visualization, and slice-wise
representation. In Sec. 3, we summarize the slice-wise rep-
resentation of buildings. In Sec. 4, we describe the pro-
posed stereoscopic urban visualization framework. In Sec.
5, we outline the performance study. Last, we provide our
conclusions.

2 Related Work
Visibility determination is a well-studied area in computer
graphics.1 In order to achieve good stereoscopic visualiza-
September 2008/Vol. 47�9�1

t
a
s
o

2
I
h
p
o
i
b
v

c
t
o
w
c
s
I
e
b
w

t
g
e
a
s
i
a
t
p
u

a
t
e
t
�
s
s
c
c
c
c
v
d
c

c
i
l
i
b
a
s
t
s
p
o

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

ion, a good monoscopic correspondent must first be
chieved. Therefore, we initially deal with the problem of
peeding up monoscopic visualization by using powerful
cclusion culling and VFC algorithms.

.1 Occlusion Culling
n the special case of urban environments, most geometry is
idden behind other buildings; occlusion culling therefore
rovides significant gains in performance. In addition, most
f the buildings are partially visible for different views dur-
ng a walkthrough. Thus, identifying occluded parts of the
uildings quickly and representing partial visibility is of
ital importance.

Much work has focused on visualizing urban scenes
omposed of 2.5-D buildings—buildings constructed using
heir footprints. These have mainly used object space meth-
ds, which iterate over the scene objects and decide
hether or not they are visible.2–4 For example Ref. 5 dis-

usses cell-to-cell visibility—a portal sequence is con-
tructed from one cell to others where a sight line exists.
mage space algorithms perform visibility computation for
ach frame by checking whether the projections of the
ounding volumes of occluded buildings fall entirely
ithin the image area covered by the occluders.6–11

Occlusion culling is performed either during visualiza-
ion �on-line� or before visualization �off-line�. On-line al-
orithms calculate the visibility during run-time.12 How-
ver, the scalability is limited if no simplifying assumptions
re made. To overcome this, geometry-reduction techniques
uch as view-dependent simplification schemes can be
ncorporated.13,14 Off-line algorithms calculate visibility for

given region by discretizing the scene and determining
he navigable area,15 called view-cells. In this way, the pre-
rocessed information can be calculated and stored for later
se.

Occluder shrinking is a common approach of off-line
lgorithms. Using occluder shrinking, it is possible to de-
ermine occlusion from a specific point and use it for the
ntire view-cell region, because the occluders are shrunk by
he maximum distance that a user can go in the view-cell
see Fig. 1�. Wonka et al.12 shrink occluders by using a
phere constructed around 2.5-D occluders.In Ref. 16, in-
tead of a sphere, the authors calculate erosion of the oc-
luder using a convex shape, which is the union of the edge
onvex hulls of the object. These two approaches are appli-
able to 2.5-D urban environments. Exact shrinking can be
arried out only by using Minkowski differences of the
iew-cells and the occluders.17 In Ref. 18, a Minkowski-
ifference-based occluder shrinking method is proposed; it
an shrink 3-D objects and use them as occluders.

One of the biggest disadvantages of off-line occlusion
ulling algorithms is the difficulty of storing the visibility
nformation for run-time use, especially when the scene is
arge, containing tens of millions of polygons. Since visibil-
ty information must be stored for each view-cell, the num-
er of view-cells can total hundreds of thousands. Recently,
storage scheme for buildings, called the slice-wise repre-

entation, was developed; this facilitates the storage of par-
ial visibility information for urban walkthroughs.18 It can
ignificantly reduce the size of PVS storage when com-
ared to other commonly used storage schemes, such as
ctrees. The partial visibility information can be repre-
ptical Engineering 097005-
sented with 50% reduced polygons and 80% speed-up in
frame rates when compared to occlusion culling using
building-level granularity. The high reduction in storage re-
quirements for partial visibility allows the visualization of
large and complex urban models.

We determine the occluded regions in the scene as a
preprocessing step.18 The comparison of our work with the
state-of-the-art is summarized in Table 1. Here, we particu-
larly focus on stereoscopic visualization of large urban
models using the slice-wise representation. We show how
the slice-wise representation perfectly fits the graphics
hardware architecture; the GPU can be used, allowing
faster frame rates for stereoscopic visualization.

2.2 Stereoscopic Visualization
Stereoscopic visualization is used in many applications
such as simulators and scientific visualizations. It uses spe-

Fig. 1 Occluder shrinking: if the tested object �the rear cylinder� is
occluded by the shrunk version of the occluder �the inner front cyl-
inder� with respect to the center of the cube, then it is also occluded
by the occluder itself �the outer front cylinder� if viewed from any
point within the view-cell �the small cube�. This facilitates the deter-
mination of the occluded regions for each view-cell.

Table 1 The comparison of our approach for occlusion culling with
the state-of-the-art.

Property Previous work Our approach

Object-space approach Refs. 2–4

Image-space approach Refs. 6–11 �

On-line occlusion culling Ref. 12

Off-line occlusion culling Ref. 15 �

Simplification incorporated Refs. 13 and 14

Occluder Shrinking Ref. 16 �
September 2008/Vol. 47�9�2

c
r
o
s
t
s

a
a
t
r
i
m
c
t
f

g
i
t
i
w
s
v
i
r
t
e
t
r
R
c
d
i
s
a
a
i
c
c
s
h
c

3
I
c
w
i
r
p
m

A

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

ifically designed hardware—four frame buffers for the ste-
eoscopic display. One of the most commonly used pieces
f hardware is the time-multiplexed display system that is
upported by liquid crystal shutter �LCS� glasses and vir-
ual reality �VR� gears. Detailed information about these
ystems can be found in Refs. 19 and 20.

Stereoscopic viewing requires a display technique that
llows each eye see the image generated for it. Most of the
pplications support stereoscopic display by generating the
wo images for the left and right eyes completely sepa-
ately. The application must be able to generate 50 or more
mages per second to achieve a frame rate that approxi-

ates the same real-time visualization as the monoscopic
orrespondent.21 Obviously, when a monoscopic applica-
ion is converted to stereo without any improvement, the
rame rate decreases by half.

Earlier works on speeding up stereoscopic rendering
enerally utilize the mathematical characterizations of an
mage. These works make use of the invariant characteris-
ics of the image when the eye-point shifts horizontally as
n a typical stereo application, such as the scan lines toward
hich an object projects.19 In Ref. 22, the authors present a

terescopic ray-tracing algorithm that infers a right-eye
iew from a fully ray-traced left-eye view, which is further
mproved in Ref. 23. In Ref. 24, a non-ray-tracing algo-
ithm is described that speeds up second-eye image genera-
ion in the processes of polygon filling, hidden surface
limination, and clipping. Methods that take advantage of
he coherence between the two halves of a stereo pair for
ay-traced volume rendering are discussed in Ref. 25. In
ef. 26, the authors present an algorithm using segment
omposition and linearly interpolated reprojection for fast
irect volume rendering. Hubbold et al.27 propose extend-
ng a direct volume renderer for use with an autostereo-
copic display in radiotherapy planning. In Ref. 21, the
uthors present a framework to speed up stereoscopic visu-
lization of terrains represented as height fields by generat-
ng the view for one eye from the other with some modifi-
ations; this speeds the process by approximately 45%, as
ompared to generating two eye-views separately from
cratch. Mansa et al. provide an extensive analysis of co-
erence strategies that can be utilized for stereo occlusion
ulling.28

Slice-Wise Representation of Buildings
n Ref. 18, the slice-wise representation of buildings is dis-
ussed in detail. Here we give a brief summary of slice-
ise representation and the usage of it in an urban visual-

zation system for completeness. The slice-wise
epresentation is based on the observation that the visible
arts of the buildings in a typical urban walkthrough are
ostly in one of the following three cases �see Fig. 2�:

• The visible section is an L-shaped one with different
orientations.

• The visible section is a vertical rectangular block,
from the left or right of the building if the occluder
perspectively seems taller than the occludee.

• The visible section can be seen as a horizontal rectan-
gular block.

significant feature of this representation is that it facili-
ptical Engineering 097005-
tates the storage of partial visibility in case a building is
partially visible for a viewpoint. The slice-wise representa-
tion of buildings can facilitate the visualization of urban
environments in an urban visualization system. The visual-
ization framework utilizing this representation is shown in
Fig. 3.

In the first phase, the scene data is read and converted to
a temporary data structure having enough information for
the internal processes. Next, a uniform subdivision is ap-
plied, and the cells are clustered into slices. The navigable
area for the user is divided into view-cells. Then, the vis-
ibility determination using occluder shrinking is performed.
The shrunk versions of occluders are constructed using the
Minkowski differences of the occluders and the view-cells
in object-space. The occlusion determination takes place

Fig. 2 The visibility forms that can be experienced during a typical
urban walkthrough.

O C C L U D E R S H R I N K I N G

D E T E R M I N A T I O N O F

T H E V I E W C E L L S

S L I C E - W I S E D A T A

S T R U C T U R E C R E A T I O N

R E G U L A R

S U B D I V I S I O N

S C E N E D A T A

C O N V E R S I O N

S L I C E - W I S E O C C L U S I O N

C U L L I N G

S I N G L E L O C A T I O N V F C

a n d N A V I G A T I O N

Fig. 3 The flow diagram of a visualization system using the slice-
wise representation. The phases in dashed blocks are performed in
the preprocessing phase.
September 2008/Vol. 47�9�3

a
t
b

a
t
b
s
b

t
b
v
s
a
f
p
R

b
a
q
w
b
t
l
e

s
v
t
j
e
g
h
c
s
r
s
v
b
s
i
t

n
b
T

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

fter this step using the slice-wise representation, and par-
ial visibility information is determined throughout the ur-
an model for each view-cell.

The slice-wise representation is constructed by applying
regular subdivision to a building and then combining

hese subdivided blocks into slices for each axis. For each
uilding, a separate list of slices is maintained. Since the
lices are formed for each axis, a triangle of a building can
e accessed by any of them �see Fig. 4�.

In order to achieve conservative visibility by sampling
he visibility from discrete locations, the occluders have to
e shrunk by the maximum distance that can be traveled in
iew-cells. It is necessary to shrink the possible occluders
o that the objects behind the occluder become visible and
re added to the visibility list in case the user moves to the
arthest available location in the view-cell. The shrinking is
erformed using Minkowski differences as described in
ef. 18.

In order to determine the occlusion for a building, that
uilding is drawn in its original size, and other buildings
re drawn in their shrunk versions. Hardware occlusion
ueries are used to determine the portions that are visible
ith respect to the center of each view-cell, i.e., square
locks on the ground. To speed up the process, several
echniques such as quadtree-based culling and building-
evel culling are used in order to cull large portions before
ntering the slice-wise tests.

During the finest grained occlusion culling phase—the
lice-wise occlusion culling step—the slices—not indi-
idual triangles—are tested for occlusion. A building is
ested for occlusion using the shrunk versions of other ob-
ects as occluders and the slices of buildings parallel to
ach axis as occludees. The vertical slices are tested by
radually increasing their height, and the first visible
eights are recorded for each. The horizontal slices are
hecked for complete occlusion. After determining the
lices and portions of each building that are visible, the
esultant list is optimized, and partial visibility is repre-
ented with only 3 bytes, one for each axis. As a result,
isibility becomes encoded by the first visible slice num-
ers of vertical and horizontal axes �see Fig. 5�. For the
ake of simplicity, 3 bytes are stored for each building,
ncluding the unused axis. A separate visibility list is main-
ained for each navigable view-cell.

The rendering method employed in Ref. 18 uses dy-
amic display list compilation in OpenGL. This can cause
ottlenecks if there is a large amount of visible geometry.
o reduce this, the authors construct display lists on-line for

M a i n G e o m e t r y O b j e c t

S l i c e s w . r . t . X - a x i s

S l i c e T r i a n g l e P o i n t e r
L i s t

N e x t S l i c e

Y - a x i s
Z - a x i s

.

...

Fig. 4 The data structure for the slice-wise representation.
ptical Engineering 097005-
nine view-cells, including the neighbors of the user’s view-
cell. This approach provides a suitable environment for vi-
sualization and eliminates frame dips that may arise be-
cause of the compilation. In the worst case, this has the
disadvantage of replicating display lists of the buildings
with little visual differences for all neighboring view-cells,
which may lead to memory overflows.

4 Stereoscopic Urban Visualization Framework
In this section, we first explain how we use the GPU and
the slice-wise representation for the monoscopic case. GPU
utilization is based on the memory configuration for the
vertices of the buildings. During visualization, we use only
the indices for the vertices, which denote the locations of
the vertices of the slices for partially visible and completely
visible buildings.

4.1 Using Slice-Wise Representation on the GPU
GPU usage is becoming commonplace, not only in render-
ing but also in performing tasks such as collision
detection,29 database sorting,30 and others.31 Our aim is not
to develop a new GPU-based algorithm, but to optimize the
rendering of the scene using slice-wise representation for
buildings.

Using slice-wise representation, it is possible to access
any triangle by three orthogonal axes slices. In order to use
this representation with the display list mechanism, the tri-
angles pointed by each axis have to be compiled in the
memory as display lists with different identifiers. Usually,
this pointer duplication wastes memory, because a linked
list of slices and their triangles must be maintained, �see
Fig. 4�. This is an undesirable property. However, if there
were a way to represent this accessibility in some other
terms, it would be very handy and would permit the visu-
alization of larger urban models. This is what we achieve
by using the GPU architecture, the buffer objects stored in
the GPU.

4.1.1 OpenGL: vertex buffer objects (VBOs)
OpenGL provides a mechanism for the client-server type
execution of the graphics commands. For a single machine,
the server side is the graphics card �GPU�, and the client
side is the CPU. When a drawing command is issued, the
data moves back and forth between the graphics card and
the CPU. At this point, a vertex buffer object �VBO� be-
comes a powerful feature allowing the storage of the data in
the GPU and eliminates the movement of the data to be
drawn between the graphics memory and main system

1 2 3 4

V i s i b i l i t y I n d e x = - 3

1 2 3 4

V i s i b i l i t y I n d e x = + 1

1

2

3

4

V i s i b i l i t y I n d e x = + 3

5

Fig. 5 Visibility index determination using the slice-wise represen-
tation: The index number to be stored depends upon the occluded
section of the object. � or � signs are used to define the occlusion
side.
September 2008/Vol. 47�9�4

m
m
e
t
a
a
G
t
a
p

4
O
b
e
f
e
p
d
p
r
t
a
V

p
c
o
g
v
o
s
l
l
s
i
p

4
T
s
m
t
v
a

o
m

F
T
i
s

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

emory.32 With VBOs, the vertices are stored in a
emory-efficient fashion in the GPU, and the data becomes

ncapsulated in storage schemes called “buffer objects.” If
he available graphics card memory is not sufficient, it can
utomatically swap with the main memory. In order to use
VBO, only a pointer to the actual encapsulated data in the
PU needs to be accessed by the CPU. This is a pointer to

he memory location in the GPU that is used as a buffer,
nd it will be called a binding pointer throughout this pa-
er.

.1.2 VBO creation for the buildings
ur VBO configuration is shown in Fig. 6. The vertex
uffer is filled with the x, y, and z vertex coordinates for
ach building. A second buffer, the index buffer, is created
or each building which stores the indices of the vertices for
ach triangle. This index buffer is used to represent com-
letely visible buildings during navigation. Next, other in-
ex buffers are created for each slice so as to represent
artial visibility. It should be noted that the index buffers
equired for each slice can be constructed during walk-
hrough by storing the indices in main memory. The tri-
ngles and vertices in the memory are not needed after the
BOs for a building are constructed and stored in the GPU.
Figure 7 gives the VBO creation algorithm. In the first

art of the algorithm, vertex coordinates, normals, and
olor data are sent to the GPU. These data will be used
nce with the rendering commands for the buildings, re-
ardless of their visibility class. In the second part, the
ertex index data for the triangles of a completely visible
bject are sent. Next, the same kind of data is sent for the
lices. In the last part, the vertices, triangles, and other re-
ated data are deleted from the main memory through
inked lists. To implement this algorithm, the data structure
hown in Fig. 4 must be modified slightly to include bind-
ng pointers for complete visibility and for the slices for
artial visibility �see Fig. 8�.

.1.3 Implications of using VBOs for slices
he slice-wise representation coupled with VBO provides a
uitable environment for visualization, because the only
emory overhead of this representation is the index buffers

hat are needed. It has several benefits: it supports partial
isibility; it provides the lowest potentially visible set stor-
ge cost; and it facilitates a fast visualization environment.

As a result, the storage and accessibility representation
f each slice is fully utilized, although the amount of GPU
emory may cause slight limitation on this issue. However,

O B J E C T V E R T E X B U F F E R S L I C E S

ig. 6 The VBO data structure used in GPU-based visualization.
he object triangles are constructed using the index buffers created

n the GPU and accessed as needed for each building and for each
lice.
ptical Engineering 097005-
VBOs have the advantage of being able to swap with the
main memory, if the GPU memory becomes full. We have
performed tests even with 32 MB of GPU memory–there
were no memory overflows, and it automatically performs
swapping with the main memory without causing notice-

Fig. 7 The VBO creation algorithm. This algorithm is used to send
the vertex coordinates, normals, and color data along with the vertex
indices of the triangles to the GPU. In the first part, the necessary
information for the vertices is sent. In the second part, we send the
indices of the vertices for the triangles of a completely visible object
and its slices. In the last part, these data are deleted from the main
memory after they are transferred to the GPU.

M a i n G e o m e t r y O b j e c t

S l i c e s w . r . t . X - a x i s

S l i c e _ E l e m e n t _ B u f f e r _ B i n d i n g

Y - a x i s
Z - a x i s

.

...

o f X - S l i c e s

V e r t e x _ L i s t _ B i n d i n g

N o r m a l _ L i s t _ B i n d i n g

C o l o r _ L i s t _ B i n d i n g

C V _ E l e m e n t _ B u f f e r _ B i n d i n g

Fig. 8 The modified data structure for slice-wise representation
to facilitate GPU implementation: the vertex, normal and color
list bindings point to their memory locations in the GPU. These
data are referenced by the element buffer bindings
�CV�Element�Buffer�Binding and Slice�Element�Buffer�Binding� de-
pending on visibility status during run-time.
September 2008/Vol. 47�9�5

a
n
l
h
d
b
a
r
s

4
R
r
p
w
a
l

F
s
s
i

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

ble frame dips. The representation of each slice does not
eed to be changed. However, instead of keeping display
ists and triangles in the main memory, they are kept in the
igh-speed memory of the graphics hardware. This pro-
uces a huge decrease in the amount of main memory used
ecause of the driver optimization of OpenGL. Figures 6
nd 8 show the resultant configuration and the memory-
esident structures for GPU-based visualization using the
lice-wise representation.

.1.4 VBO referencing during run-time
un-time VBO access is depicted in Fig. 9 In this algo-

ithm, the slice-wise representation of buildings is ex-
loited. This algorithm uses the visibility information,
hich is produced using the occlusion culling algorithm

nd the slice-wise representation. In this algorithm, the fol-
owing operations are performed:

1. First, the active view-cell �or view-cells, since two
eyes may be in two different cells� are determined by

ig. 9 The algorithm for selecting the slices to be rendered. The
election is performed based on the visibility index assigned to the
lice as described in Ref. 18. The BindObject� � function is used to

nform the GPU that the object is to be accessed for rendering.
ptical Engineering 097005-
looking at the user location in the navigable space.15

Visible objects are determined and stored as a linked
list for each view-cell.

2. Next, this list is traversed and any completely
visible objects are rendered using the
CV�Element�Buffer�Binding index of the object. If the
object is partially visible, then we traverse the slices
of the object. The occlusion can be either on the left
or right of the vertical axes or in the lower part of the
object �see Fig. 5�.

3. If the object is occluded from the left and the right
part is visible, which is denoted by a negative visibil-
ity index, we increment the variable and do not ren-
der the slices. We just skip the slices until the incre-
mented variable becomes greater than the absolute
value of the visibility index. Then, we send the
Slice�Element�Buffer�Binding indices of the visible
slices for rendering.

4. If the object is occluded from the right and the left
part is visible, which is denoted by a positive visibil-
ity index, we render the slices until the incremented
variable becomes greater than the visibility index.

4.2 Stereoscopic Rendering
The following conditions are required to achieve the best
performance in stereoscopic visualization:

• The rendering rate should be sufficient to achieve in-
teractive visualization, i.e., it should be at least 17
frames per second.

• The ghosting effect �cross talk�, which is caused by
drawing a geometry for one eye and not drawing it for
the other eye, should be reduced or eliminated.

• The strongest stereo effect with the lowest values of
parallax should be provided. Parallax values should
not exceed 1.6 deg.33

The main problems incurred with stereoscopic visualization
include the ghosting effect and the resultant eye disturbance
problems. The ghosting effect, or cross talk, is the faded
image seen by the untargeted eye. This effect is undesirable
because it may cause eye fatigue and other visualization
problems. The main causes of the ghosting effect or cross
talk stated in the literature are the late decaying of the phos-
phor and shutter leakage.34–37 The phosphor persistence
causes a faded image to be seen when the image for the
other eye is being displayed on the screen.38 Most of the
research in this area is devoted to reducing this disturbing
effect. This effect is experienced particularly when the
background is dark and the image just drawn has high-
intensity colors.

4.2.1 Stereoscopic projection method
We applied off-axis projection with parallel frustums �Fig.
10� for stereoscopic visualization, i.e., two projections are
performed for each viewing direction and for each eye and
converge at infinity. Since an urban scene contains many
buildings at a distance, we found that using off-axis projec-
tion with a single convergence point �toe-in projection�
causes a lot of ghosting effects on the screen �see Fig. 10�.
Because of the convergence angle and varying scene depth,
September 2008/Vol. 47�9�6

l
a
k
c
c
p
s
a
o
a
i
t
l
b
b
s

4
V
m
t
t
c
r
f
m
l
d
a
b
b
r
t
T
o
s
b
f

m
s
o

L

F
I
p
a
r
i
g
l

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

ocations other than the convergence point can have notice-
ble ghosting effect, even when the viewing parameters are
ept within reasonable limits. In real life, the human eyes
an converge easily to any point the viewer wants. In
omputer-generated stereo, it is not easy to determine the
oint where the user’s eyes are converging; there has been
ome work in this area, but the results are not easily
pplicable.39,40 Using a convergence point works better for
bserving a single object. Therefore, we choose to use off-
xis projection with parallel view frustums converging at
nfinity. If the stereo parameters, such as interocular dis-
ance and user-screen distance, are kept within reasonable
imits, the ghosting effect on the inner parts of the screen
ecomes unnoticeable. We do not use on-axis projection
ecause it causes image distortions at the peripheries of the
creen due to projection transformations.

.2.2 View-frustum culling
iew-frustum culling �VFC� is one of the most important
ethods of eliminating primitives that do not contribute to

he final image during navigation. It is generally performed
wice for stereoscopic visualization. We made a simple
hange to decrease the number of VFC operations for ste-
eoscopic visualization from two to one. Instead of per-
orming VFC according to the locations of the eyes, we
ove backward a calculated distance and put the culling

ocation at the spot indicated in Fig. 11. This location is
etermined by using the midpoint of both eyes, the frustum
ngle, and the interocular distance. The viewing frustum
ecomes enlarged by moving the user position virtually
ackward, until the new frustum edges coincide with the
ight edge of the frustum with respect to the right eye and
he left edge of the frustum with respect to the left eye.
hus, we are able to cover the whole region that can be
bserved during stereoscopic visualization. Although this
ingle-location VFC increases the number of polygons to
e processed for rendering, it is much less costly than per-
orming VFC twice.

VFC can be performed on the unoccluded objects by
aking an in-order traversal of the scene quadtree. Another

olution is to test the bounding boxes of each unoccluded
bject one by one. Our experiences show that when the

X

Z
S t e r e o
r e g i o n

X

Z

O f f - a x i s p r o j e c t i o n
w i t h c o n v e r g e n c e

O f f - a x i s p r o j e c t i o n
w i t h p a r a l l e l f r u s t u m s

S t e r e o
r e g i o n

e f t E y e

i g h t E y e

L e f t E y e

R i g h t E y e

ig. 10 Off-axis projection using convergence is shown on the left.
f the user converges to the assumed location in the scene, then
erfect stereo is achieved. However, for urban scenes where there
re lots of buildings, assuming a single convergence point is not
ealistic. On the right, off-axis projection with parallel view frustums
s shown. Converging viewing directions at infinity decreases the
hosting effect if the viewing parameters are kept within reasonable

imits.
ptical Engineering 097005-
scene quadtree subdivision depth is too high, it may take
longer to cull the objects from the frustum than testing
unoccluded objects one by one. Since the scene is large and
the number of visible objects is much smaller than the num-
ber of quadtree nodes, for ground-based navigation, it is
faster to test only the bounding boxes of individual build-
ings in urban scenes.

VFC can be done using stencil tests on the quadtree
blocks of the unoccluded geometry. It can also be carried
out by applying hardware occlusion queries for the
quadtree blocks. If the scene hierarchy is to be used for the
VFC operation, then the in-frustum information for each
node of the hierarchy is needed, in order to determine the
tests for deeper level nodes. However, this requires a hard-
ware occlusion query setup and retrieval operation for each
quadtree block, and the setup time for hardware occlusion
culling is longer than the setup time for the stencil buffer
mechanism. This is not the case for testing the bounding
boxes of each object individually; all of the bounding boxes
can be sent to the GPU in a single batch using hardware
occlusion query, and the ones returning visible pixels can
be quickly rendered. These options are scene dependent,
and we have chosen to test the bounding boxes of the ob-
jects using hardware occlusion queries; we use an empty
buffer as an occluder buffer and test the bounding boxes of
each object individually.

5 Performance Study and Comparisons
The proposed framework is implemented using C language
with OpenGL libraries. The test platform is an Intel Pen-
tium IV, 3.4-GHz computer with 4 GB of RAM and a
NVidia Quadro Pro FX 4400 graphics card with 512 MB of
memory supporting the quad buffering needed for stereo-
scopic visualization. Crystal Eyes LCS glasses are used for
viewing in stereo. The purpose of the empirical study is to
test:

�
�
�

�
�
�

�
�
�

�
�
�

δ

δ

View−frustum Culling Point

B

C

Right EyeLeft Eye

A

Fig. 11 Changing the VFC location: since we know the projection
angle, the exact distance to move backward becomes a simple func-
tion of half of the eye separation distance and half of the projection
angle �backward�distance=half� interocular�distance / tan����. By
moving the VFC location, a single test can cover all the volume that
can be viewed in stereo.
September 2008/Vol. 47�9�7

F
�
t
v
a
t
w
o

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

• whether single-location VFC brings an advantage over
multiple VFC, given that the enlarged frustum may
decrease performance because of containing more
polygons;

• GPU performance with the slice-wise building
representation.

ig. 12 Still frames from navigations through the Vienna2000 model
the first two rows� and the procedurally-generated model �the last
wo rows� in monoscopic view. On the left, still frames from a given
iewpoint are shown. To the right of each frame, the view from
bove the user position represented by the small ellipsoid, shows
he rendered buildings using occlusion culling based on the slice-
ise representation. Invisible buildings are shown in yellow �faded
ut�. �Color online only�.

Fig. 13 Frame rate comparison of the VFC sch
the Vienna2000 model with 7.8 million polygons
with 23 million polygons. These graphs show th
to multiple location VFC and not performing VF
ptical Engineering 097005-
We performed tests using both the Vienna2000 Model,
which consists of 7.8 million polygons in 2,086 buildings,
and a procedurally-generated city model composed of 23
million polygons in 1,536 buildings with six different ar-
chitectures. Still frames from navigations through these
models are shown in Fig. 12.

In Fig. 13, we compare the frame rates obtained using
different VFC schemes. Our aim is not to test the advantage
of VFC but to test the gain in performance from using
single-location VFC instead of multiple-location VFC.
However, we also give performances when VFC is not ap-
plied for the sake of completeness. The reason for the fluc-
tuations in these graphs is the changing polygon counts as
the navigation is carried out. Different parts of an urban
model can be represented with different numbers of poly-
gons, depending on the complexity of the buildings.

The average frame rates for the Vienna2000 Model are
281.8, 231.0, and 215.8 frames per second �fps� for the
single-location, multiple-location, and no-frustum culling
schemes, respectively. The average frame rates for the
procedurally-generated model are 34.24, 30.5, and 10.2
frames per second �fps� for the single-location, multiple-
location, and no-frustum culling schemes, respectively. The
procedurally-generated model has long streets, which
means that a lot of geometry is instantly visible in each
frame. The culling ratios �including view-frustum culling
and occlusion culling� are 98.53%, 98.53%, and 96.43% for
the Vienna2000 Model and 97.00%, 97.00%, and 91.82%
for the procedurally generated model for the single-location
VFC, multiple-location VFC, and no-frustum culling
schemes, respectively. Using single-location VFC with the
Vienna2000 model produces a 22.0% gain in frame rates
when compared to using multiple location VFC; for the
procedurally-generated model, the gain is 12.3%.

The advantage of using a GPU-based rendering ap-

n stereoscopic visualization: �a� frame rates for
me rates for the procedurally-generated model

ntage of using single-location VFC with respect
e that we render two images for each frame.
emes i
. �b� fra
e adva
C. Not
September 2008/Vol. 47�9�8

p
e
u
r
l
s
t
s
T
s
G
1
b
t
r

6
I
v
o
r
s
i
f
p
a
f

p
o
w
g
p
b
u
t

T

M

N

N

N

M

G

S

M

U

S

S

a

p

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

roach with the slice-wise building representation can be
xamined in two aspects: rendering speed-up and memory
sage. The reported average frame rate for the monoscopic
endering of the Vienna2000 Model using OpenGL display
ists is 135.1 fps.18 The frame rate for GPU-based stereo-
copic rendering is 281 fps on average. Since we render
wo images for each frame, this corresponds to a 315%
peed-up when compared to using OpenGL display lists.
he reported main memory usage for the slice-wise repre-
entation of the Vienna2000 model is 218.7 MB. For the
PU-based approach, the main memory usage is only
.3 MB �14 bytes per each of 94,480 slices�. Thus, GPU-
ased rendering confers significant advantages both in
erms of the rendering speed and main memory usage. Test
esults are summarized in Table 2.

Conclusion
n this paper, we propose a framework for the stereoscopic
isualization of urban environments. We make use of an
cclusion-culling approach based on a slice-wise building
epresentation that can capture partial visibility. The stereo-
copic visualization framework uses a GPU-based render-
ng method that exploits slice-wise representation. The
ramework also uses a modified view-frustum culling ap-
roach, in which only one culling is performed. The result-
nt view-frustum has the same coverage as the view-
rustums for each eye in stereoscopic visualization.

The visualization is done using off-axis stereoscopic
rojection with parallel frustums. The framework is tested
n large urban models: the Vienna2000, which is a real-
orld model containing 7.8 million and a procedurally-
enerated model containing 23 million polygons. The em-
irical study shows that using the single-location VFC
rings a significant gain in frame rates when compared to
sing multiple-location VFC. The GPU-based rendering of
he urban model using the slice-wise representation is sig-

able 2 The summary of test results using the proposed framework.

odel name Vienna2000
Procedurally-
generated

umber of polygons 7.8 million 23 million

umber of buildings 2,086 1,536

umber of slices 94,480 30,392

ain memory usage 1.3 MB 425.5 KB

PU memory usage 298 MB 904 MB

ingle-location VFC �stereo� 281.8 fps 34.24 fps

ultiple-location VFC �stereo� 231.0 fps 30.5 fps

sing display lists �mono� 135.1 fpsa Not available

peed-up using VBOs 315% Not available

peed-up of single-location VFC 22% 12.3%

The reported average frame rate in Ref. 18 �using the same test
latform�.
ptical Engineering 097005-
nificantly faster than the one using OpenGL display lists.
This shows that the slice-wise representation fits perfectly
onto the GPU architecture by the use of vertex buffer ob-
jects. This study shows that the proposed framework allows
a real-time stereoscopic visualization of urban scenes.

Acknowledgments
The work described in this paper is supported by the Sci-
entific and Research Council of Turkey �TÜBİTAK� under
Project Codes 104E029 and 105E065. The Vienna2000
Model is courtesy of Peter Wonka and Michael Wimmer.
We are grateful to Kirsten Ward for proofreading and sug-
gestions.

References

1. D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Durand, “A survey
of visibility for walkthrough applications,” IEEE Trans. Vis. Comput.
Graph. 9�3�, 412–431 �2003�.

2. J. Heo, J. Kim, and K. Wohn, “Conservative visibility preprocessing
for walkthroughs of complex urban scenes,” in Proc. ACM Sympo-
sium on Virtual Reality Software and Technology, pp. 115–128, ACM
Press/Addison-Wesley �2000�.

3. J. T. Klosowski and C. T. Silva, “Efficient conservative visibility
culling using the prioritized-layered projection algorithm,” IEEE
Trans. Vis. Comput. Graph. 7�4�, 365–379 �2001�.

4. G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion, “Conservative
volumetric visibility with occluder fusion,” in Proc. SIGGRAPH, pp.
229–238, ACM Press/Addison-Wesley �2000�.

5. T. A. Funkhouser, C. H. Sequin, and S. J. Teller, “Management of
large amounts of data in interactive building walkthroughs,” ACM
Computer Graphics (Proc. ACM Symposium on Interactive 3D
Graphics) 25�2�, 11–20 �1992�.

6. D. Bartz, M. Meißner, and T. Hüttner, “OpenGL-assisted occlusion
culling for large polygonal models,” Comput. & Graphics 23�5�,
667–679 �1999�.

7. B. Chen, J. E. Swan, E. Kuo, and A. E. Kaufman, “LOD-sprite tech-
nique for accelerated terrain rendering,” in Proc. IEEE Visualization,
pp. 291–298 �1999�.

8. N. Greene, “Efficient occlusion culling for Z-buffer systems,” in
Proc. Computer Graphics International, pp. 78 �1999�.

9. M. Wimmer, M. Giegl, and D. Schmalstieg, “Fast walkthroughs with
image caches and ray casting,” Comput. & Graphics 23�6�, 831–838
�1999�.

10. F. Durand, G. Drettakis, J. Thollot, and C. Puech, “Conservative vis-
ibility preprocessing using extended projections,” in Proc. SIG-
GRAPH, pp. 239–248, ACM Press/Addison-Wesley �2000�.

11. M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and W. Straßer,
“The randomized z-buffer algorithm: interactive rendering of highly
complex scenes,” in Proc. SIGGRAPH, pp. 361–370, ACM Press/
Addison-Wesley �2001�.

12. P. Wonka, M. Wimmer, and F. X. Sillion, “Instant visibility,” Com-
puter Graphics Forum (Proc. Eurographics) 20�3�, 411–421 �2001�.

13. C. Andújar, C. Saona-Vázquez, I. Navazo, and P. Brunet, “Integrating
occlusion culling and levels of detail through hardly visible sets,”
Comput. Graph. Forum 19�3�, 499–506 �2000�.

14. J. A. El-Sana, N. Sokolovsky, and C. T. Silva, “Integrating occlusion
culling with view-dependent rendering,” in Proc. IEEE Visualization,
pp. 371–378 �2001�.

15. T. Yılmaz and U. Güdükbay, “Extraction of 3D navigation space in
virtual urban environments,” in Proc. 13th European Signal Process-
ing Conference, EURASIP �2005�.

16. X. Decoret, G. Debunne, and F. Sillion, “Erosion based visibility
preprocessing,” in Proc. 14th Eurographics Workshop on Rendering,
P. Christensen and D. Cohen-Or, Eds., pp. 281–288 �2003�.

17. P. K. Agarwal and M. Sharir, “Arrangements,” in Handbook of Com-
putational Geometry, J.-R. Sack and J. Urrutia, Eds., pp. 49–119,
Elsevier, North-Holland, Amsterdam, �1999�.

18. T. Yılmaz and U. Güdükbay, “Conservative occlusion culling for
urban visualization using a slice-wise data structure,” Graphical
Models 69�3–4�, 191–210 �2007�.

19. L. F. Hodges, “Tutorial: time-multiplexed stereoscopic computer
graphics,” IEEE Comput. Graphics Appl. 12�2�, 20–30 �1992�.

20. L. F. Hodges and D. McAllister, “Stereo and alternating-pair tech-
niques for display of computer-generated images,” IEEE Comput.
Graphics Appl. 5�9�, 38–45 �1985�.

21. U. Güdükbay and T. Yılmaz, “Stereoscopic view-dependent visual-
ization of terrain height fields,” IEEE Trans. Vis. Comput. Graph.
8�4�, 330–345 �2002�.
September 2008/Vol. 47�9�9

http://dx.doi.org/10.1109/38.124285
http://dx.doi.org/10.1109/TVCG.2002.1044519

2

2

2

2

2

2

2

2

3

3

3
3

3

3

3

3

Yılmaz and Güdükbay: Stereoscopic urban visualization based on graphics processor unit

O

2. J. D. Ezell and L. F. Hodges, “Some preliminary results on using
spatial locality to speed up raytracing of stereoscopic images,” in
Stereoscopic Displays and Applications I, Proc. SPIE 1256, 298–306
�1990�.

3. S. J. Adelson and L. F. Hodges, “Stereoscopic ray-tracing,” Visual
Comput. 10�3�, 127–144 �1993�.

4. S. J. Adelson, J. B. Bentley, I. S. Chong, L. F. Hodges, and J. Wino-
grad, “Simultaneous generation of stereoscopic views,” Comput.
Graph. Forum 10�1�, 3–10 �1991�.

5. S. J. Adelson and C. D. Hansen, “Fast stereoscopic images with ray
traced volume rendering,” in Proc. Symposium on Volume Visualiza-
tion, pp. 3–9, ACM Press �1994�.

6. T. He and A. Kaufman, “Fast stereo volume rendering,” in Proc.
IEEE Visualization, pp. 49–56 �1996�.

7. R. Hubbold, D. Hancock, and C. Moore, “Stereoscopic volume ren-
dering,” in Proc. Visualization in Scientific Computing, pp. 105–115
�1998�.

8. I. Mansa, A. Amundarain, L. Matey, and A. Garcia-Alonso, “Analy-
sis of coherence strategies for stereo occlusion culling,” J. Comput.
Animation Virtual Worlds 19�1�, 67–77 �2008�.

9. N. K. Govindaraju, M. C. Lin, and D. Manocha, “Fast and reliable
collision culling using graphics hardware,” IEEE Trans. Vis. Comput.
Graph. 12�2�, 143–154 �2006�.

0. N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTeraSort:
high performance graphics co-processor sorting for large database
management,” in Proc. ACM SIGMOD International Conference on
Management of Data, pp. 325–336 �2006�.

1. A. Lefohn, “Glift: an abstraction for generic, efficient GPU data
structures,” in GPGPU: General-Purpose Computation on Graphics
Hardware, ACM SIGGRAPH Course Notes, pp. 140–151, ACM
Press, New York �2005�.

2. nVidia Corp. “Using vertex buffer objects �VBOs�,” pp. 1–15 �2003�.
3. N. A. Valyus, Stereoscopy, Focal Press, London and New York

�1962�.
4. T. Haven, “A liquid-crystal video stereoscope with high extinction

ratios, a 28% transmission state, and 100 �s switching,” Proc. SPIE
761, 23–26 �1987�.

5. L. Lipton, J. Halnon, J. Wuopio, and B. Dorworth, “Eliminating
�-cell artifacts,” Proc. SPIE 3957, 264–270 �2000�.

6. J. Lipscomb and W. Wooten, “Reducing crosstalk between stereo-
scopic views,” Proc. SPIE 2177, 92–96 �1994�.

7. P. Bos, “Time sequential stereoscopic displays: the contribution of
phosphor persistence to the ‘ghost’ image intensity,” in Proc. Three-
Dimensional Image Technologies (ITEC), pp. 603–606 �1991�.
ptical Engineering 097005-1
38. A. J. Woods and S. S. L. Tan, “Characterizing sources of ghosting in
time-sequential stereoscopic video displays,” Proc. SPIE 4660,
66–77 �2003�.

39. Z. Zhu and Q. Ji, “Robust real-time eye detection and tracking under
variable lighting conditions and various face orientations,” Comput.
Vis. Image Underst. 98�1�, 124–154 �2005�.

40. J.-G. Wang, E. Sung, and R. Venkateswarlu, “Estimating the eye gaze
from one eye,” Comput. Vis. Image Underst. 98�1�, 83–103 �2005�.

Türker Yılmaz received his BSc degree in
finance management from the Turkish Mili-
tary Academy, Ankara, Turkey, in 1991. He
finished the one-year automated data pro-
cessing program at Middle East Technical
University, Ankara, Turkey, in 1998. He then
received his MSc and PhD degrees, both in
computer engineering, from Bilkent Univer-
sity, Ankara, Turkey, in 2001 and 2007, re-
spectively. Currently, he is an instructor at
the Turkish Military Academy. His research

interests include visualization of complex graphical environments,
virtual reality, and simulation programming.

Uğur Güdükbay received his BSc degree
in computer engineering from Middle East
Technical University, Ankara, Turkey, in
1987. He received his MSc and PhD de-
grees, both in computer engineering and in-
formation science, from Bilkent University,
Ankara, Turkey, in 1989 and 1994, respec-
tively. He then conducted research as a
postdoctoral fellow at the University of
Pennsylvania, Human Modeling and Simu-
lation Laboratory. Currently, he is an associ-

ate professor at Bilkent University, Department of Computer Engi-
neering. His research interests include various aspects of computer
graphics, including physically based modeling, human modeling and
animation, and visualization of complex graphical environments. He
is a senior member of IEEE and professional member of ACM.
September 2008/Vol. 47�9�0

http://dx.doi.org/10.1117/12.19912
http://dx.doi.org/10.1007/BF01900903
http://dx.doi.org/10.1007/BF01900903
http://dx.doi.org/10.1117/12.468076
http://dx.doi.org/10.1016/j.cviu.2004.07.012
http://dx.doi.org/10.1016/j.cviu.2004.07.012

